
GPU Conversion of Quad Meshes to Smooth Surfaces

Ashish Myles∗

Young In Yeo†

Jörg Peters‡

University of Florida

Abstract

We convert any quad manifold mesh into an at least C1 surface
consisting of bi-cubic tensor-product splines with localized pertur-
bations of degree bi-5 near non-4-valent vertices. There is one poly-
nomial piece per quad facet, regardless of the valence of the ver-
tices. Particular care is taken to derive simple formulas so that the
surfaces are computed efficiently in parallel and match up precisely
when computed independently on the GPU.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling

Keywords: real-time, GPU conversion, quad mesh, bi-cubic, bi-5
perturbation, spline, surface

1 Introduction

Current efforts of chipmakers to provide parallel multi-core or
SIMD GPU platforms force CAD vendors to rethink their basic rep-
resentation to take advantage of the increased computational power.
This is as much an opportunity as a challenge. Clearly CAD cannot
stray too far from established standards, such as the tensor-product
B-spline or Bernstein-Bézier (BB-) representation when it comes to
surface representation. However, there is an opportunity to organize
these representations differently to avoid CPU-to-GPU transfer and
to confine primitive explosion to the GPU, leaving the CPU free to
do other tasks.

We propose here to augment the existing BB- (or B-spline) rep-
resentations by a localized perturbation; specifically perturbing a
bi-cubic (bi-3) spline by coefficients of a bi-5 polynomial piece
(Figure 1). Due to the locality of the perturbation, this represen-
tation, the p-rep, is novel as a construction even though bi-5 C1

freeform surface constructions are themselves not new (see e.g. [Shi
et al. 2004]). While the derivation of the perturbation is non-trivial
the resulting formulas are simple and yield a consistent localized
construction suitable for SIMD parallelism. On the GPU, we con-
struct the p-rep in one pass using the vertex shader and the geometry
shader of the DirectX 10 graphics pipeline, streaming out the 32 p-
rep coefficients. In a second pass, we use instancing to evaluate the
patches on the vertex shader.

The p-rep

1. yields watertight C1 surfaces from quad meshes;

∗e-mail:amyles@cise.ufl.edu
†e-mail:yiyeo@cise.ufl.edu
‡e-mail:jorg@cise.ufl.edu

BB bi-5 p-rep

b g h

00 0000

0101

03 0505

1010 30

33

5050

5555

.

.

..
.
..

.

..

Figure 1: Two representations of the degree bi-5 patch. (left) Stan-
dard Bézier form with 6 × 6 coefficients. (right) bi-3 patch with
vertex-localized bi-5 perturbations (coefficients are the filled cir-
cles). The center four coefficients can be freely modified but our
construction does not use this.

2. does not require separation of non-4-valent vertices;

3. consists of bi-3 tensor-product splines with local offsets of
degree bi-5 near non-4-valent vertices;

4. reduces to standard tensor-product bi-3 splines when all ver-
tex valences are 4;

5. is designed to be both constructed and evaluated on the GPU,
possibly preceded by GPU mesh deformation or evolution and
followed by further computation (Figure 6);

6. localizes computation to maximize cache usage and avoid re-
computation.

Section 2 introduces the two representations defining the patch to be
constructed and discusses the derivations for G1 continuity, which
define the formulas for construction. Section 4 maps these formulas
to the GPU. Results of an implementation and the discussion of
design choices are in Sections 5 and 6.

