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Abstract

A key problem when interpolating a network of curves occurs at
vertices: analgebraic condition called the vertex enclosure con-
straint must hold wherever an even number of curves meet. This
paper recasts the constraint in terms of the local geometry of the
curve network. This allows formulating a ng&ometricconstraint,
related to Euler's Theorem on local curvature, that implies the ver-
tex enclosure constraint and is equivalent to it where four curve
segments meet without forming an X.

CR Categories: G.1.2 [Approximation]: Approximation of sur-
faces and contours—; 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations;

Figure 1:Network of curve segments
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1 Introduction

A common approach to surface modeling is to create a network of
curves and then determine a regular surface that interpolates the
network (see Figure &ft). In this approach, the curve segments
meeting at a vertex are constructed to be regular and smooth and
their tangents are placed into the same plane to indicate that a tan-
gent continuous surface is sought. The main challenge occurs at
each vertexp: we need to find a second order expansion ofrthe
surface pieces; that interpolate the second order expansions of the
curvesc; meeting ap (Figure 2right).

C;

Figure 2: This paper focuses on local network interpolation (see
Definition 1, cf. [HL 93, Fig 7.12] ): curves;, j € Z,, meeting

Itis known, for example from [Bez77; vW86; Wat88; Sar87; Sar89; at a pointp are given and pairwise interpolating patchesare
DS91; Ren91], that interpolating the second order expansions issought. The arrow labelsand. indicate the domain parameters
always and uniguely possible if the number of curves meeting is associated with the boundary curves of the patchesfexg... =

odd — but that, when the number of curves is even, an additional 92x;+1.

algebraic constraint must hold for tim®rmal componentsf the

curve expansions. This is the vertex enclosure constraint [Pet91b].

since there are a myriad of choices, typically specific to the design
context and preferred representation of the interpolating surface,

This paper gives a new formulation of the vertex enclosure con- L
baper g but focus on the fundamental geometric insight.

straint in terms of thdocal geometry of the curve networlSuch
a formulation is helpful as a criterion for the layout of admissible ) )
curve networks and is complementary to work on improving shape 2 Local curve |nterpolat|on:

such as [Pot92]. We do not weigh down the paper with specific overview and background
strategies for adjusting curves and constructing the actual surfaces
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(Theorem 1). Ifn = 4 and the curve tangents, j = 1,2,3,4 that are regular andC? at p, that interpolate the curve network
form an X, i.e., they are pairwise collinear x t;12 = 0 for according tox;(¢,0) = c;—1(¢t) andx;(0,t) = c;(¢), and that

i = 1,2, then the constraint holds automatically (Lemma 3). For connect pairwise so that th@&' constraints, i.e.C"* continuity after
example, this holds at an internal knot of a smooth tensor-product reparameterization (see e.g. [PBP02] or [Pet02]), hold for scalar
spline where four polynomial pieces meet. Also, if we use patches functionsa;, 5; and-y;:

x; that are notC? at p, no vertex enclosure constraint applies.

The three known classes of techniques that avoid the vertex enclo- @i(t)01xi(0,¢) + Bi(t)92xi(0, t) + 7i(t)d2xi+1(t, 0) = 0. (5)
sure constraint are: singular patch constructions, e.g. [BR97; NP94
Pet91a], rational base-point constructions, e.g. [Gre74; CK88], a
split-patch constructions [Pip87; Pet95]. Here the patches are either

not C* or not regular. Since we are interested in the standard casenote that the angle); corresponds to patcty.1. To simplify com-
where the patches are regular ait, we will in the following as-putations, we assume in the following, for notational convenience
sume that the patches satisfy, locally at the ppirthe ‘compatibil- only, that the curves are arclength-parameterized up to second order
ity condition’ 019>x = 9201 . In particular, tensor-product spline  at¢ = 0. In particular,t; is a unit vector. Our results will never-

patches, even with multiple knots such@s bicubics, satisfy the  theless also apply to polynomial patches in their original form. The
compatibility constraint since, at their corners where patches abut, normal curvature oé; atp,

they consist of a single polynomial piece.

