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Abstract

Surface constructions of polynomial degree (3,3) come um favours that complement
each other: one pair extends the subdivision paradigm, ttier the NURBS patch ap-
proach to free-form modeling.

The rst pair, Catmull-Clark (Catmull and Clark, 1978) andl& subdivision (Karciauskas
and Peters, 2007) generalize bi-cubic subdivision: Whilntill-Clark subdivision is more
suitable where few facets join, Polar subdivision nicelydels regions where many facets
join as when capping extruded features. We show how to eesihybine (the meshes of)
these two generalizations of bi-cubic spline subdivision.

The second pair of surface constructions with a nite humbepatches consists of
PCCM (Peters, 2000) for layouts where Catmull-Clark wouglg and a singularly pa-
rameterized NURBS patch for polar layout. A novel analybisvgs the latter to yield &1
surface with bounded curvatures.

Key words: bounded curvature, bi-cubi€,?, tensor-product, nite, B-spline, NURBS,
mesh re nement, PCCM, Catmull-Clark, subdivision

1 Motivation, Literature and Overview

While the mesh-based subdivision representation yieldstaiitive visualization
for interactive modeling, surfaces constructed from hitmany NURBS patches
are preferred in CAD packages and convenient for GPU impheatiens. All four
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Table 1
Bi-cubic surface constructions (Catmull and Clark, 1978), (Karciauskas and Peters,
2007), (Peters, 2000) (See also Figure 11).

piecewise bi-cubic surface types of Table 1 Gfealmost everywhere ar@* other-
wise and, because they are a nite number of bi-cubic splinesegular regions’,
they are compatible in the sense that they can be used in patidn to model
different regions of an object.

Generalized bi-cubic subdivision is traditionally assoed with CC subdivision
(Catmull and Clark, 1978). CC subdivision is popular in driap due to its close
relation to the industry standard bi-cubic tensor-prociptines or NURBS. How-
ever, CC subdivision is prone to generating saddle pointsarimit even though
the control net is designed for convex shape (Karciauskals,2004). This has mo-
tivated the improvements in (Levin, 2006; Ginkel and Um]&#06; Augsdorfer
etal., 2006). A second problem of CC subdivision is that, n@meany facets join or
where features are extruded, the resulting shape can beapd@how unintended
ripples(see e.g. Figure 1). Trying to suppress such macroscogtes@rising in
the rst subdivision step motivated the global shape oetion (Halstead et al.,
1993). In (Karciauskas et al., 2006), it was argued thal loipple and saddle prob-
lems can be more simply resolved by switching toodar layoutof facets (Figure
1). Aneighborhood of a central high-valence vertex (Fig)reaspolar layoutif
the vertex is surrounded by one layer of triangles while é@meaining mesh consists
of quadrilaterals, with always four facets joining at eacm{tentral vertex. Polar
layout naturally appears in the design of surfaces of reéimiu Recently, a sim-

Fig. 1. (eft) Airplane with polar nose.nfiddle Catmull-Clark subdivision generates rip-
ples, whereagight) polar subdivision looks natural.
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Fig. 2. Augmenting Catmull-Clark meshes with polar vesiogeft) nose of airplane nid-
dle) tips of ngers, fight) mushroom top.



Fig. 3. Polar vertices simplify modelindeft to right, topto bottom) A nose and a mouth are
extruded (introducing valence 5 vertices at the base ceyaad capped with a high-valent
polar vertex. (ight) Final surface.

ple generalization of bi-cubic subdivision to polar layoutas proposed, bi-cubic
Polar (BP) subdivision (Karciauskas and Peters, 2007larRueshes can also be
re ned using the more general tool of Quad-tri subdivisi&taim and Loop, 2003;
Schaefer and Warren, 2005); but BP subdivision (Karciassind Peters, 2007) is
preferable for polar layout because it generates a nite Inemof bi-cubic patches
in the transition from a quad to a triangle facet while Quadubdivision creates
in nitely many patches, half of them three-sided. Also ftyvetpolar layout, Jet
subdivision (Karciauskas et al., 2006) genera@@ssurfaces with good curvature
distribution. But the Jet subdivision is more complex arglfes in surfaces of de-
gree (6,5); and are therefore outside of our focus on biecabinemes. Similarly,
replacing CC meshes by those generated in (Levin, 2006 hipatble with Polar
subdivision but outside our focus.

