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Abstract

A multi-sided hole in a surface can be filled by a sequence sfedke
smoothly joined surface rings. We show how to generate sselgjaence so
that (i) the resulting surface 2 (also in the limit), (ii) the rings consist of
standard splines of moderate degree and (iii) the holeditliosely follows
the shape of and replaces a guide surface whose good shagserabte, but
whose representation is undesirable.

To preserve the shape, the guided rings sample positionighdrkorder
derivatives of the guide surface at parameters defined aigghted by a con-
centric tesselating map. éoncentric tesselating mapaps the domains of
n patches to an annulus 1&? that joins smoothly with a\-scaled copy of
itself, 0 < A < 1. The union ofA™-scaled copies parametrizes a neighbor-
hood of the origin and the map thereby relates the domainseotirface
rings to that of the guide.

The approach applies to and is implemented for a variety lofespand
layouts including the three-direction box spline (withsprocket, e.g. Loop
layout, at extraordinary points), tensor-product splifigssprocket layout,
e.g. Catmull-Clark), and polar layout. For different patgpbes and layout,
the approach results in curvature continuous surfacesgréddess or equal
8, less or equal to (6,6), and as low as (4,3) if we allow gedmebntinuity.

1 Introduction and Motivation

A guided surface rings a low-degree, piecewise polynomial or rational spline
approximation to a ring-shaped region of an existing serfaiece, calledjuide
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Figure 1: (eft) Guide surface approximately capping a cylindrical bodyiddle
color-coded sequence of guided rings amght) uniformly shaded surface.

in the following. The guided rings are constructed to replaguide that does not
fit functional requirements or the requirements of a geoyr@twcessing pipeline.
For example as illustrated in Figure I&ft, the guide may not exactly match the
boundary data but overlaps or leaves gaps; or, the guide@mdfigh a degree or
has an otherwise undesirable representation. The guidelsced by a sequence
of nested, smoothly joined surface rings in standard, saydegree polynomial
representation as in Figure 2.

The specific approach, detailed
in this paper, is to generate guided
rings x™ by applying an operator
H that samples position and higher-
order derivatives of a guide sur-
face g at parameters defined and
weighted by\™-scaled copies of a
concentric tesselation map (short:
ct-map p:

x" = H(go \"p).

The ct-map maps the domainsof "‘{-
patches to an annulus R’ so that o L P

the annulus and ita-scaled copy, — @< veE l/
for some fixedd < A\ < 1, join ‘
smoothly and without overlap; and (\

their union covers and parameter-

izes a disk around the origin (Fig+; _ .
ure 4.top). This disk relates the OIO_Flgure 2. (eft) Two sequences of guided

main of the surface rings to that Opngs, and (ght) the resulting surfaces.



the guide. The ct-map is crucial to orient and scale highdeiderivatives taken

off the guide surface. The operatlrsamples the guide surface and assures that
consecutive rings™, x™*! join smoothly (Figure 2). The outermost ring?,
smoothly joins the multi-sided boundary data.

The ringed structure of the surface yields a recurrencdasima standard sub-
division. In Section 6, we show that the finite union of guidawhs is aC?
surface that reproduces quadratic components of the guidehat the infinite
union is alsoC?. An analysis of related useful, curvature bounded schemés a
non-stationary”? schemes of lower degree will appear in [KP06al).

The choice of guide surface is important and, by definiticgtetmines the
shape of the guided rings. Only if the guide surface is piggited to the bound-
ary data do the guided rings blend the existing multi-sidaehalary data with the
central guide without introducing new shape. Figure 3 ilates how low-degree
polynomials fail as a guides for higher-order saddles. Qerast four years,

Figure 3: Choosing a good guide surface. Two different gui@esided inner
piecesred) are obtained by least-squares fitting to the same tensalupt spline
data (outer ringgreer). The guides are trimmed along the boundary of the ct-
map pc (see Section 5.2).t¢p row) Guide of degree threebéttom rovwy Guide

of piecewisalegree five. right column GuidedC? surfaces based on the guides
on the left. Note the extra oscillations in the middieefy) ring of thetop surface
based on the guide of degree three.

we developed and compared a number of high-quality guides, ligh-degree
rational [KP04] and piecewise polynomial. Since many othgde surfaces are
possible, and a recommendation should be based on a thodafigition and



discussion of ‘surface fairness’ and a comprehensive casgraon standard test
cases, we do not discuss guide constructions in detail dytamsume that the
guide is non-singular, at least twice continuously difféi@ble (see however (iii)
in Section 8) and that its derivatives can be sampled up tcetipgired order.