1.1 Fast Conversion & Evaluation on the GPU

Computer Graphics has a head start on techniques for GPU accel-
eration. The natural recursive refinement which makes subdivision
of quad meshes so intuitive to the designer is not a good match with
deep graphics pipelines where recursion implies multiple passes.
Evaluation via Stam’s acceleration [Stam 1998] is used in modeling
packages, but the overhead and size of the resulting shader routines
are not appropriate for on-the-fly transformation of quad meshes.
Using tables of surface fragments placed into textures, for fixed va-
lences and depth, [Bolz and Schröder 2002] introduced a first ef-
ficient refinement method aimed specifically at the GPU. By care-
fully combining the fragments, the resulting mesh approximation of
a Catmull-Clark surface can be made ‘watertight’, i.e. avoids pixel
dropout [Bolz and Schröder]. More recently, [Loop and Schaefer
2007] proposed an approach that allows arbitrarily fine evaluation
on the fly, of a surface approximating the Catmull-Clark surface.
The construction is conceptually easy and can be made watertight
since it uses bi-3 (bi-cubic) patches everywhere. The construction
generates just one geometry and two tangent patches per quad facet
regardless of the valence of the vertices. This avoids CPU prepro-
cessing of the quad mesh, used for example in [Bolz and Schröder
2002] and [Peters 2000] to separate extraordinary points, i.e. points

that have fewer or more than 4 neighbors. This is possible since
[Loop and Schaefer 2007] does not create a C1 surface, but, in the
spirit of bump mapping and PN triangles [Vlachos et al. 2001], cre-
ates a pair of tangent patches whose cross product is similar to but
not identical to the normal of the bi-cubic geometric patch. Under
OpenGL lighting, the differences to the true surface are typically
difficult to spot. Clearly, while such approaches are great for com-
puter graphics, they are not appropriate for engineering applications
where the user will want to see exactly what is designed.

Bischoff et al. [Bischoff et al. 2000] proposed a forward-
differencing method for evaluating Loop subdivision on uniform
samples; Schaefer et al. [Schaefer and Warren 2007] precomputed
tables for the exact evaluation of arbitrary subdivision schemes
at rational parameter values by applying a classical technique of
[Cavaretta et al. 1991] and proposed a dual method for adaptive
tessellation; and Boo et al. [Bóo et al. 2001] suggest hardware for
adaptive tessellation. Loop and Blinn [Loop and Blinn 2006] use
the fragment shader to accurately render certain algebraic surfaces.
Since fragment shaders were historically more powerful due to their
texture access and buffer writing capabilities, the fragment shader
has been used to implement subdivision refinement. Shiue et al.
[Shiue et al. 2005] define data structures that allow for recursive
subdivision with creases as several passes in the fragment shader
and Bunnell [Bunnell 2005] provides code for a fast adaptive tes-
sellation of subdivision surfaces. Since the fragment shader is the
last shader in the graphics pipeline, applying additional fragment
shaders and passes means reading back after the primitive explo-
sion inherent in refinement. Generating the geometric primitives
earlier in the graphics pipeline not only opens the possibility of a
single pass (accelerated by a hardware tessellator) but yields also
a conceptually cleaner data flow. Evaluation of trimmed NURBs
surfaces on the GPU by [Guthe et al. 2005] and [Krishnamurthy
et al. 2007], corresponds to our second pass, evaluation stage and
is therefore complementary to our focus, which is the generation of
the surface on the GPU.

2 The P-rep Patch

p0 p1

p2
p3

p4

p2n−1

p2n

gk−1

gk

bk−1

bk

‖ ‖‖‖‖
00

00

00

00

01

01

01

01

02

02

10

10

10

10

11

11

11

11

12

12

20

20

21

21

22

22

Figure 2: Indices of (left) a one-ring of quad mesh points pk+1
i at

a vertex with valence n = 6 and (right) BB control points of two
adjacent patches bk.

Consider the standard tensor-product BB-representation [Farin
1988; Prautzsch et al. 2002]

b(u, v) :=

d
X

i=0

d
X

j=0

bij

d

i

!

(1 − u)d−iui

d

j

!

(1 − v)d−jvj .

(1)

For d = 5, bk
ij ∈ R

3 is the (i, j)th BB control point of the kth patch

bk(u, v) (Figures 1, left, and 2, right). We will verify smoothness
of the construction in this representation in Section 3 but construct

it below in perturbation representation, short p-rep, as a BB-patch
gk(u, v) of degree d = 3 with BB control points gk

ij ∈ R
3 plus a

sparse bi-quintic perturbation hk(u, v) with BB points hk
ij ∈ R

3

(Figure 1, right). The relationship between the representations is
given by (10). If all four vertices of a quad have valence 4, we call
it a B-quad and compute only g.