The approach focombining BP subdivision and CC subdivisimeshes is to use
CC subdivision except for special rules where the mesh hada [ayout. This

has the advantage that any input mesh admissible for CC\ssioah can be han-
dled by the resulting combined subdivision. In effect, tioéap submeshes will be
temporarily split off from the remaining mesh so that the sasnde base as for
CC subdivision can be used and just one special subroutinmfar submeshes is
added to improve the surface quality. The resulting surfaeees match exactly at
their interfaces where they represent the same bi-cubigpatial spline patches.

Our approach for complementing a nite bi-cubic spline doastion with a nite

polar constructionis analogous and compatible with PCCM (Peters, 2000). We

interpret, after a few steps, the Polar subdivision comtresh as the control net of
a NURBS surface. This single polynomial NURBS patch has @e edllapsed to
a point and only the NURBS coef cients next to it have to beustid. The result
is aC! surface with bounded curvature. Due to the growth of thelezguesh and
the boundedness of the construction near irregular mestigpoe ning the input
mesh allows switching from the subdivision mesh to the NURB&esentation



and vice versa with an error decreasing with the subdivikoel.

In Section 2, we review and extend BP subdivision and show tooapply it in
the context of meshes of arbitrary connectivity. In Secpnve construct a sin-
gle singularly parameterized NURBS patch for completingkapcap. The cap's
smoothness is analyzed with a novel approach.

1.1 De nitions

A control netor meshis an embedding of a graph R® with vertices identi ed as
points and connectivity indicated by line segments. Th@lgia assumed to have
the connectivity of a 2-manifold. The number of neighbora ekrtex is called the
valenceof the vertex. It is denoted by. Thei-link of a vertex consists of points
that can be reached by traversing a shortest paihediges. Theé-link consists
only of the vertex itself. The 1-link consists of the direeighbors. The-layer of

a vertexv is the collection of faces, whose closest vertex g inv's i-link. The
O-layer ofv consists of all its incident faces.

A polar vertexis one whosé-layer consists only of triangles (see Figure 2). A
polar structureconsists of a polar vertex of valenoe 6 whosel-layer and2-
layer consist only of quadrilateral facets (quads) and shahthe vertices of the
1- and2-link are 4-valent (see Figure 2). We will not need to consjtdar rules
for boundaries since such boundaries are modeled by theleoraptary Catmull-
Clark or PCCM rules. A polar structure makes the term pokaoud precise.

2 Compatible polar mesh re nement and Subdivision
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Fig. 4. Re nement stencils for Polar subdivision (Karcias and Peters, 2007eff) Ra-
dial subdivision at the polar vertexn{ddle radial subdivision everywhere elseight)
circular subdivision everywhere else.



radial circular

Fig. 6. Mesh re nement preserving the limit surface of BPdiulsion. Fromleft to right:
original mesh, two applications of radial subdivision |daled by two applications of cir-
cular subdivision, and limit surface.

Compatible polar mesh re nemeig a straightforward approach to generating a
consistentlyk-times subdivided mesh when the Catmull-Clark mesh is anggdle
with polar structures. For a mesh with the latitude-londgteonnectivity, BP sub-
division applies cubic spline re nement only in the longitnal (radial) but not in
the latitudinal €ircular) direction. For the polar vertex and its 1-link, the stencil
weights for Figure 4left, are given as
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wheren is the valence of the polar vertex. The analysis in (Karskas and Pe-
ters, 2007) shows that, for 6, this radial subdivision results in an everywhere
C? surface except at the central limit point. At the centrainpdhe surface i€?
with bounded curvature. Moreover, the ripple and saddiaats of Catmull-Clark
subdivision do not appear.

Evidently, as illustrated in Figure 5, purely radial re-
nement results in a mismatch or a mesh with T-
corners at the transition to Catmull-Clark subdivision
since Catmull-Clark subdivision simultaneously sub-
divides radially and circularly. In order to leverage and
preserve the good results of radial subdivision and still
display a consistent control net afteisteps, we pro-
ceed as illustrated in Figure 6: we do not alternate ra-Fig. 5. Mismatch on the
dial and circular subdivisions in tHesteps but apply =~ Mesh between radial sub-

the followingcompatible polar mesh re nement division (a) and Catmul-
[-Clark subdivision (b).

(a) Applyk steps of radial subdivision and save the
polar structure at levéd in case we continue subdivision later.
(b) Apply k circular subdivision steps.

We base any continued re nement on the saved polar structMhele step (a)
preserves the valence, simplifying implementation, ajpglstep (b)a posteriori
amounts to knot insertion that does not change the surfaegelore the analysis of



(Karciauskas and Peters, 2007) applies. By contrast,dbally obvious approach
of alternatingradial and circular subdivision creates local curvaturetuations
and requires a new analysis. So, compatible polar re nensgmteferable.

