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Abstract

Surface constructions of polynomial degree (3,3) come in four �avours that complement
each other: one pair extends the subdivision paradigm, the other the NURBS patch ap-
proach to free-form modeling.

The �rst pair, Catmull-Clark (Catmull and Clark, 1978) and Polar subdivision (Kar�ciauskas
and Peters, 2007) generalize bi-cubic subdivision: While Catmull-Clark subdivision is more
suitable where few facets join, Polar subdivision nicely models regions where many facets
join as when capping extruded features. We show how to easilycombine (the meshes of)
these two generalizations of bi-cubic spline subdivision.

The second pair of surface constructions with a �nite numberof patches consists of
PCCM (Peters, 2000) for layouts where Catmull-Clark would apply and a singularly pa-
rameterized NURBS patch for polar layout. A novel analysis shows the latter to yield aC1

surface with bounded curvatures.

Key words: bounded curvature, bi-cubic,C1, tensor-product, �nite, B-spline, NURBS,
mesh re�nement, PCCM, Catmull-Clark, subdivision

1 Motivation, Literature and Overview

While the mesh-based subdivision representation yields anintuitive visualization
for interactive modeling, surfaces constructed from �nitely many NURBS patches
are preferred in CAD packages and convenient for GPU implementations. All four
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layout sprocket-like polar

subdivision Catmull-Clark bi-cubic polar

�nite PCCM new (Section 3)
Table 1
Bi-cubic surface constructions: (Catmull and Clark, 1978), (Kar�ciauskas and Peters,
2007), (Peters, 2000) (See also Figure 11).

piecewise bi-cubic surface types of Table 1 areC2 almost everywhere andC1 other-
wise and, because they are a �nite number of bi-cubic splinesin `regular regions',
they are compatible in the sense that they can be used in combination to model
different regions of an object.

Generalized bi-cubic subdivision is traditionally associated with CC subdivision
(Catmull and Clark, 1978). CC subdivision is popular in graphics due to its close
relation to the industry standard bi-cubic tensor-productsplines or NURBS. How-
ever, CC subdivision is prone to generating saddle points inthe limit even though
the control net is designed for convex shape (Kar�ciauskas et al., 2004). This has mo-
tivated the improvements in (Levin, 2006; Ginkel and Umlauf, 2006; Augsdörfer
et al., 2006). A second problem of CC subdivision is that, where many facets join or
where features are extruded, the resulting shape can be poorand show unintended
ripples(see e.g. Figure 1). Trying to suppress such macroscopic ripples arising in
the �rst subdivision step motivated the global shape optimization (Halstead et al.,
1993). In (Kar�ciauskas et al., 2006), it was argued that both ripple and saddle prob-
lems can be more simply resolved by switching to apolar layoutof facets (Figure
1). A neighborhood of a central high-valence vertex (Figure2) haspolar layoutif
the vertex is surrounded by one layer of triangles while the remaining mesh consists
of quadrilaterals, with always four facets joining at each non-central vertex. Polar
layout naturally appears in the design of surfaces of revolution. Recently, a sim-

Fig. 1. (left) Airplane with polar nose. (middle) Catmull-Clark subdivision generates rip-
ples, whereas (right) polar subdivision looks natural.

Fig. 2. Augmenting Catmull-Clark meshes with polar vertices: (left) nose of airplane, (mid-
dle) tips of �ngers, (right) mushroom top.
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Fig. 3. Polar vertices simplify modeling. (left to right, toptobottom) A nose and a mouth are
extruded (introducing valence 5 vertices at the base corners) and capped with a high-valent
polar vertex. (right) Final surface.

ple generalization of bi-cubic subdivision to polar layouts was proposed, bi-cubic
Polar (BP) subdivision (Kar�ciauskas and Peters, 2007). Polar meshes can also be
re�ned using the more general tool of Quad-tri subdivision (Stam and Loop, 2003;
Schaefer and Warren, 2005); but BP subdivision (Kar�ciauskas and Peters, 2007) is
preferable for polar layout because it generates a �nite number of bi-cubic patches
in the transition from a quad to a triangle facet while Quad-tri subdivision creates
in�nitely many patches, half of them three-sided. Also for the polar layout, Jet
subdivision (Kar�ciauskas et al., 2006) generatesC2 surfaces with good curvature
distribution. But the Jet subdivision is more complex and results in surfaces of de-
gree (6,5); and are therefore outside of our focus on bi-cubic schemes. Similarly,
replacing CC meshes by those generated in (Levin, 2006) is compatible with Polar
subdivision but outside our focus.

