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Abstract

A key problem when interpolating a network of curves occurs at
vertices: analgebraic condition called the vertex enclosure con-
straint must hold wherever an even number of curves meet. This
paper recasts the constraint in terms of the local geometry of the
curve network. This allows formulating a newgeometricconstraint,
related to Euler’s Theorem on local curvature, that implies the ver-
tex enclosure constraint and is equivalent to it where four curve
segments meet without forming an X.

CR Categories: G.1.2 [Approximation]: Approximation of sur-
faces and contours—; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: vertex enclosure constraint,Euler curvature constraint,
local network interpolation,C1 surface construction, splines

1 Introduction

A common approach to surface modeling is to create a network of
curves and then determine a regular surface that interpolates the
network (see Figure 2,left). In this approach, the curve segments
meeting at a vertex are constructed to be regular and smooth and
their tangents are placed into the same plane to indicate that a tan-
gent continuous surface is sought. The main challenge occurs at
each vertexp: we need to find a second order expansion of then
surface piecesxi that interpolate the second order expansions of the
curvescj meeting atp (Figure 2,right).

It is known, for example from [Bez77; vW86; Wat88; Sar87; Sar89;
DS91; Ren91], that interpolating the second order expansions is
always and uniquely possible if the number of curves meeting is
odd — but that, when the number of curves is even, an additional
algebraic constraint must hold for thenormal componentsof the
curve expansions. This is the vertex enclosure constraint [Pet91b].

This paper gives a new formulation of the vertex enclosure con-
straint in terms of thelocal geometry of the curve network. Such
a formulation is helpful as a criterion for the layout of admissible
curve networks and is complementary to work on improving shape
such as [Pot92]. We do not weigh down the paper with specific
strategies for adjusting curves and constructing the actual surfaces
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Figure 1:Network of curve segments.

1

1

2

2 ci

ci+1

ci−1

xi

xi+1

∂2xi+2

∂1xi+2

p

Figure 2: This paper focuses on local network interpolation (see
Definition 1, cf. [HL 93, Fig 7.12] ): curvescj , j ∈ Zn, meeting
at a pointp are given and pairwise interpolating patchesxj are
sought. The arrow labels1 and2 indicate the domain parameters
associated with the boundary curves of the patches, e.g.∂1xi+2 =
∂2xi+1.

since there are a myriad of choices, typically specific to the design
context and preferred representation of the interpolating surface,
but focus on the fundamental geometric insight.

2 Local curve interpolation:
overview and background

As illustrated in Figure 2, we considern curvesci : R → R
3 that

start at a pointp ∈ R
3 and have tangentsti ∈ R

3 atp that admit a
common normaln ∈ R

3. Let xi : R
2 → R

3, i ∈ Zn ben patches
filling-in between the curves. If each patch isC2 at p, as would
be the case for piecewise polynomial patches such asC2 spline
patches, then, in order for anevennumbern of patches to pairwise
meet along the curves with tangent continuity (and, in particular,
at p), the curves have to satisfy one scalar constraint. This scalar
constraint, the first-ordervertex enclosure constraint(6), links the
normal componentof the second derivatives of the curves.

For an odd number of patches, no vertex enclosure constraint exists



(Theorem 1). Ifn = 4 and the curve tangentstj , j = 1, 2, 3, 4
form an X, i.e., they are pairwise collinearti × ti+2 = 0 for
i = 1, 2, then the constraint holds automatically (Lemma 3). For
example, this holds at an internal knot of a smooth tensor-product
spline where four polynomial pieces meet. Also, if we use patches
xi that are notC2 at p, no vertex enclosure constraint applies.
The three known classes of techniques that avoid the vertex enclo-
sure constraint are: singular patch constructions, e.g. [BR97; NP94;
Pet91a], rational base-point constructions, e.g. [Gre74; CK83], and
split-patch constructions [Pip87; Pet95]. Here the patches are either
notC2 or not regular. Since we are interested in the standard case
where the patches are regular andC2, we will in the following as-
sume that the patches satisfy, locally at the pointp, the ‘compatibil-
ity condition’ ∂1∂2x = ∂2∂1x . In particular, tensor-product spline
patches, even with multiple knots such asC1 bicubics, satisfy the
compatibility constraint since, at their corners where patches abut,
they consist of a single polynomial piece.