Since we only locally improve CC subdivision, all input mestsuitable for CC
subdivision are admissible for the combined BP and CC sudidiv. In particular,
global boundaries anal-sided facets are covered by CC rules. A designer wanting
to treat a vertex with Polar subdivision, has to con gureésghborhood as a polar
structure (Section 1.1). A typical scenario is a cylindregrusion surrounded by
5-sided facets (see Figure 3). Given an input mesh and thé@mabhgubdivision
level k, generalized bi-cubic subdivision for Catmull-Clark meshes augmented
with polar structuress straightforward (see Figure 7):

1. Split off polar structuresCopy all the polar structures and remove polar ver-
tices from the input mesh.

2. Subdivide polar structures$zor each polar structure,
() subdividek timesradially, and then
(b) subdividek times in the circular direction.

3. Subdivide the remaining meshpply k steps of Catmull-Clark subdivision to
the mesh without the polar vertices.

4. Merge resultsDrop the boundary facets of the meshes subdivided in steps 2
and 3 and join them by identifying the resulting geomethcaentical bound-
ary vertices.

By splitting the mesh into overlapping pieces, we introdloew boundaries in
addition to any global boundaries of the input mesh. Subdtivisteps 2 and 3 deal
with these boundaries by dropping the vertices that do ne¢ kaough neighbors
to apply the regular rules.

If a designer placed polar vertices too close together, @ndt separate extraor-
dinary limit points of Catmull-Clark subdivision, or creat polar points of low
valence, then applying step 3 and standard bi-cubic suidivalso in the-layer
of the polar vertex (by interpreting triangular facets ageteerate quadrilaterals)

doubles the valence and separates extraordinary limitp(see Figure 8). For this
3
81 )

one initial step, computing the polar vertex with weight= % yields

Fig. 7. Generalized bi-cubic subdivision steps. (1) Sejpaydhe input mesh. (2) Subdivid-
ing the polar structure (2a) radially then (2b) circulafB) Subdividing the remainder. (4)
Joining the re ned meshes after removal of overlapping tagdght) The limit surface.



Fig. 8. Separating Catmull-Clark and polar extraordinamjtlpoints.

good shapes for a range of We suggest := % and = 3.

3 Finite bi-cubic constructions
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Fig. 9. Finite polar capping by a periodic singular NURBScpat{eft) Initial polar struc-
ture, (middle polar mesh with verticep; after one subdivision;right) bi-cubic NURBS
representation with control points : the collapsed centaxg and the exterior boundary
are associated with 4-fold knots.

A complementary generalization of the bi-cubic settingiatdel areas deviating
from the tensor-product setting by a few bi-cubic NURBS patc Since PCCM
(Peters, 2000) gives a construction for Catmull-Clark legpowe focus here on
constructing asingle bi-cubic splindor the polar structure. Just as PCCM this
yields a nite bi-cubic surface that i€2 almost everywhere an@?! otherwise.
On input of a polar structure, thaite bi-cubic NURBS construction has the
following steps (cf. Figures 9 and 10).

(i) (recommended for better shag@)ibdivide the polar structur&ubdivide ra-
dially, twice for elongated examples like tips of ngers.&tesulting mesp
is labeled as in Figure 9niddle

(i) Convert the polar structure to a spline mestitialize ¢ = p 1)n+j+1 for
i> landj =0;:::;n 1 Bothu andv knot sequences are uniform. The
circular direction with parameteris periodic.

(i) Interpolate the extraordinary limit point of BP subdivisid-ori = 0;:::;n
1, set

x
Coi == Ppot+(1 )%_ pj; = 4(173); 2)



Fig. 10. Finite polar capping. (1) Separating the input mé2h) Subdividing the polar
structure radially. (2b) Projecting the 1-link to the linmingent, knot insertion, and re-in-
terpretation as a periodic B-spline. (3) PCCM. (4) Joinihg surfaces.right) Surface
consisting of nitely many bi-cubic patches.

and change the start of the radial knot sequence to a 4-faltl dssociated

with Coi -
(iv) Match the limit normal of BP subdivisiohVe project the neighbors of the

central point into a common plane. For 0;:::;n 1,

x1 3

Cyi == Co +2 i iPj+1s default:= (3)
J=0 | 4
2k
K= —COS —
n

The projection of thespline coef cientsdoes not alter the inhere@? conti-
nuity of the spline apart from the singularity at the extchoary limit point;
and the projection maps all radial tangents into the sameephdath normal
direction(cy;  Cog) (C12 Cqo) at the extraordinary limit point.