The approach forcombining BP subdivision and CC subdivisionmeshes is to use
CC subdivision except for special rules where the mesh has a polar layout. This
has the advantage that any input mesh admissible for CC subdivision can be han-
dled by the resulting combined subdivision. In effect, the polar submeshes will be
temporarily split off from the remaining mesh so that the same code base as for
CC subdivision can be used and just one special subroutine for polar submeshes is
added to improve the surface quality. The resulting surfacepieces match exactly at
their interfaces where they represent the same bi-cubic polynomial spline patches.

Our approach for complementing a �nite bi-cubic spline construction with a�nite
polar constructionis analogous and compatible with PCCM (Peters, 2000). We
interpret, after a few steps, the Polar subdivision controlmesh as the control net of
a NURBS surface. This single polynomial NURBS patch has an edge collapsed to
a point and only the NURBS coef�cients next to it have to be adjusted. The result
is aC1 surface with bounded curvature. Due to the growth of the regular mesh and
the boundedness of the construction near irregular mesh points, re�ning the input
mesh allows switching from the subdivision mesh to the NURBSrepresentation
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and vice versa with an error decreasing with the subdivisionlevel.

In Section 2, we review and extend BP subdivision and show howto apply it in
the context of meshes of arbitrary connectivity. In Section3, we construct a sin-
gle singularly parameterized NURBS patch for completing a polar cap. The cap's
smoothness is analyzed with a novel approach.

1.1 De�nitions

A control netor meshis an embedding of a graph inR3 with vertices identi�ed as
points and connectivity indicated by line segments. The graph is assumed to have
the connectivity of a 2-manifold. The number of neighbors ofa vertex is called the
valenceof the vertex. It is denoted byn. Thei -link of a vertex consists of points
that can be reached by traversing a shortest path ofi edges. The0-link consists
only of the vertex itself. The 1-link consists of the direct neighbors. Thei -layer of
a vertexv is the collection of faces, whose closest vertex tov is in v 's i -link. The
0-layer ofv consists of all its incident faces.

A polar vertexis one whose0-layer consists only of triangles (see Figure 2). A
polar structureconsists of a polar vertex of valencen � 6 whose1-layer and2-
layer consist only of quadrilateral facets (quads) and suchthat the vertices of the
1- and2-link are 4-valent (see Figure 2). We will not need to consider polar rules
for boundaries since such boundaries are modeled by the complementary Catmull-
Clark or PCCM rules. A polar structure makes the term polar layout precise.

2 Compatible polar mesh re�nement and Subdivision
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Fig. 4. Re�nement stencils for Polar subdivision (Kar�ciauskas and Peters, 2007). (left) Ra-
dial subdivision at the polar vertex, (middle) radial subdivision everywhere else, (right)
circular subdivision everywhere else.
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radial circular

Fig. 6. Mesh re�nement preserving the limit surface of BP subdivision. Fromleft to right:
original mesh, two applications of radial subdivision, followed by two applications of cir-
cular subdivision, and limit surface.

Compatible polar mesh re�nementis a straightforward approach to generating a
consistentlyk-times subdivided mesh when the Catmull-Clark mesh is augmented
with polar structures. For a mesh with the latitude-longitude connectivity, BP sub-
division applies cubic spline re�nement only in the longitudinal (radial) but not in
the latitudinal (circular) direction. For the polar vertex and its 1-link, the stencil
weights for Figure 4,left, are given as
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wheren is the valence of the polar vertex. The analysis in (Kar�ciauskas and Pe-
ters, 2007) shows that, forn � 6, this radial subdivision results in an everywhere
C2 surface except at the central limit point. At the central point the surface isC1

with bounded curvature. Moreover, the ripple and saddle artifacts of Catmull-Clark
subdivision do not appear.

