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Abstract

A multi-sided hole in a surface can be filled by a sequence of nested,
smoothly joined surface rings. We show how to generate such asequence so
that (i) the resulting surface isC2 (also in the limit), (ii) the rings consist of
standard splines of moderate degree and (iii) the hole filling closely follows
the shape of and replaces a guide surface whose good shape is desirable, but
whose representation is undesirable.

To preserve the shape, the guided rings sample position and higher-order
derivatives of the guide surface at parameters defined and weighted by a con-
centric tesselating map. Aconcentric tesselating mapmaps the domains of
n patches to an annulus inR2 that joins smoothly with aλ-scaled copy of
itself, 0 < λ < 1. The union ofλm-scaled copies parametrizes a neighbor-
hood of the origin and the map thereby relates the domains of the surface
rings to that of the guide.

The approach applies to and is implemented for a variety of splines and
layouts including the three-direction box spline (with∆-sprocket, e.g. Loop
layout, at extraordinary points), tensor-product splines(�-sprocket layout,
e.g. Catmull-Clark), and polar layout. For different patchtypes and layout,
the approach results in curvature continuous surfaces of degree less or equal
8, less or equal to (6,6), and as low as (4,3) if we allow geometric continuity.

1 Introduction and Motivation

A guided surface ringis a low-degree, piecewise polynomial or rational spline
approximation to a ring-shaped region of an existing surface piece, calledguide
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Figure 1: (left) Guide surface approximately capping a cylindrical body; (middle)
color-coded sequence of guided rings and (right) uniformly shaded surface.

in the following. The guided rings are constructed to replace a guide that does not
fit functional requirements or the requirements of a geometry processing pipeline.
For example as illustrated in Figure 1,left, the guide may not exactly match the
boundary data but overlaps or leaves gaps; or, the guide is oftoo high a degree or
has an otherwise undesirable representation. The guide is replaced by a sequence
of nested, smoothly joined surface rings in standard, say low-degree polynomial
representation as in Figure 2.

Figure 2: (left) Two sequences of guided
rings, and (right) the resulting surfaces.

The specific approach, detailed
in this paper, is to generate guided
rings xm by applying an operator
H that samples position and higher-
order derivatives of a guide sur-
face g at parameters defined and
weighted byλm-scaled copies of a
concentric tesselation map (short:
ct-map) ρ:

xm := H(g ◦ λmρ).

The ct-map maps the domains ofn
patches to an annulus inR2 so that
the annulus and itsλ-scaled copy,
for some fixed0 < λ < 1, join
smoothly and without overlap; and
their union covers and parameter-
izes a disk around the origin (Fig-
ure 4,top). This disk relates the do-
main of the surface rings to that of
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the guide. The ct-map is crucial to orient and scale higher-order derivatives taken
off the guide surface. The operatorH samples the guide surface and assures that
consecutive ringsxm,xm+1 join smoothly (Figure 2). The outermost ring,x0,
smoothly joins the multi-sided boundary data.

The ringed structure of the surface yields a recurrence similar to standard sub-
division. In Section 6, we show that the finite union of guidedrings is aC2

surface that reproduces quadratic components of the guide and that the infinite
union is alsoC2. An analysis of related useful, curvature bounded schemes and
non-stationaryC2 schemes of lower degree will appear in [KP06a].

The choice of guide surface is important and, by definition, determines the
shape of the guided rings. Only if the guide surface is properly fitted to the bound-
ary data do the guided rings blend the existing multi-sided boundary data with the
central guide without introducing new shape. Figure 3 illustrates how low-degree
polynomials fail as a guides for higher-order saddles. Overthe last four years,

Figure 3: Choosing a good guide surface. Two different guides (8-sided inner
pieces,red) are obtained by least-squares fitting to the same tensor-product spline
data (outer ring,green). The guides are trimmed along the boundary of the ct-
mapρC (see Section 5.2). (top row) Guide of degree three. (bottom row) Guide
of piecewisedegree five. (right column) GuidedC2 surfaces based on the guides
on the left. Note the extra oscillations in the middle (grey) ring of thetop surface
based on the guide of degree three.

we developed and compared a number of high-quality guides, both high-degree
rational [KP04] and piecewise polynomial. Since many otherguide surfaces are
possible, and a recommendation should be based on a thoroughdefinition and
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discussion of ‘surface fairness’ and a comprehensive comparison on standard test
cases, we do not discuss guide constructions in detail but only assume that the
guide is non-singular, at least twice continuously differentiable (see however (iii)
in Section 8) and that its derivatives can be sampled up to therequired order.