2.1 Construction at Vertices

Let {pk} be the control points of the 1-ring of the design mesh
at the vertex p0 of valence n. The p-rep interpolates the central
limit point of Catmull-Clark subdivision for the 1-ring. That is (see
Figure 2 for indices) [Halstead et al. 1993],

g
k
00 :=

Pn
ℓ=1 (np0 + 4p2ℓ−1 + p2ℓ)

n(n + 5)
, k = 1 . . . n. (2)

To have the tangent plane at gk
00 agree with that of Catmull-

Clark subdivision, we define two vectors e1 and e2 that span
the tangent plane and express the tangent coefficients gk

10 in
terms of these directions scaled by σ ∈ R. With ρn :=
1
16

“

cn + 5 +
p

(cn + 9)(cn + 1)
”

the subdominant eigenvalue

of Catmull-Clark subdivision and d the degree of the BB-
representation, e.g. d = 3 for gk, we set

wn := 16ρn − 4, σn :=
n

0.53 if n = 3,
1/4ρn if n > 3,

ck
n := cos

2πk

n
, sk

n := sin
2πk

n
, cn := c1

n,

α1 := wncj−1
n , β1 := cj−1

n + cj
n,

α2 := wnsj−1
n , β2 := sj−1

n + sj
n,

ei :=
σn

d(2 + wn)

n
X

j=1

`

αip2j−1 + βip2j

´

, for i = 1, 2,

g
k
10 := g

k
00 + e1c

k
n + e2s

k
n. (3)

The formula makes explicit that, given gk
00, we need only compute

(e1, e2) in the vertex shader and hand it over to the geometry shader

where a patch k can generate its tangent coefficients, gk
01 and gk

10,
for each corner by simple rotation. Finally, we compute

g
k
11 :=

1

9
(4p0 + 2 (p2k+1 + p2k+3) + p2k+2) . (4)

We note that (2), (3) and (4) are to the standard bi-3 B-spline to
BB-form conversion formulas for vertex, edge and face coefficients
if the valence is n = 4.

2.2 Smoothness across Edges

Since we set bk−1
0i = bk

i0 along an edge between patches bk and

bk−1 (Figures 2, 3), the patches match continuously. The well-
known sufficient symmetric conditions for G1 continuity between
two BB patches meeting along bk(u, 0) = bk−1(0, u), u ∈ [0, 1],
are ∂

∂u
bk(u, 0) 6= 0, ∂

∂v
bk(u, 0) 6= 0, ∂

∂w
bk−1(0, u) 6= 0 and, for

some scalar-valued function λ(u),

∂

∂v
bk(u, 0) +

∂

∂w
bk−1(0, u) = λ(u)

∂

∂u
bk(u, 0). (5)

Since the conditions equate curves along an edge, we abbreviate

∂
∂v

bk(u, 0) + ∂
∂w

bk−1(0, u) =

B
`

2cn0 ,−2cn1

´

∂
∂u

bk(u, 0)

∂
∂v

b
k(u, 0) + ∂

∂w
b

k−1(0, u) =

B(2cn, 0, 0) ∂
∂u

bk(u, 0)

bk(u, v) bk(u, v)

bk−1(w, u) bk−1(w, u)

u u

v v

w w

n n0 n1
4

Figure 3: Edge between two bi-5 patches (BB control nets in gray).
The extraordinary vertices are denoted by • and ◦, while the va-
lence 4 vertex is denoted by a �. (left) valence 〈n, 4〉, (right) va-
lence 〈n0, n1〉.

g−
ij := gk−1

ij , hij := hk
ij , write a curve of degree d with parameter

u and BB control points c0, . . . , cd as

B
`

c0, . . . ,
`

d
i

´

ci, . . . , cd

´

and use 〈α, β〉

to indicate that the valence at one endpoint of the boundary curve is
α and at the other endpoint is β. We define endpoint-symmetry as
replacing (see Figure 2)

(n0,hij ,gij ,g
−
11) by (n1,h5−i,j ,g3−i,j ,g

−
12).