For an even number of patches, the compatibility condition together
with the first-order continuity contraints result in a rank deficient
circulant system that is only solvable if we restrict its right hand
side [Bez77; Wat88; vW86; Sar87; Sar89; DS91; Ren91]. Du and
Schmitt [DS91] gave a sufficient condition for this vector-valued
constraint to hold but did not connect this to the geometric char-
acteristics of the curve network. An important insight [Pet91b] is
that, for the components in the tangent plane, we have plenty of
freedom to satisfy the system. The essential part of the constraint
is the normal component. We therefore separate the components in
the normal direction from those in the tangent plane and focus on
the fact that the system with the normal component as right hand
side can only be solved if an alternating sum of the right hand side
vanishes. In Section 3, we derive equation (6) that re-interprets this
algebraic constraint geometrically in terms of angles and normal
curvatures.

In [Pet91b], it was shown that if there exists a symmetric (embed-
ded Weingarten) matrixW ∈ R

3×3 such that the boundary curves
ci all satisfy

n · ∂j∂kxi = (tj)
t

Wtk (1)

then the vertex enclosure constraint holds. The relation was called
compatibility with a second fundamental form. In Section 4, we
give an equivalent, alternative sufficient condition that implies that
the vertex enclosure constraint holds. This relation is similar to
Euler’s theorem — which states that ifκn is the normal curvature
of a curve emanating from a point on aC2 surface then there exist
scalarsκ1, κ2 and an angleφ with respect to a fixed directiond in
the tangent plane so thatκn = κ1 cos2 φ+ κ2 sin2 φ.

3 The C
1 vertex enclosure constraint

We now derive the vertex enclosure constraint and show it to be
equivalent to a relation involving only the angles between the tan-
gents and the normal curvature. We can focus on the normal com-
ponent since the tangential components will not restrict the curves
(see Theorem 1 below). We define the overall task.
Definition 1 (Smooth Network Interpolation). Let

ci : R → R
3, t 7→ ci(t), i ∈ Zn (2)

be a sequence of regular,C2 curves inR
3 that meet at a common

point p in a plane with oriented normaln and at anglesψi less
thanπ:

ci(0) = p, c′
i(0) =: ti ⊥ n, 0 < ψi := ∠(ti, ti+1) < π. (3)

Define asmooth network interpolationof {ci} to be a sequence of
patches

xi : R
2 → R

3, (u, v) 7→ xi(u, v), i ∈ Zn (4)

that are regular andC2 at p, that interpolate the curve network
according toxi(t, 0) = ci−1(t) and xi(0, t) = ci(t), and that
connect pairwise so that theG1 constraints, i.e.,C1 continuity after
reparameterization (see e.g. [PBP02] or [Pet02]), hold for scalar
functionsαi, βi andγi:

αi(t)∂1xi(0, t) + βi(t)∂2xi(0, t) + γi(t)∂2xi+1(t, 0) = 0. (5)

Smooth Network Interpolation restricted to the neighborhood ofp

is calledlocal network interpolation.

Note that the angleψi corresponds to patchxi+1. To simplify com-
putations, we assume in the following, for notational convenience
only, that the curves are arclength-parameterized up to second order
at t = 0. In particular,ti is a unit vector. Our results will never-
theless also apply to polynomial patches in their original form. The
normal curvature ofci atp,

κn

i := c
′′
i (0) · n,

will play a central role in the following.
Theorem 1 (vertex enclosure constraint). If n is odd then local
network interpolation is always possible. Ifn is even then local
network interpolation is possible if and only if the vertex enclosure
constraint(6) holds

0 =

n
X

i=1

(−1)i(cotψi−1 + cotψi)κ
n

i . (6)

Alternatively, whenn is even, we can write (6) as

0 =

n
X

i=1

(−1)iκn

i (cotψi−1 + cotψi) (7)

=
n

X

i=1

(−1)i (κn

i − κn

i+1) cotψi.

Proof. Abbreviatingai := αi(0), bi := βi(0), ci := γi(0), (5)
implies

aiti−1 + biti + citi+1 = 0. (8)

Taking the cross product withti and then the scalar product of the
result withn yields

ai det [ti−1, ti,n] + ci det [ti+1, ti,n] = 0.