?

Fig. 5. Mismatch on the
mesh between radial sub-
division (a) and Catmul-
l-Clark subdivision (b).

Evidently, as illustrated in Figure 5, purely radial re-
�nement results in a mismatch or a mesh with T-
corners at the transition to Catmull-Clark subdivision
since Catmull-Clark subdivision simultaneously sub-
divides radially and circularly. In order to leverage and
preserve the good results of radial subdivision and still
display a consistent control net afterk steps, we pro-
ceed as illustrated in Figure 6: we do not alternate ra-
dial and circular subdivisions in thek steps but apply
the followingcompatible polar mesh re�nement.

(a) Apply k steps of radial subdivision and save the
polar structure at levelk in case we continue subdivision later.

(b) Apply k circular subdivision steps.

We base any continued re�nement on the saved polar structure. While step (a)
preserves the valence, simplifying implementation, applying step (b)a posteriori
amounts to knot insertion that does not change the surface. Therefore the analysis of
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(Kar�ciauskas and Peters, 2007) applies. By contrast, the equally obvious approach
of alternatingradial and circular subdivision creates local curvature �uctuations
and requires a new analysis. So, compatible polar re�nementis preferable.

Since we only locally improve CC subdivision, all input meshes suitable for CC
subdivision are admissible for the combined BP and CC subdivision. In particular,
global boundaries andn-sided facets are covered by CC rules. A designer wanting
to treat a vertex with Polar subdivision, has to con�gure itsneighborhood as a polar
structure (Section 1.1). A typical scenario is a cylindrical extrusion surrounded by
5-sided facets (see Figure 3). Given an input mesh and the maximal subdivision
level k, generalized bi-cubic subdivision for Catmull-Clark meshes augmented
with polar structuresis straightforward (see Figure 7):

1. Split off polar structures:Copy all the polar structures and remove polar ver-
tices from the input mesh.

2. Subdivide polar structures:For each polar structure,
(a) subdividek timesradially, and then
(b) subdividek times in the circular direction.

3. Subdivide the remaining mesh:Apply k steps of Catmull-Clark subdivision to
the mesh without the polar vertices.

4. Merge results:Drop the boundary facets of the meshes subdivided in steps 2
and 3 and join them by identifying the resulting geometrically identical bound-
ary vertices.

By splitting the mesh into overlapping pieces, we introduced new boundaries in
addition to any global boundaries of the input mesh. Subdivision steps 2 and 3 deal
with these boundaries by dropping the vertices that do not have enough neighbors
to apply the regular rules.

If a designer placed polar vertices too close together, or did not separate extraor-
dinary limit points of Catmull-Clark subdivision, or created polar points of low
valence, then applying step 3 and standard bi-cubic subdivision also in the0-layer
of the polar vertex (by interpreting triangular facets as degenerate quadrilaterals)
doubles the valence and separates extraordinary limit points (see Figure 8). For this
one initial step, computing the polar vertex with weight� := 3

8(1� � ) � 1
2 yields

1

2a 2b

3
4

Fig. 7. Generalized bi-cubic subdivision steps. (1) Separating the input mesh. (2) Subdivid-
ing the polar structure (2a) radially then (2b) circularly.(3) Subdividing the remainder. (4)
Joining the re�ned meshes after removal of overlapping facets. (right) The limit surface.
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Fig. 8. Separating Catmull-Clark and polar extraordinary limit points.

good shapes for a range of� . We suggest� := 1
2 and� = 1

4.

3 Finite bi-cubic constructions
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Fig. 9. Finite polar capping by a periodic singular NURBS patch. (left) Initial polar struc-
ture, (middle) polar mesh with verticesp i after one subdivision; (right) bi-cubic NURBS
representation with control pointscij : the collapsed centerc0i and the exterior boundary
are associated with 4-fold knots.