Smooth Network Interpolation restricted to the neighborhoog of
is calledlocal network interpolation

n 1
i .. i :=¢; (0)-n,
For an even number of patches, the compatibility condition together " ci(0)-n

with the first-order continuity contraints result in a rank deficient il play a central role in the following.

circulant system that is only solvable if we restrict its right hand Theorem 1 (vertex enclosure constraint)f » is odd then local
side [Bez77; Wat88; vW86; Sar87; Sar89; DS91; Ren91]. Du and network interpolation is always possible. #ifis even then local

Schmitt [DS91] gave a sufficient condition for this vector-valued network interpolation is possible if and only if the vertex enclosure
constraint to hold but did not connect this to the geometric char- constraint(6) holds
acteristics of the curve network. An important insight [Pet91b] is

that, for the components in the tangent plane, we have plenty of n i o
freedom to satisfy the system. The essential part of the constraint 0= Z(—l) (cot hi—1 + cot ;) Ky (6)
is the normal component. We therefore separate the components in i=1

the normal direction from those in the tangent plane and focus on
the fact that the system with the normal component as right hand Alternatively, whem is even, we can write (6) as
side can only be solved if an alternating sum of the right hand side
vanishes. In Section 3, we derive equation (6) that re-interprets this

n

algebraic constraint geometrically in terms of angles and normal 0= Z(—l) ki (cot i1 + cot ;) (7)
curvatures. Zzl
In [Pet91b], it was shown that if there exists a symmetric (embed- = (=1)" (K} — K1) cot ah;.
ded Weingarten) matri¥v € R3*3 such that the boundary curves i=1
c; all satisfy
n-0;0kx; = (t;) Wty 1) Proof. Abbreviatinga; := «;(0),b; := 3:(0),c; := ~i(0), (5)
then the vertex enclosure constraint holds. The relation was calledimplies
compatibility with a second fundamental farnn Section 4, we aiti—1 +biti + citiy1 = 0. (8)

give an equivalent, alternative sufficient condition that implies that Taking the cross product with and then the scalar product of the
the vertex enclosure constraint holds. This relation is similar t0 gyt withn yields

Euler’s theorem — which states that«f is the normal curvature

of a curve emanating from a point or& surface then there exist a; det [ti—1,t;,n] + ¢; det [tiy1, t,n] = 0.

scalars<1, k2 and an angle with respect to a fixed directiod in

the tangent plane so thal = k1 cos® ¢ + kg sin? ¢. Since0 < v¢; < , det [t;—1,t;,n] > 0 and since the surface
pieces are regular 40,0), ¢; # 0 # a;, and hence

3 The C' vertex enclosure constraint o detfti ] sings ©

1 T T - T . .

We now derive the vertex enclosure constraint and show it to be det [ti—1, ti, n] Sin i1

equivalent to a relation involving only the angles between the tan- similarly,

gents and the normal curvature. We can focus on the normal com-

ponent since the tangential components will not restrict the curves det [ti—1, tit1, 1] sin(¥i—1 + ¥;)

(see Theorem 1 below). We define the overall task. bi = —ei—g o b1, ti,n] O sindgig (10)

Definition 1 (Smooth Network Interpolation)Let
3 ) Differentiating both sides of (5) along the common boundary yields
ci : R— Rt cit), i € In (2) the system ofi equations; € Z,

be a sequence of regulaf® curves inR? that meet at a common
point p in a plane with oriented normah and at anglesy; less

than: where we abbreviated thmrner twist vectoof the patchx; atp as
ci(0)=p,ci(0)=:t; Ln, 0<:=2L(ti,tir1) <m. (3) Wi = 01030, 0) (12)

Define asmooth network interpolatioof {c; } to be a sequence of
patches the curvature vectoof ¢; atp as

aiw; + bik; + ciwit1 + ajti—1 + bit; + citipr =0,  (11)

xi : R? = R?, (u,v) — xi(u,v), i € Ln, 4 ki := 95%,(0,0) = ¢/ (0) (13)



and
a; == a;(0), b; := B3:(0), c; := vi(0). (14)

As we form the scalar product of each side of (11) witlwe obtain

aiw; -n+bki-n+cwip1-n=20 (i € Zn). (15)
Settingg; := w; - n, (15) simplifies to
ai i + bk} +ci giv1 =0, i € Ln. (16)

On substitutinga; and b; using (9) and (10), the equations (16)
become

§1n Vi . sm(i.bi_1 + ;) KP4 giis =0 17
sin ;1 sin;—1
and therefore
qi qi+1 n
— I I — (cot DR (@
S + Sin v, (cothi—1 + cot )k (18)
With the introduction of the variables
-
sin 1[)7;71
and
RZ‘ = (COt 1,[)1'_1 + cot ’l,[)z)li?
our equation takes the simple form
Gi + Giv1 = FRi 1€ ZLn. (19)
Alternately subtracting and adding Equations 19, we see
G =(=1)"a+ Y (1) "k (20)
i=1

If n is even then the system of equations (19) is singular and by

(20) there is a solution only if

n

> (-1 =0.

i=1

(21)

This establishes the necessity of (6).