If the tuple is 〈4, 4〉, we choose λ = 0 and the boundaries and cross-
boundary derivatives of degree 3 defined by (2), (3), and (4) reduce
to the standard B-spline to BB conversion formulas. In general,
a valence 4 vertex needs to be handled with care to ensure that the
C1 conditions and not just G1 conditions hold with the neighboring
bi-3 patch. Hence we distinguish two cases (see Figure 3):

〈n, 4〉 λ(u) := B(2cn, 0, 0) , (6)

〈n0, n1〉 λ(u) := B(2cn0 ,−2cn1) (7)

Both choices of parameterization result in C1 conditions when
both ends of the edge have valence 4. We have four cases and use
for clarity dot([c0, . . .], [γ0, . . .]) :=

P

i=0 ciγi.

Case 1: n0=n1=4: h20 := h30 := h21 := h31 := (0, 0, 0).

Case 2: n06=4 and n1=4

h20 := h30 := dot
“

[g00, g10, g20, (g11+g
−

11)] ,

3

40
[−2, −6/cn0+6, −4, 3/cn0]

”

h21 := (1 − 2cn0/5) h20+ (8)

dot
“

[g00, g10, g20, g30, (g11+g
−

11), (g21+g
−

12)] ,

3

100
[2cn0 , 12−6cn0 , 6+2cn0 , 2cn0 , −6, −3]

”

h31 := h30 + dot
“

[g00, g10, g20, g30, g01, g21, g31, g
−

11, g
−

12] ,

3

100
[−2+2cn0 , 6−2cn0 , 12−2cn0 , 2+2cn0 , 2,−9,−2,−6,−3]

”

Case 3: n0=4 and n16=4 is endpoint-symmetric to Case 2.

Case 4: n0 6=4 and n1 6=4

h20 := dot
“

[g00, g10, g20, (g11+g
−

11)]

3

40
[−2cn1/cn0 , 4+(2cn1−6)/cn0 , −4, 3/cn0 , 3/cn0]

”

h30 is endpoint-symmetric to h20.

h21 :=
“

1 −
3

5
cn0 −

2

5
cn1

”

h20 +
“

3

5
cn0

”

h30+ (9)

dot
“

[g00, g10, g20, g30, (g11+g
−

11), (g21+g
−

12)]

3

100
[4cn1 , 12−8cn0 , 6+6cn0−4cn1 , 2cn0 , −6, −3]

”

h31 is endpoint-symmetric to h21.

3 Verification of Smoothness

Here we derive formulas for the coefficients bk
20, bk

21, bk
30, and bk

31

so that the G1 conditions (5) hold. The formulas for h20, h21, h30

and h31 of the p-rep then follow from (see Figure 1)

g00 = b00, g10 =
5

3
b10 −

2

3
b00, (10)

g11 =
25

9
b11 −

10

9
b10 −

10

9
b01 +

4

9
b00,

h20 = b20 − a20, h21 = b21 − a21,

where a2i := cub2(b0i,b1i,b4i,b5i) and

cub2(c0, c1, c4, c5) := −
3

10
c0 + c1 +

1

2
c4 −

1

5
c5

takes the first two and the last two control points of a quintic curve
and returns the third control point on the assumption that the quin-
tic curve is a degree-raised cubic. That is, we obtain h2i from b2i

by subtracting the cubic component a2i. Since the four central con-
trol points of b have no bearing on first order smoothness, we can
choose their perturbations as zero. We abbreviate differences of
control points as illustrated in Figures 4 and 5:

vi := b
k
i1 − b

k
i0, wi := b

k−1
1i − b

k−1
0i , u

(5)
i := b

k
i+1,0 − b

k
i0.

The subsections below are labeled by the case in the geometry
shader procedure (subsection 4.2). Case 1 need not be discussed
because the perturbation is zero.

3.1 Cases 2 and 3: 〈n, 4〉

bk

bk−1

n u
(4)
0 u

(4)
1 u

(4)
2 u

(4)
3

v0 v1 v2 v3 v4 v5

w0 w1 w2 w3 w4 w5

Figure 4: Indices of control points of the derivatives along a shared

boundary in Figure 3 〈n, 4〉 case. The boundary is of degree 4 and

u
(4)
i are its first differences.