To recap, the two main reasons to generate guided rings are:

e to obtain a smooth, low-degree standard (piecewise poljaiprepresentation;
e to capture the shape of a complex guide surface.

Section 3 defines several ct-mapsSection 4 defines the operatoithat is
modified to H in Section 5 to assemble the pieced into guided rings{x™}
of a C? guided patchwork. Section 6 summarizes the continuity drzpe re-
production properties of the patchworks and their limitg groints out how the
rings are efficiently computed. Section 7 shows how the pmtyial degree of
polar rings can be lowered and Section 8 points out a humbaraafifications
and generalizations of the approach explained in this paper

2 Background

The main ingredients of guided ring-construction are cositpm and sampling
((quasi-)interpolation). No list of references would dstjae to such fundamental
techniques. Here, we focus on papers that influenced andnefbthe particu-
lar approach. First there are constructions like [KP04j} tiravide good shape
for multi-sided surface patches but are of high rationareegThen there is the
observation that standard, mesh-based subdivision cmtisins offer low degree
but yield potentially bad shape [KPR04], especially wheaititent is to model
convex surfaces. Thirdly, the analysis of subdivision atef motivates guided
ring-constructions by its characterization of subdiussnirfaces as a sequence of
nested spline rings converging to an extraordinary poee €sg. [Rei95]). If the
guide surfaceg : R? — R? were a single, not a piecewise polynomial diidex-
actly reproduced the compositigr \™ p then the guided ring-construction would
reduce to the approach in [Pra97, Rei98]. However, in gurdegtconstruction,
the composition of guide and the ct-map is not used direattysbmpled That
makes a difference since it allows to capture shape welletample with high-
degree piecewise polynomial maps, and still arrive at adegree representation
— by leveraging standard spline theory. Low-degree (piessvpolynomial map-
pings are known to create surfaces with curvature flaws. ¥amele, a quadratic
polynomial does not allow for a higher-order saddle to be etedl Single poly-
nomial guides also cannot model piecewise constant datagfito such data
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typically leads to oscillations. Sampling is also fundamaéiy different from
blending. Blending typically creates features not preserither the guide or
the surrounding patch complex.

3 (C? concentric tesselation maps

Tesselation means covering without overlap. A concerggselation map (short:
ct-map) maps copies of asector domairt to an annulus in the plane:

p:Sx{l,...,n}—R?

so that scaled copies of this annulus join without overlafilk@ disk around
the origin. Moreover, the annulus parametrizations joirostnly. We explain
maps for three types of domak1 The structure of the first two will be familiar
to a reader who has seen Catmull-Clark and Loop’s subdivisite third, polar
structure, was introduced in [KPO6b]. Lietbe the unit square) the unit triangle
and

c:=cosa, «:=2m/n.

Figure 4: Thetop row shows tesselating annuli generated by ct-mapad \p.
The bottomrow showsS and S/2 used for the prolongatiop(S/2) := Ap(S).
(left) O-sprocket (Catmull-Clark subdivision) layoutniddle A-sprocket (Loop
subdivision) layout; fight) polar layout §/2 is interpreted as halving only the
vertical direction).

e The ct-mapp. is the characteristic map of Catmull-Clark subdivisiore(se
e.g. [PR98)). It maps copies of the domai := 200 — O ~ O x {1, 2, 3}
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(Figure 4,left botton) to an annulus (Figure 4eft top). The annulus is
bounded by spline curves joining with internal corners. If we fix scalin
and rotationp¢ is uniquely determined. The scale factois the subdomi-
nant eigenvalue of the Catmull-Clark subdivision:

A=Xc:=(c+5++(c+9)(c+1))/16.

It is the unique factor so thatc(2,L) := Apc(s,t) is aC? prolongation
of pc. () Here and in the following, we sayand \p join C?, although,

formally, we have to subdivigeonce to have matching derivatives.