A complementary generalization of the bi-cubic setting is to model areas deviating
from the tensor-product setting by a few bi-cubic NURBS patches. Since PCCM
(Peters, 2000) gives a construction for Catmull-Clark layouts, we focus here on
constructing asingle bi-cubic splinefor the polar structure. Just as PCCM this
yields a �nite bi-cubic surface that isC2 almost everywhere andC1 otherwise.
On input of a polar structure, the�nite bi-cubic NURBS construction has the
following steps (cf. Figures 9 and 10).

(i) (recommended for better shape)Subdivide the polar structure.Subdivide ra-
dially, twice for elongated examples like tips of �ngers. The resulting meshp
is labeled as in Figure 9,middle.

(ii) Convert the polar structure to a spline mesh.Initialize cij := p(i � 1)n+ j +1 for
i > 1 andj = 0; : : : ; n � 1. Both u andv knot sequences are uniform. The
circular direction with parameteru is periodic.

(iii) Interpolate the extraordinary limit point of BP subdivision. Fori = 0; : : : ; n�
1, set

c0i := � p0 + (1 � � )
1
n

nX

j =1

p j ; � :=
4(1 � � )

3
; (2)
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Fig. 10. Finite polar capping. (1) Separating the input mesh. (2a) Subdividing the polar
structure radially. (2b) Projecting the 1-link to the limittangent, knot insertion, and re-in-
terpretation as a periodic B-spline. (3) PCCM. (4) Joining the surfaces. (right) Surface
consisting of �nitely many bi-cubic patches.

and change the start of the radial knot sequence to a 4-fold knot associated
with c0i .

(iv) Match the limit normal of BP subdivision.We project the neighbors of the
central point into a common plane. Fori = 0; : : : ; n� 1,

c1i := c0i + 2�
n� 1X

j =0

� j � i p j +1 ; � default :=
3
4

; (3)

� k :=
1
n

cos

 
2�k
n

!

:

The projection of thespline coef�cientsdoes not alter the inherentC2 conti-
nuity of the spline apart from the singularity at the extraordinary limit point;
and the projection maps all radial tangents into the same plane with normal
direction(c11 � c00) � (c12 � c00) at the extraordinary limit point.

(v) (optional) Additional knot insertion.It is common to have cubic NURBS
patches with four-fold end knots. Knot insertion at the outer boundary yields
e.g.0; 0; 0; 0; 1; 2; : : : ; m� 1; m; m; m; m for the radial knots. The circular knot
sequence remains uniform due to periodicity.

Figure 12 and 13,right, show examples of the NURBS construction. Due to the
common interpolated control vertexc00 that represents a collapsed edgec0i := c00,
i = 0; : : : ; n � 1, the spline surface isC0 but singularly parametrized. Since sin-
gularly parametrized surfaces are commonly used in CAD applications, such pack-
ages handle and display the NURBS patch without problems. However, singularly
parametrized surfaces are tricky to analyze (Neamtu and P�uger, 1994; Peters,
1991; Reif, 1995a; Bohl and Reif, 1997; Reif, 1998). The classical approach is an
algebraic reparametrization of the surface in the singularpoint. We use a different
approach that only becomes natural due to improved understanding of subdivision
surfaces: we derive aprojected bi-cubic subdivision(pbs) that traces out the same
surface as the NURBS patch. First we document, what is intuitively clear, namely
that an arbitrary B-spline with one end collapsed to an interpolated vertex is gener-
ically not C1.
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Lemma 1 Without the projection step (iv), the singular NURBS patch construction
in Section 3 is generically notC1.