To preserve C1 continuity at the valence 4 vertex corresponding to
bk

50 = bk(1, 0) = bk−1(0, 1), we chose λ(u) := B(2cn, 0, 0) and

chose the degree of the shared boundary bk(u, 0) = bk−1(0, u) to
be 4 by setting

b
k
30 :=

1

10
b

k
00 −

1

2
b

k
10 + b

k
20 +

1

2
b

k
40 −

1

10
b

k
50 (11)

and defining

u
(4)
0 :=

5

4

“

b
k
10 − b

k
00

”

, u
(4)
1 :=

5

3
b

k
20 −

25

12
b

k
10 +

5

12
b

k
00,

(12)

u
(4)
2 := −

5

3
b

k
30 +

25

12
b

k
40 −

5

12
b

k
50, u

(4)
3 :=

5

4

“

b
k
50 − b

k
40

”

.

Equating the 6 coefficients of the polynomial equation (5) is equiv-
alent to the 6-tuple of equations

5 B(v0 + w0, 5(v1 + w1), 10(v2 + w2),

10(v3 + w3), 5(v4 + w4),v5 + w5)

= 5 B(2cnu
(4)
0 , 6cnu

(4)
1 , 6cnu

(4)
2 , 2cnu

(4)
3 , 0, 0

”

.

The first equation, v0 + w0 = 2cnu
(4)
0 , is enforced by (2) and

(3) and the last two equations, v4 + w4 = 0 and v5 + w5 = 0
hold by C1 continuity at the valence 4 vertex. (Recall that the G1

constraints simplify to C1 constraints where the valence is 4). The
remaining equations, corresponding to i ∈ {1, 2, 3}, are

2cn

3

i

!

u
(4)
i =

5

i

!

(vi + wi) =

5

i

!

(bk−1
1i + b

k
i1 − 2bk−1

0i)

which simplifies to

0 = b
k−1
0i −

bk−1
1i + bk

i1

2
+ cn

(5 − i)(4 − i)

25
u

(4)
i . (13)

When i = 1, we insert (12) and solve for

b
k
20 :=

5

4
b

k
10 −

1

4
b

k
00 −

15

cn(5 − i)(4 − i)

„

b
k
10 −

bk
11 + bk−1

11

2

«

.

When i = 4, the assignment of g21 and g−
12 in the bi-3 construction

already implies the constraint v4 + w4 = 0. For i = 2, 3, (13)
follows from the assignments

b
k
21 := b

k
20 + cn

6

25
u

(4)
2 +

1

2
(ak

21 − a
k−1
12),

b
k−1
12 := b

k−1
02 + cn

6

25
u

(4)
2 +

1

2
(ak−1

12 − a
k
21) (14)

b
k
31 := b

k
30 + cn

2

25
u

(4)
3 +

1

2
(ak

31 − a
k−1
13),

b
k−1
13 := b

k−1
03 + cn

2

25
u

(4)
3 +

1

2
(ak−1

13 − a
k
31) (15)

where

a
k
21 := cub2(b

k
01,b

k
11,b

k
41,b

k
51)

a
k−1
12 := cub2(b

k−1
10 ,bk−1

11 ,bk−1
14 ,bk−1

15) (16)

and ak
31 and ak−1

13 are endpoint-symmetric to ak
21 and ak−1

12 , respec-
tively.

bk

bk−1

n0 n1u
(5)
0 u

(5)
1 u

(5)
2 u

(5)
3 u

(5)
4

v0 v1 v2 v3 v4 v5

w0 w1 w2 w3 w4 w5

Figure 5: Indices of control points of the derivatives along a shared
boundary in Figure 3 in the 〈n0, n1〉 case.