The ct-mapp;,, shown in Figure 4top middlg, is the characteristic map of
Loop’s subdivision (see e.g. [UmI99]). It mapgopies ofS := 2A — A ~
A x {1,2,3} to an annulus bounded byspline curves joining with inter-
nal corners. If we fix scaling and rotatiopy, is uniquely determined. The
unigue scale factor, that allows? prolongation ofp; and thereby tesse-
lating the neighborhood of the origin, is the subdominagéevalue of the
Loop’s subdivision,

A= )\L = (3—|—2C)/8

For the third, the polar layout, we define two alternativenegtps. Both act
onS := ([0..2] x [1..2]) ~ O and yield an annulus bounded by a single
spline consisting of: smoothly joining pieces (Figure 4op right). Both
polar ct-maps are periodic strips of tensor-product splthat are linear in
the radial direction. A strip is defined by two B-spline cahtpolygons,
each withn control points uniformly distributed on the scaled unitctzr.
The points of the first ct-maypp,,, are interpreted as (the two coordinates of)
cubic B-spline coefficients, defining@? map of degree (3,1). The points
of the second ct-map,, are interpreted as uniform quadratic B-spline co-
efficients, making the map of degree (2,1) aritiand, due to symmetry,
G?. Both can alternatively be defined in Bézier form.

The Bézier control points of thgh segment op,, are defined by rotating a
template patch by i« about the origin. The template patch is of degree 3 in
‘circular’ and degree 1 in the ‘radial’ direction and its €fag@entsr; € R?,
k=0,1,2,3,7 = 0,1 are defined with the help of the reflectidt, across
the line through the origin andos §, sin 5| (cf. Figure 5 left).

1 COSQ] ,

—[1 o . o o _
Too - = [0] y 10 - = [ sin o ] , To0 = R0, 130 := RaToo = [sina

2+4cos o

Tkl - — )\Tk:O-



Figure 5: Bézier coefficients of one segment of two polames. left) The C?
ct-mapp, of degree (3,1).right) The G* ct-mapp, of degree (2,1).

By construction, the polynomial pieces gf join C2.
Similarly, the ct-map, has a template (see Figure Siight)

Too = [é] y T = |:tan(1a/2)} y  T20 = [gﬁfg] ) Ti1 = ATi.

For bothp = p, andp = p,, any choice o) < A < 1 will yield a C?
prolongation. The simplest choice= 1/2, is the default scaling factor.

In all cases, not only do the annuli, as set® tesselate the neighborhood

of the origin, butp and)p join smoothly. Internally, each ring i5? except for the
pieceSp; that join with curvature continuity as follows.

Lemma 1 The segments,,i = 0,...,n — 1 of p, areC' andG* connected:

2P0, 8) = 02k (1, 1) + kao0sp (1, 1), ky :=2cosa — 2.

We summarize the ct-maps and their properties in Table 1.

Table 1: Three®? and oneG? ct-map.

symbol | degree ) scale layout

pc (3,3) XM Catmull-Clark
PL 4 AL Loop

Pp 3,1) 1/2 polar

Py (2,1) 1/2 polar




4 Sampling operators

The sampling operatok (not yet H) for tensor-product patches determines a
tensor-product patch(f) in Bézier form, matching the derivatives of a given
map f defined ori] at the four corners, at least up to second order.

e The simplest operator;®® generates a patch of degrég5). For each
corner, it samples the partial derivatives, the (2,2)-fef,0

fooof O
Of Os0f 020 f,
Oif 00/ f 0:0:f

rerepresents them by isx 3 expansion in Bézier form. Together these
four groups of nine coefficients define the 36 coefficientsattlp of degree
(5,5) (Figure 6 left).
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Figure 6: (eft) Combining four (2,2)-jets in Bézier form into a segmeit of a
polynomial patch of degree (5,5)m({ddlg Averaging (3,3)-jets to define a patch
of degree (6,6).r{ght) Averaging (3,2)-jets to define a patch of degree (6,5).