(v) (optional) Additional knot insertionlt is common to have cubic NURBS
patches with four-fold end knots. Knot insertion at the olsegundary yields
e.0.0;0;0;0; 1;2;:::;m 1, m;m; m; m for the radial knots. The circular knot
sequence remains uniform due to periodicity.

Figure 12 and 13right, show examples of the NURBS construction. Due to the
common interpolated control vertey, that represents a collapsed edge:= Cqo,

i =0;::; :n 1, the spline surface i€° but singularly parametrizedSince sin-
gularly parametrlzed surfaces are commonly used in CADiegpbns, such pack-
ages handle and display the NURBS patch without problemaeder, singularly
parametrized surfaces are tricky to analyze (Neamtu andyét,ul994; Peters,
1991; Reif, 1995a; Bohl and Reif, 1997; Reif, 1998). The gilzed approach is an
algebraic reparametrization of the surface in the singqubamt. We use a different
approach that only becomes natural due to improved unaelisig of subdivision
surfaces: we derive projected bi-cubic subdivisiofpbs) that traces out the same
surface as the NURBS patch. First we document, what is imdlytclear, namely
that an arbitrary B-spline with one end collapsed to an pukated vertex is gener-
ically notC1.



Lemma 1 Without the projection step (iv), the singular NURBS patmhstruction
in Section 3 is generically n@?.

Proof We focus on the-links of the polar vertexy, fori = 0;1; 2; 3, and initialize

m = 0, the radial curve with coef cientfc] c]' ¢ cT]* has the knot sequence
0;0;0;0; 1; 2; 3; 4 and standard subdivision amounts to inserting knots=atand
3=2into the radial curve representation, i.e. to subdivisignaions

23 2 32 .3
C%i " 1 0 0 © e
e 41212 0 O ch g

gcg{ug—‘lo 3=4 1=4 054031:5- (4)
a1 0 3=16 11=16 1=8 cm

The subdivision matrix of the NURBS patch combimesurve subdivision matri-
ces, and its trivial spectral analysis showsaiold eigenvalue of 1 that corresponds
to a single leading eigenvalue by the standard approachstilditing the contri-
butioncy = cog evenly with weightl=n. However, there are also subdominant
eigenvalues of siz&=2 that contradict the uniqueness of a tangent plane for generi
data. In general, such a scheme is @bt ili
Construction step (iv) in Section 3 maps the 1-link into aquiei plane. To use this
projection in the analysis, we say the 1-link verticgsare inoval positionif there
exist two linearly independent vectags ande, such that

C1i = Coo + €1 C0S(2i=n ) + e, sin(2i=n): (5)

That is, the 1-link is equally distributed on an oval, thered projection of a circle
centered at the extraordinary limit poicdy, and lies in the plane containirgg,
and spanned bg; ande,. We observe that,

— if the control pointsc]} are in oval position, row two of Equation 4 assigns
(c + c) =2toc]** so that the points]** are also in oval position.

— Equation 3, in the form

¢ 1
Cli  Copt2 i iClj (6)
j=0

maps a 1-linkcy; into oval position. Applying projection (6) for = 1 on both
sides of Equation 5 shows that a 1-link in oval position rameainchanged under
the projection.

We now de ne theprojected bi-cubic subdivision (pbs)scheme to be the stan-
dard bi-cubic subdivision but with the second row in (4) mediby applying the
projection (6):

0 1
1 1
ch*l = }cm+}@cm+2§( : -cmA—cm+X i ico: (7)
i = 50 T 5 Co j iCi™ = Coi j iCyj-
i=0 i=0



Lemma 2 The singular NURBS patch de ned in Section 3 is identicahltmit
surface generated when pbs is applied to its control points.

Proof By construction of the NURBS patch, the 1-Iin% is in oval position. For
a 1-linkcy; in oval position, Equation 7 and row two of Equation 4 yiele@mdical
new 1-links. Jii

A standard analysis of the mesh with thginterpreted as a single point shows pbs
to generateC! surfaces with bounded curvature, with the usual caveatcthatol
points should be generic (Reif and Peters, 2005, p 164).

Lemma 3 For generic input data, surfaces generated by pbs @feand have
bounded curvature.