3.2 Case 4: 〈n0, n1〉

Since we chose λ(u) := B(λ0, λ1) where λ0 := 2cn0 and λ1 :=
−2cn1 (see Figure 3, right), the constraints are formally symmetric

when endpoints are exchanged. Hence only the formulas for bk
i0

and bk
i1, i ≤ 2 need to be derived. Equating the coefficients of the

polynomial equation (5) we arrive at the 6-tuple of equations

5 B(v0 + w0, 5(v1 + w1), 10(v2 + w2),

10(v3 + w3), 5(v4 + w4),v5 + w5)

= B(λ0, λ1) 5 B
“

u
(5)
0 , 4u

(5)
1 , 6u

(5)
2 , 4u

(5)
3 ,u

(5)
4

”

= 5 B(λ0u
(5)
0 , 4λ0u

(5)
1 + λ1u

(5)
0 , 6λ0u

(5)
2 + 4λ1u

(5)
1 ,

4λ0u
(5)
3 + 6λ1u

(5)
2 , λ0u

(5)
4 + 4λ1u

(5)
3 , λ1u

(5)
4

”

.

The first and last equations are satisfied by (2) and (3). Comparing
the remaining coefficient pairs for i ∈ {1, 2, 3, 4} yields

λ0

4

i

!

u
(5)
i + λ1

4

i − 1

!

u
(5)
i−1 =

5

i

!

(vi + wi)

which simplifies to

0 = b
k−1
0i −

bk−1
1i + bk

i1

2
+

λ0

2

5 − i

5
u

(5)
i +

λ1

2

i

5
u

(5)
i−1

since λ0
2

= cn0 and λ1
2

= −cn1 . We enforce the equation for

i = 1 by substituting for u
(5)
1 and solving for

b
k
20 := b

k
10 +

1

4cn0

„

cn1u
(5)
0 + 5

„

bk
11 + bk−1

11 − 2bk
10

2

««

.

(17)

For i = 2, we can satisfy the equations by setting bk
21 and bk−1

12

using the following symmetric pair of equations.

b
k
21 := b

k
20 + cn0

3

5
u

(5)
2 − cn1

2

5
u

(5)
1 +

1

2
(ak

21 − a
k−1
12),

b
k−1
12 := b

k−1
01 + cn0

3

5
u

(5)
2 − cn1

2

5
u

(5)
1 +

1

2
(ak−1

12 − a
k
21) (18)

where ak
21 and ak−1

12 are defined in (16).

4 P-rep construction on the GPU

We compute (2), (3) and (4) in the vertex shader and assemble and
compute the p-rep according to (8) or (9) in the geometry shader.
The result is streamed to the subsequent evaluation pass. The vertex
list P can alternatively be a stream-out vertex buffer from a previ-
ous computation or a mesh evolution pass.

Vertex Shader

Geometry Shader

vertex valence and one−ring array index

(stream)

(fetch)

GPU

Memory

Vertex Input

 Patch Input
- (texture) patch corner

 indices for each quad

Stream-out buffer

- (stream) valence and

 one-ring array index

- (texture) vertex list

- (texture) one-ring array

(fetch)

P[I[i...(i+2n)]]

k0,k1,k2,k3

n, i

v-out: n, (e1, e2), g00, gk
11

v-out× 4 of patch corners

P

p-rep coefficients

I

Figure 6: Conversion pass in the GPU pipeline. The vertex shader
computes (2), (3) and (4). The geometry shader computes the coef-

ficients of the p-rep, (see (8) or p-rep, (9)).

The conversion is the first of two passes. The second pass tessel-
lates and renders the patches using instancing. That is, on input of
the pre-tessellated domain and patch identifiers, the vertex shader
loads, for each patch id and domain point, the appropriate control
points and evaluates the patch.

The conversion pass is illustrated in Figure 6. For B-quads, we
specialize the shaders to the case where all valences equal 4 to keep
this simple case fast.

4.1 Vertex Shader: Consistent Tangents

Input passed to the vertex shader:
— an array (texture) P containing the vertices.
— A texture I containing, for each vertex, the indices of its

one-ring of neighbors (see Figure 2) in P, and
— an input stream of, for each vertex, its valence n and

index i into the one-ring texture.
Since the number of vertices in the one-ring over a vertex depends
on its valence, we use an index i above for each vertex to pack all
the one-ring indices into I (as opposed to wastefully padding to
some maximum one-ring size and looking up based on the vertex
id).