We now show sufficiency: if the boundary curvgs }.cz,, either

satisfy (6) or ifn is odd then the system (15) can be solved for

¢; := w; - n and admits local network interpolation. sifis even

and (6) holds then the solution is not unique. For example, [Pet00],

gives a solution. If2 is oddthen, by (20),

n (22)

i=1

and we can backsolvg = <1 —¢q;—1 forj = 2,...,n. Ineither

case, sincét;_1, t;, t;+1} spans the tangent space, (11) is solvable

for some, possibly non-unique s¢tw;, a;, b;, c;) }. Then

xi(u,v) :=ci—1(u) + ¢;(v) — p
+ uv (wi + ul;(u) 4+ vr;(v) + vom; (u, ’U))

is well-defined and is the unique interpolantaf .+, c;, andw;

up to a choice of univariate functiodsandr;, and some bivariate
functionm;. We obtain a local network interpolation, for example
for the choicev; (t) := a;+ajt, Bi(t) := bi+bit, vi(t) := ci+cit,
andé;(t) := c;(t) — p — tit — k;t*/2 by setting

_ajwi + biki 4 ciwi + Bi(t)€i(t)

ri(t) == L(t) = a; (t) 4 7i(t)

(23)

The denominator is nonzero in a neighborhood sfncec; (0) +
~:(0) # 0 by (3) and (9). Combining like terms of the left side
of (5) becomes
ai(t) (o1 + t(wi +tri(t))) + Bi(8) (t: + kit + €;)()
+7i(t) (bitr + t(Wirs + tliga ()
=(aiti—1 + bits + cititr)
+ t(aiti—1 + biti + citit1 + aiwi + biki + ciwig1)
+ t? (a;Wl + b;kl + C;W~;+1

+ i ()i (t) + Bi (1) €5 () + i (D)t (1)) (24)
_(®.a1.23)
Therefore (5) holds. O

Next, we will derive a geometric constraint that implies the geo-
metric interpretation (6) of the vertex enclosure constraint.

4 Vertex Enclosure and Euler’s Theorem

For a point on & surface, Euler's Theorem expresses normal cur-
vature in any tangent direction in terms of the principal curvatures:
(see e.g. [dC76, page 145])
k™ = K1 cos® ¢ + kasin® ¢ (25)

where¢ is the angle betweetiand the principial direction of; .
We will aim to enforce a similar constraint for the curve network.
Definition 2 (Euler curvature constraint)Let n be even and
{¢:}iez, such thatp;+1 — ¢; = ¥, andc,, ¢ € Z, be curves
whose tangents form angles from some fixed directiod. Then
the Euler curvature constraitiplds for curves:;, with normal cur-
vaturesk;' € R, ¢ € Z, if there exist constants;, k2 € R such
that

kY = K1cos® ¢; + Kosin® ¢s, i € Ln. (26)
In the following, we will see that this newly defined geometric Euler
constraint and the vertex enclosure constraint are closely linked.
Theorem 2 (The Euler curvature constraint implies the vertex en-
closure constraint)If the Euler constrain{26) holds for curves;,
i € Zn, then the vertex enclosure constraf) holds.

Proof. Below we use (26) and the trigopnometric identities

Ki — Kis1 =) (k3 — k1) (sin2 $; — sin’ Pit1)
= (k1 — K2)sin(¢; + ¢i+1) sin(pit1 — ¢s) (27)
= (K1 — K2)sin(ds + div1) sin i,
2sin(o + 7) cos(o — 7) = sin 20 + sin 27,

(28)

and, in the last equality, thatis even. Then the right hand side of
(6),

SO (1) (cot i+ cot i)t = (1) Y (om _en

2 — sin v;
(29)
= (51— 2) Y _(=1)" cos(i1 — ¢:) sin(¢s + Bis1)
i=1 (30)
—mom ;(_1)1'@111 241 + sin20;) = 0 (31)
as claimed. -



Conversely, however, (6) does not, in general, imply (26). This is
shown by next two lemmas. The first appeared in similar form in
[PW92; Her96].

Lemma 1 (Determiningx1, k2 and d from three curves) Let
{t1,t2, t3} be tangent vectorsa-t; = 0. If no pair of {t1, t2, t3}

is parallel thenk1, k2 andd of (26) can be determined from the
curvesc;,i = 1,2, 3.