Off hand, the guide must be at least? at the sample points for the tensor 2-
jet to be well-defined (see, however, generalization (tiha@ end of this paper).
For the specific construction, we guarantee well-definexinéthe tensor jet and
higher-order jets by making the rays that form the segmeun®aries of the ct-
map (see Figure 7) match the domain boundaries of the polah@meces of the
guide. While the operatak® approximates the geometry of the guide surface
well and suffices to create a sequence&8fjoined C? rings, we generally need
operators of slightly higher degree to cre@tesurfaces in the limit. In particular,
for Lemma 4, the operator has to reproduce certain polynsmia p of degree
(6,6) or total degree.
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Figure 7: Three types of ct-mapgc, pr, p,- In each case, the rays emanat-
ing from the center are aligned with the sector boundarigh@idomain of the
piecewise polynomial mag.

e The operatof%¢ samples partial derivatives up to third order, converts int
4 x 4 corner blocks of Bézier coefficients of degrée6) and averages
coefficients at overlapping positions, to form a patch ofrde¢s, 6) (Figure
6, middle.

e The operatoh% samples up to third order in one and up to second order in
the other direction and then averages overlapping entfithed x 3 corner
blocks to form a patch of degréé, 5) (cf. Figure 6right).

The operatorh® (not yet H) for polynomial pieces of total degree (triangular
patches) is as follows.

e The sampling operatai®, for patches of total degree eight, collects the
partial derivatives

(010! fo<ivjca, D207 f, 020 f,

and converts them into 17 Bézier coefficients filling a coroiethe coef-
ficient array of a polynomial of degreein Bézier form. As illustrated in

VAVAVAVANG

N—)

Figure 8: The operatdi® determines the Bézier points of the bold submesh. Three
such submeshes define a polynomial piece of degree 8. Paoissitions of
overlap,323, 332, 233, are averaged.



Figure 8, overlapping coefficients are averaged, and thpeeators define
a patch of degree 8.

5 Guided patchworks

We now define a guided ringy™ = H(f) wheref = g o \"'p, pis a ct-map and
g:R* =R (u,v)— (z,y, 2).

The contraction of the smoothly connected ri{g$’p},, is inherited by the se-

quence of compositionggo A\ p},, and the sample@? guided rings<™ will join

to form aC? (G?) surface inR? (cf. Remark ) Section 3). There are a number of

possible combinations df andp and we focus on presenting the cases that have

higher degree and consist of few polynomial pieces. Segtisimows alternatives
of lower-degree and more pieces.

5.1 Guided polar patchworks

We discuss two polar constructions. df= p, then H = 15%; if p = p, then
H = h5%.

Lemma 2 If p = p, then the segmentsg™ andx", join C2. If p = p, then the
segments?” andx!", join C* andG?. In both casesx™ andx™*! join C?.

Proof If p = p, theng o \™p is C* and adjacent segments; andx!",, andx}"
andx!"™! share the same second-order expansion where they jgin= If, then,
by Lemma 1pis C! and hence

9s(g 0 pi11)(0,t) = Os(g o pi")(1,1) .
Sincek, is a constant,
(g o N"p)(0,1) = 92(g o Xp")(1,1) + kaOs(g 0 A™p')(1,1) .

That is, circularly adjacent segments @b \™p are C' and G? connected. It
remains to show that this property is preservedthy Neighboring patches"
andx7}, match the expansion gfo A" p at the two endpoints, and the transversal
expansions have the same structure. Sinadoes not vary with,

0sxi11(0,t) = 0:x"(1,1)
0ixi31(0,1) = O5x" (1) + ka0ox" (1, 1).
The final claim follows since™p and\™*!p join C2. Il
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Figure 9: Sampling locations af(g o p) for p = p¢ (left), p,, (middle andp,, p,
(right).

5.2 Guided Catmull-Clark patchworks

Forp = pc andh = h%5, H samplego\™p at the corners of the three elementary
patches that make up eaé¢hshaped segment (Figure Igft). Arguments as in
Lemma 2 show that adjaceritshapes join to form &? ring. But, although
the actual difference is very small, adjacent rings are noiathly connected.
ThereforeH replaces the three outermost layers of Bézier coefficiepta C?
extension of the patck!" ' (once subdivided to match the granularity). For=

0, boundary data are extended. Figure 10 illustrates theitliguc steps.

5.3 Guided Loop patchworks

We explain the combination gf, andh? to create the operatdi that generates,
per sector, thre€?-joined triangular patches of total degr&eThe construction
is similar to the previous construction in that we need talg#h C? continuity

across interior boundaries, segment boundaries and ringdasies. We recall
that, if two polynomial piecep andp in triangular Bézier form join along an

Figure 10: Construction of Catmull-Clark guided rindeff) 1%% defines four
layers of control points along the inward corner edges oflped of degree (6,6).
(middlg The three outermost layers of a degree (6,6) patch, olatdopeampling
a bicubic extension of the previous layer (at the circlechfsin Figure 9left) are
subdivided to match the granularity of the points generbtet (right).