Since0 < ψi < π, det [ti−1, ti,n] > 0 and since the surface
pieces are regular at(0, 0), ci 6= 0 6= ai, and hence

ai = ci
det [ti, ti+1,n]

det [ti−1, ti,n]
= ci

sinψi

sinψi−1

. (9)

Similarly,

bi = −ci
det [ti−1, ti+1,n]

det [ti−1, ti,n]
= −ci

sin(ψi−1 + ψi)

sinψi−1

. (10)

Differentiating both sides of (5) along the common boundary yields
the system ofn equations,i ∈ Zn

aiwi + biki + ciwi+1 + a′iti−1 + b′iti + c′iti+1 = 0, (11)

where we abbreviated thecorner twist vectorof the patchxi atp as

wi := ∂1∂2xi(0, 0), (12)

thecurvature vectorof ci atp as

ki := ∂2
2xi(0, 0) = c

′′
i (0) (13)



and
a′i := α′

i(0), b′i := β′
i(0), c′i := γ′

i(0). (14)

As we form the scalar product of each side of (11) withn, we obtain

aiwi · n + biki · n + ciwi+1 · n = 0 (i ∈ Zn). (15)

Settingqi := wi · n, (15) simplifies to

ai qi + biκ
n

i + ci qi+1 = 0, i ∈ Zn. (16)

On substitutingai and bi using (9) and (10), the equations (16)
become

sinψi

sinψi−1

qi −
sin(ψi−1 + ψi)

sinψi−1

κn

i + qi+1 = 0 (17)

and therefore
qi

sinψi−1

+
qi+1

sinψi

= (cotψi−1 + cotψi)κ
n

i . (18)

With the introduction of the variables

q̃i :=
qi

sinψi−1

and
κ̃i := (cotψi−1 + cotψi)κ

n

i

our equation takes the simple form

q̃i + q̃i+1 = κ̃i i ∈ Zn. (19)

Alternately subtracting and adding Equations 19, we see

q̃1 = (−1)nq̃1 +

n
X

i=1

(−1)i−1κ̃i. (20)

If n is even then the system of equations (19) is singular and by
(20) there is a solution only if

n
X

i=1

(−1)iκ̃i = 0. (21)

This establishes the necessity of (6).

We now show sufficiency: if the boundary curves{ci}i∈Zn
either

satisfy (6) or ifn is odd then the system (15) can be solved for
qi := wi · n and admits local network interpolation. Ifn is even
and (6) holds then the solution is not unique. For example, [Pet00],
gives a solution. Ifn is odd then, by (20),

q̃1 = −
1

2

n
X

i=1

(−1)iκ̃i (22)

and we can backsolveqj = κ̃j−1−qj−1 for j = 2, . . . , n. In either
case, since{ti−1, ti, ti+1} spans the tangent space, (11) is solvable
for some, possibly non-unique set,{(wi, a

′
i, b

′
i, c

′
i)}. Then

xi(u, v) := ci−1(u) + ci(v) − p

+ uv
`

wi + uli(u) + vri(v) + uvmi(u, v)
´

is well-defined and is the unique interpolant ofci−1, ci, andwi

up to a choice of univariate functionsli andri, and some bivariate
functionmi. We obtain a local network interpolation, for example
for the choiceαi(t) := ai+a

′
it, βi(t) := bi+b

′
it, γi(t) := ci+c

′
it,

andĉi(t) := ci(t) − p − tit− kit
2/2 by setting

ri(t) := li(t) := −
a′iwi + b′iki + c′iwi+1 + βi(t)ĉ

′
i(t)

αi(t) + γi(t)
. (23)

The denominator is nonzero in a neighborhood of0 sinceαi(0) +
γi(0) 6= 0 by (3) and (9). Combining like terms oft, the left side
of (5) becomes

αi(t) (ti−1 + t(wi + tri(t))) + βi(t)(ti + kit+ ĉ
′
i)(t)

+ γi(t) (ti+1 + t(wi+1 + tli+1(t)))

=(aiti−1 + biti + citi+1)

+ t(a′iti−1 + b′iti + c′iti+1 + aiwi + biki + ciwi+1)

+ t2(a′iwi + b′iki + c′iwi+1

+ αi(t)ri(t) + βi(t)ĉ
′
i(t) + γi(t)li+1(t)) (24)

=(8),(11),(23)0

Therefore (5) holds.