Proof. Choosing without loss of generality the coordinates so that

0 1 T2 T3
n:= [0 ,t1:=|0],t2:= |y2|,t3:= |ys|,
1 0 0 0
w1 w2/2 O
W = {V(I)/ (1]] = |w2/2 w3 0f,
0 0 1

the constraints (1) for= 1, 2, 3,
RPN = (8) Wi = (6:(1)) w1+ (8 (1)t:(2))wa+(t:(2)) *ws
yield the system

w1 1 0 0] [u K1t
T |w2| == |25 @2y2 93| |we2| = | K5t
w3 x% T3Y3 y?, w3 K5 [|ts H2

to be solved forw: , w2, ws. Thed x 3 matrix T is invertible since

|

and by assumptiops # 0 # ys andte andts are not collinear.

We can now choose; and k2 as the eigenvalues of the x 2
submatrixW and the directiord as the eigenvector of,. This
uniquely defines an embedded Weingarten map. Therefore Euler's
Theorem holds and this implies (26). O

T2
€3

Y2

det T = Y2Y3 det |: s

Given this linear relationship between data and curvature, we can-
not expect that the vertex enclosure constraint (6) implies the Euler
constraint (26). For example, when the number of curvesdis 6

then we can choose the curvature of five of the curves to not satisfy
(26). But, due to the linear dependence of the curvatures in (6), we
can choose the curvature of the sixth curve so that (6) holds. The
following example makes this concrete.

Lemma 2. The vertex enclosure constraif@) is weaker than the
Euler constraint(26).

Proof. Choose
2

1/11=¢2=1/13=%,1/)4=’¢5=1/16= 1

n n n n n n
Kl = kg =Kz = Ky =0,k5 = kg = 1.

Then by Lemma 1, since the directions defined/hy 12, andvs
are not pairwise dependenty ks = k3 = 0 implies that
the right hand side of (26) is zero and this is not consistent with
kg = kg = 1. However, sincein (4 + ¥5) = sin(¢s +g) = 0,
(6) holds. O

5 Four curve segments meeting

We now focus on the case = 4. We show that (6) and (26) are
equivalent, unless the tangents form an X.

We start with the exception, giving an example where (6) holds but
not (26). We note that if the four tangents form an X then Lemma
1 does not apply.

Lemma 3. If four curve segments meet forming an X ti@yholds
automatically and does not imp(26).

Proof. Equations (6) hold without restriction on th&' since
sin(¢i—1 + ;) = 0. On the other handsT = k1 + (k2 —
K1) sin? ¢, and k% k1 + (k2 — K1) sin2(¢1 + ) = K SO
that (26) implies

K — k3 =0=Ky — K3. (32)
That is, each pair of curves should have equal normal curvatures.
For an example where (6) holds but not (26), we choose the curves
so thatxT = k5 = k5 = 0 butx} = 1. O

Generically, however, contrary to [Pet91b, Claim 3.3], Equations

(6) are equivalent to (26).

Lemma 4 (Equivalence of vertex enclosure and Euler curvature

constraint forn = 4). If the vertex enclosure constrai(#) holds

for n = 4 and the tangents; are not pairwise parallel then
Kp = K1 cos’ i + Ko sin> i (33)

for some choice of1, k2 and anglesp; measured from some fixed

directiond.

Proof. Without loss of generality, ledl be the leg from which the
{¢:} are measured and assume theandt. are not parallel so that
sin(¢1 + 14) # 0. By Lemma 1, we can determine the direction
and the scalars;, andx. so that (33) holds foi € {2, 3,4}. Let

r = Ky cos? @1 + kosin? ¢; andx! be the normal curvature of
c; that we want to show equal to If we replacexT with r (6) is
satisfied (by Theorem 2). Thus

n

0= Z(_l)i(COt i1 + cot ¥y Ky

i—1
(cotths + cot 1) (kT — 7))
_ Sin(d)l + ¢4) _.n

" sintgsin )y (r = 1)

The denominator in the last expression is non-zero since, by the
initial assumption of the paper, < v¢; < m. Sincesin(¢1 +14) #
0, the claim follows. O

6 Conclusion and further challenges

The main result of this paper is the geometric formulation (6) of
the vertex enclosure constraint. This allows in particular to derive
the Euler curvature constraint, (26). We showed that (26) implies
(6) but that the two conditions are generally not equivalent unless
n = 4 curve segments meet without forming an X. Note that the
results do not depend on a particular, say spline, representation.
For example, the curves can be procedurally-defined intersection
curves.

Since cusps occur in industrial practice, for example for some
blending applications, it would be good to extend the theory to the
case when some angle between curves is- 0. A more ambitious
challenge is to find the vertex enclosure constraint for the curvature
continuous case or show that no such constraint is needed.
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