11



Figure 11: Indexing of three layers of Bézier coefficieittsj1 and k2 of two
(triangular) patchep andp of degrees that join along a common boundady —
—80 with indicesi0,7 =0, ...,8.

edgep,o = Pjo, 7 =0,...,8, then theC* andC? constraints respectively are

Pj1 = —Pj1 + Pjo + Pj+10, J=0,...,7 (1)
Pj2 = Pj2 — 2Pj1 — 2Pj+1,1 + Pjo + 2Pj+1,0 + Pj+2,0, (2)
= Pj1 — Pj1 + Dj+1,1 — Pj+1,15 Jj=0,...,6.

These rules can directly be applied to prolong the existatghpcomplexp to a
piecep of the ring (Figures 11 and 1&p right). Across all other ring boundaries,
segment boundaries and interior boundaries, imposingtheonstraints results
in an underconstrained problem since bp#ndp can be adjusted. The following
symmetric modificatiomp]™ andp;;" of coefficientsp;; andp;; initialized by h®
leavesp,, unchanged:

¢ = P40 — P20 5 _ ba— P21 5 _ P22~ P22 5= P32 + P32
= S E T S E T =
_Pao—Peo . _ P51 P51 .. P42~ P42
9 T 9 T 9
p§$w.—f>21+§+é Pii =DPs1+n+7, P o= (§+77)+5+777

. 3)
P = par + & — &, PIYY = ps1 + 1 — i, pQSW-—p+£+n (& + i)
(see Figure 11).

Application of the operatof! consists of four steps illustrated in Figure 12.
We label asA!”, B andC]" the polynomial pieces of degree 8 that make up a
sectorx}".
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Figure 12: Steps 1 — 4 of the operatiirgenerating three degre&epatches per
sector.

1. (Figure 12top lef): Apply the operatoh?® ata,b,... e.

2. (Figure 12top right): Across the ring boundarg"~! (A7, C),
if m = 0 use theC? rules (1) and (2) to extrapolate the existing patch com-
plex B; ' and obtain layers, 1 and2 of Bézier coefficients op across the
ring boundary  is not yet split into layers of\]*, B!, CI"),
if m > 0, apply the symmetric assignment of Equation (3) to obtae th
three layers of coefficients @' and the adjacent layers pf
Note that the innermost (topmost) layersigjf are generated in the subse-

guent iteration.

The layers ofp are split (by subdivision) to define layets 1, 2 of A"
and B™ and C™. In general, this changes tié data atb (at a« andc,
the coefficients remain identical to those of the local aggion ofk®). We
adjust the points labelefi;;» andBs,; in Figure 13 to restoré? continuity
along the interior edges emanating frém

B B B B
B = DTS g e SRSy
1 ~ _ - - ~ ~
k I:m(plo — Pro + 4(p20 - p60) + 5(p30 - p50)

+ Po1 — P71 + 5(P11 — Pe1) + (P21 — Ps1) + 5(Ps1 — Pa1)
+ Poz — Pe2 + 4(P12 — Ps2) + 5(Paz2 — f)42)) ;
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Figure 13: Additionalillustration of Step 2left) Extrapolated layers @ (cf. Fig-
ure 11). (ight) Modification of coefficients to satisfy the requirementd.emma
4 (cf. Figure 12top right).

and then recompute their neighbd&y’ and BLS) on the edges to enforce
theC" constraints.

3. (Figure 12pottom lef): Across the segment boundary”, A", apply the
symmetric assignment of Equation (3).

4. (Figure 12pottom righ): Across the interior boundary?* B! and across
B™ C™ apply the symmetric assignment of Equation (3).

Steps 3 and 4 ensure that each ridyy is C? and Step 2 insures that the rings
x™ andx™*! areC?-connected ana’ is C?-connected to the surrounding spline
surface.

6 Properties of Patchworks

A patchwork is the finite uniotJ,,, _,,,. .cz, Xi" of segments” as defined in the
previous section byp, h) and their correction byf. We summarize the results of
Section 5.

Lemma 3 (Second order continuity of patchworks) The patchworks defined by
any of (pc, h%°), (pr, h®) or (p,, h%®) and H are C?. The patchwork defined by
(pg, h™°) is curvature continuous.