Next, we will derive a geometric constraint that implies the geo-
metric interpretation (6) of the vertex enclosure constraint.

4 Vertex Enclosure and Euler’s Theorem

For a point on aC2 surface, Euler’s Theorem expresses normal cur-
vature in any tangent direction in terms of the principal curvatures:
(see e.g. [dC76, page 145])

κn = κ1 cos2 φ+ κ2 sin2 φ (25)

whereφ is the angle betweent and the principial direction ofκ1.
We will aim to enforce a similar constraint for the curve network.
Definition 2 (Euler curvature constraint). Let n be even and
{φi}i∈Zn

such thatφi+1 − φi = ψi, andci, i ∈ Zn be curves
whose tangents form anglesφi from some fixed directiond. Then
theEuler curvature constraintholds for curvesci, with normal cur-
vaturesκn

i ∈ R, i ∈ Zn if there exist constantsκ1, κ2 ∈ R such
that

κn

i = κ1 cos2 φi + κ2 sin2 φi, i ∈ Zn. (26)

In the following, we will see that this newly defined geometric Euler
constraint and the vertex enclosure constraint are closely linked.
Theorem 2 (The Euler curvature constraint implies the vertex en-
closure constraint). If the Euler constraint(26)holds for curvesci,
i ∈ Zn, then the vertex enclosure constraint(6) holds.

Proof. Below we use (26) and the trigonometric identities

κn

i − κn

i+1 =(26) (κ2 − κ1)
`

sin2 φi − sin2 φi+1

´

= (κ1 − κ2) sin(φi + φi+1) sin(φi+1 − φi) (27)

= (κ1 − κ2) sin(φi + φi+1) sinψi,

2 sin(σ + τ) cos(σ − τ) = sin 2σ + sin 2τ, (28)

and, in the last equality, thatn is even. Then the right hand side of
(6),

n
X

i=1

(−1)i(cotψi−1 + cotψi)κ
n

i =

n
X

i=1

(−1)i cosψi

sinψi

(κn

i − κn

i+1)

(29)

= (κ1 − κ2)
n

X

i=1

(−1)i cos(φi+1 − φi) sin(φi + φi+1)

(30)

=
κ1 − κ2

2

n
X

i=1

(−1)i(sin 2φi+1 + sin 2φi) = 0 (31)

as claimed.



Conversely, however, (6) does not, in general, imply (26). This is
shown by next two lemmas. The first appeared in similar form in
[PW92; Her96].
Lemma 1 (Determiningκ1, κ2 and d from three curves). Let
{t1, t2, t3} be tangent vectors:n ·ti = 0. If no pair of{t1, t2, t3}
is parallel thenκ1, κ2 andd of (26) can be determined from the
curvesci, i = 1, 2, 3.

Proof. Choosing without loss of generality the coordinates so that

n :=

2

4

0
0
1

3

5 , t1 :=

2

4

1
0
0

3

5 , t2 :=

2

4

x2

y2
0

3

5 , t3 :=

2

4

x3

y3
0

3

5 ,

W :=

»

W 0
0 1

–

:=

2

4

w1 w2/2 0
w2/2 w3 0

0 0 1

3

5 ,

the constraints (1) fori = 1, 2, 3,

κn

i ‖ti‖
2 = (ti)

t

Wti = (ti(1))2w1+(ti(1)ti(2))w2+(ti(2))2w3

yield the system

T

2

4

w1

w2

w3

3

5 :=

2

4

1 0 0
x2

2 x2y2 y2
2

x2
3 x3y3 y2

3

3

5

2

4

w1

w2

w3

3

5 =

2

4

κn

1 ‖t1‖
2

κn

2 ‖t2‖
2

κn

3 ‖t3‖
2

3

5

to be solved forw1, w2, w3. The3 × 3 matrixT is invertible since

detT = y2y3 det

»

x2 y2
x3 y3

–

and by assumptiony2 6= 0 6= y3 andt2 andt3 are not collinear.
We can now chooseκ1 andκ2 as the eigenvalues of the2 × 2
submatrixW and the directiond as the eigenvector ofκ1. This
uniquely defines an embedded Weingarten map. Therefore Euler’s
Theorem holds and this implies (26).