Proof We focus on thei -links of the polar vertexc00 for i = 0; 1; 2; 3, and initialize
for subdivision levelm = 0, cm

ki := cij for j = 0; : : : ; n � 1, k = 0; 1; 2; 3. For
m = 0, the radial curve with coef�cients[cm

0i cm
1i cm

2i cm
3i ]

t has the knot sequence
0; 0; 0; 0; 1; 2; 3; 4 and standard subdivision amounts to inserting knots at1=2 and
3=2 into the radial curve representation, i.e. to subdivision equations

2

6
4

cm +1
0i

cm +1
1i

cm +1
2i

cm +1
3i

3

7
5 =

2

4
1 0 0 0

1=2 1=2 0 0
0 3=4 1=4 0
0 3=16 11=16 1=8

3

5

2

4
cm

0i
cm

1i
cm

2i
cm

3i

3

5 : (4)

The subdivision matrix of the NURBS patch combinesn curve subdivision matri-
ces, and its trivial spectral analysis shows ann-fold eigenvalue of 1 that corresponds
to a single leading eigenvalue by the standard approach of distributing the contri-
butionc0i = c00 evenly with weight1=n. However, there are alson subdominant
eigenvalues of size1=2 that contradict the uniqueness of a tangent plane for generic
data. In general, such a scheme is notC1. jjj
Construction step (iv) in Section 3 maps the 1-link into a unique plane. To use this
projection in the analysis, we say the 1-link verticesc1i are inoval positionif there
exist two linearly independent vectorse1 ande2 such that

c1i = c00 + e1 cos(2�i=n ) + e2 sin(2�i=n ): (5)

That is, the 1-link is equally distributed on an oval, the af�ne projection of a circle
centered at the extraordinary limit pointc00, and lies in the plane containingc00

and spanned bye1 ande2. We observe that,
— if the control pointscm

1i are in oval position, row two of Equation 4 assigns
(cm

00 + cm
1i ) =2 to cm+1

1i so that the pointscm+1
1i are also in oval position.

— Equation 3, in the form

cm
1i  cm

00 + 2�
n� 1X

j =0

� j � i cm
1j ; (6)

maps a 1-linkc1i into oval position. Applying projection (6) for� = 1 on both
sides of Equation 5 shows that a 1-link in oval position remains unchanged under
the projection.

We now de�ne theprojected bi-cubic subdivision (pbs)scheme to be the stan-
dard bi-cubic subdivision but with the second row in (4) modi�ed by applying the
projection (6):

cm+1
1i =

1
2

cm
0i +

1
2

0

@cm
0i + 2

n� 1X

j =0

� j � i cm
1j

1

A = cm
0i +

n� 1X

j =0

� j � i cm
1j : (7)
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Lemma 2 The singular NURBS patch de�ned in Section 3 is identical to the limit
surface generated when pbs is applied to its control points.

Proof By construction of the NURBS patch, the 1-linkc0
1j is in oval position. For

a 1-link c1j in oval position, Equation 7 and row two of Equation 4 yield identical
new 1-links. jjj

A standard analysis of the mesh with thec0i interpreted as a single point shows pbs
to generateC1 surfaces with bounded curvature, with the usual caveat thatcontrol
points should be generic (Reif and Peters, 2005, p 164).

Lemma 3 For generic input data, surfaces generated by pbs areC1 and have
bounded curvature.

Proof We split the contribution ofc00 evenly amongst thec0i i 2 0; : : : ; n� 1 and
write the pbs circulant matrix as

2
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=
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7
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(8)

where fori > 0,

A0 :=

2

4
1=n 0 0 0
1=n � 0 0 0

0 3=4 1=4 0
0 3=16 11=16 1=8

3

5 ; A i :=

"
1=n 0 0 0
1=n � i 0 0

0 0 0 0
0 0 0 0

#

:

Under discrete Fourier transform,̂A i :=
P n� 1

j =0 wij A j , wij := exp
�
2�ij

p
� 1=n

�
,

the circulant system diagonalizes into diag
�
Â0; :::; Ân� 1

�
where�̂ i :=

P n� 1
j =0 wij � j

and

Â0 :=

2

4
1 0 0 0
1 �̂ 0 0 0
0 3=4 1=4 0
0 3=16 11=16 1=8

3

5 ; Â i :=

2

4
0 0 0 0
0 �̂ i 0 0
0 3=4 1=4 0
0 3=16 11=16 1=8

3

5 :