To see how well the guided rings capture shape, we show thdeduings re-
produce compositions with quadratic guide surfaces. Debpg; ;. the homoge-
neous part of degrel of g;. That isg;.; is a linear combination of monomials
of total degreek in the expansion of théth segment ofg with respect to the
parametersu, v). Theng;..(\-) = A*g,;. and,

form >0, % = H(gs 0 \"p) = N H (g 0 p). (4)
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This yields the decompositiox{ is perturbed by the boundary data)

A= Dkxl (5)

.

*3
I

(]~

e
Il
o

Lemma 4 (Reproduction) For m > 0,

Xjo + X+ Xip = (80 + i1 +8i2) o A"p. (6)

Proof The patchwork is completely defined by the composiigon A\p. If
the degree ok} exceeds the degree gf ;. o \"'p, the latter is reproduced by
sampling. By definition, degreg , = k, and the degree qgf is one of(3, 3),
(3,1), (2,1) and 4, so that degré@; o + gi1 + 8i2) o \"p) = 2 degreép) <
degreéxy, + x7 + x7). I

By construction, the operatord generate rings™ of sufficient degree to
reproduceq)\”p whereq is any polynomial of degree 2. By assumption, the
guideg is twice continuously differentiable &b, 0) and sufficiently smooth at the
sampling sites. Together, this implies curvature contynod the infinite union of
guided rings.

Theorem 1 (Curvature continuous Guided Subdivision) The infinite union of
guided ringslJ,, < ;ez, Xi"> Of the four types listed in Lemma 3 formia surface.
The second-order expansion at the limit patfit matches that of.
Proof We define a new parametrizatigiiu, v) of x = Ux™ as

vt (u,v) =x"(s,t), (u,v):=N"p;(s,1),

wherei enumerates the sectors. Theis defined on a punctured disk surrounding
but excluding the origin. From decomposition (5)

d
y@'(U,U) = ZYi;k(ua U) ) (7)
k=0

where the functiong,.; satisfy
yi;k’()\uy )\U) = )\kyi;k’(uv 'U) . (8)
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Due to C? continuity of the guide, the second order expansions of sactor,
gio + gi1 + g2, are part of a single quadratic polynomial

2 2
q(u,v) = ag + aju + axv + azu” + aguv + asv”,

and, by Lemma 4, the decomposition (7) has the form

d

vi(u,v) = q;(u,v) + Zyi;k(u, v) . (9)

k=3

whereq; is the restriction oty to the domain ofy;. Differentiating (8), we get
8305y2-;k()\u, ) = )\k_o‘_ﬁﬁﬁ‘ﬁfyi;k(u, v), a+p3<3,k>3. (20)

Then (9) and (8) imply that the ringg™ contract to a central poig(0,0) = a,
of the guide surface. Setting(0,0) := a,, makes the parametrization(u, v)
continuous at the origin. By (9) and (10) the derivatives ¢, v) up to order2
have well-defined limits af0, 0) and these coincide with the quadratic expansion
q(u,v) of g. 1]

The parametrizatioly was pointed out in [Pra98] and the final argument is
adapted from [WWO02]. The parametrizatignshows in particular that surfaces
based o, areC? at the extraordinary point from the point of view of diffetin
geometry.

Guided surfaces withil-sprocket layout match the lower bound on the de-
gree of curvature continuous subdivision surfaces [Rei@6fvature continuous
guided polar subdivision surfaces of deg(ée5) do not contradict this bound
since the patch layout is different from the one assumed @9&. Section 7
shows that the polar layout allows reducing the radial de¢p& and, replacing
C? continuity by geometrici? continuity, degred suffices in the circular direc-
tion. This yields curvature continuous guided surfacesegirde (4,3).

6.1 Efficient computation of polynomially guided rings

Consecutive guided rings can be computed efficiently andemigadly stably by
precalculated formulas if the guide is piecewise polyndmia

Observation 1 (Stationary rules) If the guide is (piecewise) polynomial then the
construction of the contracting guided patchwork ringstatisnary.
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Figure 14: Hermite data merged to define macropatches ofedef)) and
smoothnesg*~ 1=, Formulas a) through d) define the unknown Bézier coeffi-
cients pollow circleg in terms of given coefficients6lid black disks Formulas

a) and b) define Bézier coefficients of'4 cubic spline. Formulas c) and d) define
Beézier coefficients of & spline of degree 4.