Given this linear relationship between data and curvature, we can-
not expect that the vertex enclosure constraint (6) implies the Euler
constraint (26). For example, when the number of curves isn = 6
then we can choose the curvature of five of the curves to not satisfy
(26). But, due to the linear dependence of the curvatures in (6), we
can choose the curvature of the sixth curve so that (6) holds. The
following example makes this concrete.
Lemma 2. The vertex enclosure constraint(6) is weaker than the
Euler constraint(26).

Proof. Choose

ψ1 = ψ2 = ψ3 =
2π

12
, ψ4 = ψ5 = ψ6 =

2π

4
,

κn

1 = κn

2 = κn

3 = κn

4 = 0, κn

5 = κn

6 = 1.

Then by Lemma 1, since the directions defined byψ1, ψ2, andψ3

are not pairwise dependent,κn

1 = κn

2 = κn

3 = 0 implies that
the right hand side of (26) is zero and this is not consistent with
κn

5 = κn

6 = 1. However, sincesin(ψ4 +ψ5) = sin(ψ5 +ψ6) = 0,
(6) holds.

5 Four curve segments meeting

We now focus on the casen = 4. We show that (6) and (26) are
equivalent, unless the tangents form an X.

We start with the exception, giving an example where (6) holds but
not (26). We note that if the four tangents form an X then Lemma
1 does not apply.

Lemma 3. If four curve segments meet forming an X then(6) holds
automatically and does not imply(26).

Proof. Equations (6) hold without restriction on theκn

i since
sin(ψi−1 + ψi) = 0. On the other hand,κn

1 = κ1 + (κ2 −
κ1) sin2 φ1 andκn

3 = κ1 + (κ2 − κ1) sin2(φ1 + π) = κn

1 so
that (26) implies

κn

1 − κn

3 = 0 = κn

2 − κn

4 . (32)

That is, each pair of curves should have equal normal curvatures.
For an example where (6) holds but not (26), we choose the curves
so thatκn

1 = κn

2 = κn

3 = 0 butκn

4 = 1.

Generically, however, contrary to [Pet91b, Claim 3.3], Equations
(6) are equivalent to (26).
Lemma 4 (Equivalence of vertex enclosure and Euler curvature
constraint forn = 4). If the vertex enclosure constraint(6) holds
for n = 4 and the tangentsti are not pairwise parallel then

κn

i = κ1 cos2 φi + κ2 sin2 φi (33)

for some choice ofκ1, κ2 and anglesφi measured from some fixed
directiond.

Proof. Without loss of generality, letd be the leg from which the
{φi} are measured and assume thatt2 andt4 are not parallel so that
sin(ψ1 + ψ4) 6= 0. By Lemma 1, we can determine the direction
and the scalarsκ1 andκ2 so that (33) holds fori ∈ {2, 3, 4}. Let
r := κ1 cos2 φ1 + κ2 sin2 φ1 andκn

1 be the normal curvature of
c1 that we want to show equal tor. If we replaceκn

1 with r (6) is
satisfied (by Theorem 2). Thus

0 =
n

X

i=1

(−1)i(cotψi−1 + cotψi)κ
n

i

= (cotψ4 + cotψ1)(κ
n

1 − r))

=
sin(ψ1 + ψ4)

sinψ4 sinψ1

(r − κn

1 ) .

The denominator in the last expression is non-zero since, by the
initial assumption of the paper,0 < ψi < π. Sincesin(ψ1 +ψ4) 6=
0, the claim follows.

6 Conclusion and further challenges

The main result of this paper is the geometric formulation (6) of
the vertex enclosure constraint. This allows in particular to derive
the Euler curvature constraint, (26). We showed that (26) implies
(6) but that the two conditions are generally not equivalent unless
n = 4 curve segments meet without forming an X. Note that the
results do not depend on a particular, say spline, representation.
For example, the curvesci can be procedurally-defined intersection
curves.

Since cusps occur in industrial practice, for example for some
blending applications, it would be good to extend the theory to the
case when some angle between curves isψi = 0. A more ambitious
challenge is to find the vertex enclosure constraint for the curvature
continuous case or show that no such constraint is needed.
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