Output: For each vertex, the vertex shader outputs
— its valence n,
— the Catmull-Clark limit point v ∈ R

3 of that vertex,
— (e1, e2) ∈ (R3, R3) used to compute gk

10 ∈ R
3 for

k ∈ {0, 1, . . . , n−1} and

— gk
11 ∈ R

3 for k ∈ {0, 1, . . . , n−1}.

Procedure: For each vertex, let i be its one-ring-array index and n
its valence.
0. Fetch the one-ring p with indices I[i, . . . , (i + 2n)] from

the vertex list P and compute
1. the extraordinary point using (2),
2. (e1, e2) using (3) with d = 3, and

3. gk
11 using (4).

4.2 Geometry Shader: Patch Assembly and Perturba-

tion

Input of the geometry shader:
— all the streams output by the vertex shader, and
— a texture containing, for each patch, its integer indices

(k0, k1, k2, k3) around each of its four corner vertices.

Output: The shader specialized to B-quads outputs the 16 control
points of g. The general shader outputs an additional 16 control
points for the perturbation h.

Procedure: We first load the four patch indices k0, k1, k2, k3. The
following computation has to be done for each of the four corners of
g and h. For simplicity, our discussion refers to the g00 corner and
to the patch index k0. The indices are as in Figure 2 with g playing
the role of gk and g− the role of the preceding neighbor gk−1 (e.g.
g−

11 and g−
12 are selected from the output of vertex shader Step 3 via

the patch index).

Bi-3 patch: For the g00 corner,
1. assign to g00 the appropriate extraordinary point

(from vertex shader step 1);
2. compute g10 and g01 using (3) with patch index k0; and,
3. select g11 from the output of the vertex shader using the

patch index k0.

The other three corners of g are assembled using the obvious sym-
metries. The conversion for B-quads stops here. The full p-rep
construction computes the

Bi-5 perturbation: Compute h20, h30, h21, and h31 according to
n0 and n1 in (8), resp. (9).

5 Results

Frames per second
Model Verts Faces N=5 9 17 33
10 Triple Donuts 400 440 524 456 249 104
Shaft 1107 1105 811 590 262 87
Frog 1308 1292 247 205 102 41

Table 1: Frames per second for various models with each patch
evaluated on a grid of size N × N . The percentages of B-quads in
the Triple Donut, Shaft, and Frog are 40.9, 90.6, and 40.9, respec-
tively.

We implemented the p-rep construction and subsequent evaluation
in DirectX 10 on the NVidia GeForce 8800 GTX graphics card. For
speed, we used specialized shaders to construct and evaluate the
case without perturbation. Nevertheless, we tested our method on
meshes with a small percentage of B-quads to test the efficiency of
our method. Performance of the current implementation is demon-
strated in Table 1 on the models in Figures 7 and 8. Availability
of the Xbox 360 continuous adaptive tessellation unit [Lee] will
speed up the second pass and decrease the penalty for large tessel-
lation factors N .

6 Discussion

The p-rep can be used both in the traditional CPU setting and, as
we demonstrated, efficiently constructed on the GPU thanks to for-
mulas like (e1, e2) that are specifically developed to minimize re-
computation and passing in the GPU pipeline. Keeping the patch
in p-rep rather than in standard BB representation results in water-
tightness between neighboring bi-5 and bi-3 patches: the numerical
round-off error is identical when computing patch boundaries inde-
pendently from either side, because there is no perturbation along
that edge and the boundary is computed identically by the vertex
shader.

The presented approach fits well into a GPU pipeline where the
GPU deforms the quad mesh and outputs to a stream-out vertex

buffer. This buffer can directly be read, in place of a texture, to
create patches and render them with minimal CPU overhead and
CPU-GPU transfer. Here, deformation of vertices with many de-
pendencies should be confined to a separate pass for synchroniza-
tion and to avoid re-computation. At the other end, the geometry
shader is unused in the second pass. We are currently exploring its
use for intersection testing and finite element computations.