Proof Computing the restriction
gi(\)=A - R

of g; to AA involves only convex combinations since the Bézier poirfitg piece
of the patch are convex combinations of the Bézier coeffisi®f the complete
patch. This computation is numerically stable and the rigledeterminingg(A™!)
from g(A\™-) are the same as for determinigg\-) from g. Givenf := g(\™-),
the rules for determining/ (f o p) do not change with. I
We also note that Guided Subdivision has a fast evaluatgoritthm based on the
subdivision (4) and superposition (5) of eigenfunctions.

7 Spline-reduced low-degree sampling operators

Careful analysis shows that the degree of the patch€$ olar construction can
be reduced to (6,4) and that of ti& construction to (4,4). However, we can
reduce the degree of the sampled patches even further bgiolgabas a spline
rather than as a single polynomial and Lemma 3, Lemma 4, @étsen 1 and
hence Theorem 1 continue to hold. Figure 14 shows severainspfor polar
operators that can be used wjth and p,, respectively. For example, position,
first and second derivative at the ends, define a unigtispline consisting of
three cubic segments (Formulas for Bézier coefficientgaen in a) and b)).
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e Applying this procedure t&% yields, for exampleh®(f) consisting of
threeC? connected patches of degree (6,3) as shown in Figure 14 (6,3)

Instead of splitting the patch into three, a more complexyamshows that two
pieces suffice. Alternatively, we can constructaspline consisting of two degree
4 pieces by the formulas c) and d).

e Applying this procedure in one and the previous procedutéerother di-
rection toh® yields a Hermite interpolant®? consisting of sixC? con-
nected patches of degrég 3) as shown in Figure 14 (4,3).

These lower-degree operators generate very similar sgfacthose in Sec-
tion 4.

8 Generalizations

The practicality and good shape of the specific construstafrthis paper have
been verified by implementation (see e.g. Figure 15). Oveida wange of in-
put data, guided rings consistently introduced fewer slaaokecurvature artifacts
than an equal number of conventional, mesh-based sulmiveseps. The imple-
mented constructions presented in this paper are, howavgra small sample of
many options, and, the reader may already have thought alztarisions, modi-
fications and generalizations for specific applicationsteHee list a few that we
have explored or considered over the last years.

(a) Higher smoothness requires higher-order ct-maps ayfehiorder sampling.
(b) Some other form of (quasi-)interpolation can replaaejét-sampling of the
operatorH. In particular,

(c) the proof of Theorem 1 points to the fact that guides nesdbeC? except for
a common quadratic jet (common expansion) at the centrat gcfi. [KMPO0G6]).
The operatoi/ needs only suitably average thesampled data to guarantee that
the guided rings ar€?. We found that piecewise polynomial' guides with a
straightforward averaging strategy are a viable option.

(d) If we consider a sequence of guide surfaces, it is suffi¢@have the devia-
tions from a single quadratic jet of the possibly differemmtal jets of each sector
vanish sufficiently fast.

(e) Observation 1 hints that the operatércan be replaced by mapping the jets
directly to jets of the next refinement step [KMPO06].

(f) By varying the common quadratic jet with each refineméepswe can create
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a polarC? subdivision scheme of degree (6,4) that refines a controSiete the
rules are derived from guided subdivision, they involve ¢inéire control net of
the previous iteration.

(g) Bothp and H can vary withm and even.

(h) Rational guides and? patchworks can be constructed by applying the ap-
proach in homogeneous space. Lemma 4 then implies thatajiasurfaces, for
example spheres, can be reproduced.

(i) The guide principle can be applied to other box splines.

() We have used guided rings with good results to transtianfinite, low-degree
piecewise polynomial cap for many-sided surface gaps.

Acknowledgement his work was supported by NSF Grant CCF-0430891 and
DMI-0400214.
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Figure 15: Partial gallery of test shapesop) Input rings (outer surface rings,
green and guides (inner surface piecesx) ; (bottorm) guided surfaces: froneft
to right: construction of typél-sprocket (Catmull-Clarkjpc, h%%), A-sprocket
(Loop) (pr, h®), C? polar (p,, h%°) andG? polar (p,, h>?).
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