2 3

. 2 3
cglﬂ 2 Ao A An 1 3 (:"0“i
cm+l An 1 Ao An 2 cm
ENEER CeRd 8)
cp*t Al An1 Ag c5i
where fori > 0,
00 o o0 1=n 0 00"
— 41 o 0 O0pg5. A .— 1=n ;00
AO-_403:4 1=4 05'AI_ onooo
0 3=16 11=16 1=8 0 00O
Under discrete Fourier transfori; := i WA, W i=exp 2i] =n ,
. . . . . P .
the circulant system diagonalizes into didg; ::;; A, 1 where”; := =~ Liwi
and
2 1 0 0 0 3 20 0 0 0 3
a1 " 0 0cx. _a20"% o0 o0
A0_403:04 1=4 051A|_403:4 1=4 05
0 3=16 11=16 1=8 0 3=16 11=16 1=8

The eigenvalues ok, arel; "; 1=4; 1=8, and those of; are0; ";; 1=4; 1=8. Since
"o=0and”; = ", 1 = 1=2, while *; = 0 in all other cases, the subdomi-
nant eigenvalue is := 1=2 and corresponds to Fourier blocks andA, ;. The
right eigenvector of8; corresponding to eigenvalue2 is (0; 1; 3; 6). Therefore
the characteristic map (labeled using the same indexing@# Figure 9,right)
has coef cients

(roiTuiiV2iifs) = (0;s:38:68); s = foé;;

n
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Bi-cubic Polar NURBS
Polar subdivision layout capping

Catmull-Clark
subdivision

CC layout PCCM

Fig. 11. Generalizations of standard bi-cubic B-spline#dflle row to quads with non—
four-valent verticeskliottom row and polar verticest¢p row), with mesh re nement rules
(left column) or explicit spline patch constructiongght column.

The characteristic map is regular for arbitrary valencetssatis es the injectivity
criterion of Theorem 3.5 of (Reif, 1995b), so that the limitface isC? as claimed.
The subsubdominant eigenvalue= 1=4 = 2 comes from independent Fourier
blocks, indicating that it has equal algebraic and geometrltiplicity. Hence by
Theorem 3.3 of (Peters and Reif, 2004), the surface has leoundvature. jjj

Lemma 2 and 3 imply the hoped-for theorem.

Theorem 4 For generic control nets, a NURBS patch constructed acogrdo
Section 3 iC! and has bounded curvature at the central point.

4 Summary and Discussion

All four surface types generalizing bi-cubic splines, showFigure 11 (and Table
1), are compatible with one another in that their transgiare identical bi-cubic
splines. The resulting surfaces are piecewise bi-cubfcalmost everywhere and
C! at isolated points (curves in the case of PCCM). Both the isigion and the

NURBS construction give equally valid meaning to the inpwgsim created and
manipulated by the designer. And, by increasing the sufidivilevel, the result-
ing surfaces can be made arbitrarily close to allow switghiom one modeling

paradigm to the other. The polar pieces of each approacheangemented as a
simple extension of existing modeling tools.

Since our nite polar spline generalization of bi-cubic isigls consists of a single

11



Fig. 12. ResultsFrom left to right control mesh, mesh after one subdivision, subdivi-
sion limit surface, highlight lines on subdivision surfagdgte NURBS construction, nite
NURBS construction highlight lines. In row two, we zoom in one of the ngers. Row
three illustrates a high-valent saddle.

NURBS patch, it is easy to add to existing CAD and animationleliog packages
and is suitable for evaluation on the GPU (Krishnamurthyl.e@07). The central
singularity presents no problem for rendering since thdigkmormal is known
and the surface curvatures are bounded.

The analysis of this nite construction de nes and uses aerofolar subdivision
scheme, called pbs. This raises the question whether wel @ pbs in place
of BP subdivision and thereby obtain a uni ed nite-pluskslivision representa-
tion. We consider pbs less practical since it has a largeigisbimh footprint, with
special rules for everilink for i = 0;1; 2; 3. Moreover, the generating functions
associated with th&-link vertices are dependent and a special rst step is meglui
without which the convex hull property is not guaranteed.

BP subdivisioraugments the capabilities of existing Catmull-Clark inmpémta-
tions. The extension is particularly valuable for extrudedtures and naturally
complements Catmull-Clark in regions of high-valence. Wthe smooth connec-
tion of the two surface types was never in doubt since thely textuce to bi-cubic
splines. it is necessary (and simple) to de neampatible polar mesh re nement
to minimally modify the existing infrastructure and add gfape and simplicity of
BP subdivision.
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