References

BISCHOFF, S., KOBBELT, L. P., AND SEIDEL, H.-P. 2000. Towards hard-

ware implementation of loop subdivision. In HWWS ’00: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-

ware, ACM Press, New York, NY, USA, 41–50.

BOLZ, J., AND SCHRÖDER, P. Evaluation of subdi-

vision surfaces on programmable graphics hardware.

http://www.multires.caltech.edu/pubs/GPUSubD.pdf.

BOLZ, J., AND SCHRÖDER, P. 2002. Rapid evaluation of Catmull-Clark

subdivision surfaces. In Web3D ’02: Proceeding of the seventh interna-

tional conference on 3D Web technology, ACM Press, New York, NY,

USA, 11–17.

BÓO, M., AMOR, M., DOGGETT, M., HIRCHE, J., AND STRASSER, W.

2001. Hardware support for adaptive subdivision surface rendering. In

HWWS ’01: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

workshop on Graphics hardware, ACM Press, New York, NY, USA, 33–

40.

BUNNELL, M. 2005. GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation. Addison-

Wesley, Reading, MA, ch. Adaptive Tessellation of Subdivision Surfaces

with Displacement Mapping.

CAVARETTA, A. S., DAHMEN, W., AND MICCHELLI, C. A. 1991. Sta-

tionary subdivision. Memoirs of the American Mathematical Society 93,

453, 1–186.

FARIN, G. 1988. Curves and Surfaces for Computer Aided Geometric

Design — a Practical Guide. Academic Press, Boston, MA.

GUTHE, M., BALÁZS, A., AND KLEIN, R. 2005. GPU-based trimming

and tessellation of NURBS and T-spline surfaces. ACM Trans. Graph.

24, 3, 1016–1023.

HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, fair inter-

polation using Catmull-Clark surfaces. Proceedings of SIGGRAPH 93

(Aug), 35–44.

KRISHNAMURTHY, A., KHARDEKAR, R., AND MCMAINS, S. 2007. Di-

rect evaluation of nurbs curves and surfaces on the gpu. In SPM ’07:

Proceedings of the 2007 ACM symposium on Solid and physical model-

ing, ACM, New York, NY, USA, 329–334.

LEE, M. Next generation graphics programming on

Xbox 360. http://download.microsoft.com/download

/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/next genera-

tion graphics programming on xbox 360.ppt, 2006.

LOOP, C., AND BLINN, J. 2006. Real-time GPU rendering of piecewise

algebraic surfaces. ACM Trans. Graph. 25, 3, 664–670.

LOOP, C., AND SCHAEFER, S. 2007. Approximating Catmull-Clark sub-

division surfaces with bicubic patches. Tech. rep., Microsoft Research,

MSR-TR-2007-44.

PETERS, J. 2000. Patching Catmull-Clark meshes. In SIGGRAPH ’00:

Proceedings of the 27th annual conference on Computer graphics and in-

teractive techniques, ACM Press/Addison-Wesley Publishing Co., New

York, NY, USA, 255–258.

PRAUTZSCH, H., BOEHM, W., AND PALUZNY, M. 2002. Bézier and

B-Spline Techniques. Springer Verlag.

SCHAEFER, S., AND WARREN, J. 2007. Exact evaluation of non-

polynomial subdivision schemes at rational parameter values. In Pro-

ceedings of Pacific Graphics 2007.

SHI, X., WANGA, T., AND YU, P. 2004. A practical construction of G1

smooth biquintic B-spline surfaces over arbitrary topology. Computer

Aided Design 36, 5, 413–424.

SHIUE, L.-J., JONES, I., AND PETERS, J. 2005. A realtime GPU subdivi-

sion kernel. ACM Trans. Graph. 24, 3, 1010–1015.

STAM, J. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at

arbitrary parameter values. In SIGGRAPH, 395–404.

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. 2001. Curved

PN triangles. In Proceedings of Symposium on Interactive 3D graphics,

159–166.

Figure 7: Twist and Triple donut without (middle) and with (bot-
tom) the bi-5 perturbation.

Figure 8: Quad mesh and p-rep surface of Shaft and Frog.