The eigenvalues of̂A0 are1; �̂ 0; 1=4; 1=8, and those of̂A i are0; �̂ i ; 1=4; 1=8. Since
�̂ 0 = 0 and �̂ 1 = �̂ n� 1 = 1=2, while �̂ i = 0 in all other cases, the subdomi-
nant eigenvalue is� := 1=2 and corresponds to Fourier blockŝA1 andÂn� 1. The
right eigenvector ofÂ1 corresponding to eigenvalue1=2 is (0; 1; 3; 6). Therefore
the characteristic mapr (labeled using the same indexing asc in Figure 9,right)
has coef�cients

(r 0i ; r 1i ; r 2i ; r 3i ) := ( 0; si ; 3si ; 6si ) ; si :=
�

cos( 2�i
n )

sin( 2�i
n )

�

:
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NURBS
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Catmull-Clark
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CC layout PCCM

Fig. 11. Generalizations of standard bi-cubic B-splines (middle row) to quads with non–
four-valent vertices (bottom row) and polar vertices (top row), with mesh re�nement rules
(left column) or explicit spline patch constructions (right column).

The characteristic map is regular for arbitrary valences and satis�es the injectivity
criterion of Theorem 3.5 of (Reif, 1995b), so that the limit surface isC1 as claimed.
The subsubdominant eigenvalue� := 1=4 = � 2 comes from independent Fourier
blocks, indicating that it has equal algebraic and geometric multiplicity. Hence by
Theorem 3.3 of (Peters and Reif, 2004), the surface has bounded curvature. jjj

Lemma 2 and 3 imply the hoped-for theorem.

Theorem 4 For generic control nets, a NURBS patch constructed according to
Section 3 isC1 and has bounded curvature at the central point.

4 Summary and Discussion

All four surface types generalizing bi-cubic splines, shown in Figure 11 (and Table
1), are compatible with one another in that their transitions are identical bi-cubic
splines. The resulting surfaces are piecewise bi-cubic,C2 almost everywhere and
C1 at isolated points (curves in the case of PCCM). Both the subdivision and the
NURBS construction give equally valid meaning to the input mesh created and
manipulated by the designer. And, by increasing the subdivision level, the result-
ing surfaces can be made arbitrarily close to allow switching from one modeling
paradigm to the other. The polar pieces of each approach can be implemented as a
simple extension of existing modeling tools.

Since our �nite polar spline generalization of bi-cubic splines consists of a single
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Fig. 12. Results.From left to right: control mesh, mesh after one subdivision, subdivi-
sion limit surface, highlight lines on subdivision surface, �nite NURBS construction, �nite
NURBS construction highlight lines. In row two, we zoom in onone of the �ngers. Row
three illustrates a high-valent saddle.

NURBS patch, it is easy to add to existing CAD and animation modeling packages
and is suitable for evaluation on the GPU (Krishnamurthy et al., 2007). The central
singularity presents no problem for rendering since the explicit normal is known
and the surface curvatures are bounded.

The analysis of this �nite construction de�nes and uses another polar subdivision
scheme, called pbs. This raises the question whether we could use pbs in place
of BP subdivision and thereby obtain a uni�ed �nite-plus-subdivision representa-
tion. We consider pbs less practical since it has a large subdivision footprint, with
special rules for everyi -link for i = 0; 1; 2; 3. Moreover, the generating functions
associated with the1-link vertices are dependent and a special �rst step is required
without which the convex hull property is not guaranteed.

BP subdivisionaugments the capabilities of existing Catmull-Clark implementa-
tions. The extension is particularly valuable for extrudedfeatures and naturally
complements Catmull-Clark in regions of high-valence. While the smooth connec-
tion of the two surface types was never in doubt since they both reduce to bi-cubic
splines. it is necessary (and simple) to de�ne acompatible polar mesh re�nement
to minimally modify the existing infrastructure and add theshape and simplicity of
BP subdivision.
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