To recap, the two main reasons to generate guided rings are:
• to obtain a smooth, low-degree standard (piecewise polynomial) representation;
• to capture the shape of a complex guide surface.

Section 3 defines several ct-mapsρ. Section 4 defines the operatorh that is
modified toH in Section 5 to assemble the piecesxm

i into guided rings{xm}
of a C2 guided patchwork. Section 6 summarizes the continuity and shape re-
production properties of the patchworks and their limit, and points out how the
rings are efficiently computed. Section 7 shows how the polynomial degree of
polar rings can be lowered and Section 8 points out a number ofmodifications
and generalizations of the approach explained in this paper.

2 Background

The main ingredients of guided ring-construction are composition and sampling
((quasi-)interpolation). No list of references would do justice to such fundamental
techniques. Here, we focus on papers that influenced and informed the particu-
lar approach. First there are constructions like [KP04] that provide good shape
for multi-sided surface patches but are of high rational degree. Then there is the
observation that standard, mesh-based subdivision constructions offer low degree
but yield potentially bad shape [KPR04], especially when the intent is to model
convex surfaces. Thirdly, the analysis of subdivision surface motivates guided
ring-constructions by its characterization of subdivision surfaces as a sequence of
nested spline rings converging to an extraordinary point (see e.g. [Rei95]). If the
guide surface,g : R

2 → R
3 were a single, not a piecewise polynomial andH ex-

actly reproduced the compositiong◦λmρ then the guided ring-construction would
reduce to the approach in [Pra97, Rei98]. However, in guidedring-construction,
the composition of guide and the ct-map is not used directly but sampled. That
makes a difference since it allows to capture shape well, forexample with high-
degree piecewise polynomial maps, and still arrive at a low-degree representation
– by leveraging standard spline theory. Low-degree (piecewise) polynomial map-
pings are known to create surfaces with curvature flaws. For example, a quadratic
polynomial does not allow for a higher-order saddle to be modeled. Single poly-
nomial guides also cannot model piecewise constant data; fitting to such data
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typically leads to oscillations. Sampling is also fundamentally different from
blending. Blending typically creates features not presentin either the guide or
the surrounding patch complex.

3 C2 concentric tesselation maps

Tesselation means covering without overlap. A concentric tesselation map (short:
ct-map) mapsn copies of asector domainS to an annulus in the plane:

ρ : S × {1, . . . , n} → R
2,

so that scaled copies of this annulus join without overlap tofill a disk around
the origin. Moreover, the annulus parametrizations join smoothly. We explain
maps for three types of domainS. The structure of the first two will be familiar
to a reader who has seen Catmull-Clark and Loop’s subdivision. The third, polar
structure, was introduced in [KP06b]. Let� be the unit square,∆ the unit triangle
and

c := cos α, α := 2π/n.

Figure 4: Thetop row shows tesselating annuli generated by ct-mapsρ andλρ.
The bottomrow showsS andS/2 used for the prolongationρ(S/2) := λρ(S).
(left) �-sprocket (Catmull-Clark subdivision) layout; (middle) △-sprocket (Loop
subdivision) layout; (right) polar layout (S/2 is interpreted as halving only the
vertical direction).

• The ct-mapρC is the characteristic map of Catmull-Clark subdivision (see
e.g. [PR98]). It mapsn copies of the domainS := 2�−� ≃ �×{1, 2, 3}
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(Figure 4, left bottom) to an annulus (Figure 4,left top). The annulus is
bounded byn spline curves joining with internal corners. If we fix scaling
and rotation,ρC is uniquely determined. The scale factorλ is the subdomi-
nant eigenvalue of the Catmull-Clark subdivision:

λ = λC := (c + 5 +
√

(c + 9)(c + 1))/16.

It is the unique factor so thatρC( s
2
, t

2
) := λρC(s, t) is a C2 prolongation

of ρC . (∗) Here and in the following, we sayρ andλρ join C2, although,
formally, we have to subdivideρ once to have matching derivatives.

• The ct-mapρL, shown in Figure 4,top middle), is the characteristic map of
Loop’s subdivision (see e.g. [Uml99]). It mapsn copies ofS := 2∆−∆ ≃
∆ × {1, 2, 3} to an annulus bounded byn spline curves joining with inter-
nal corners. If we fix scaling and rotation,ρL is uniquely determined. The
unique scale factor, that allowsC2 prolongation ofρL and thereby tesse-
lating the neighborhood of the origin, is the subdominant eigenvalue of the
Loop’s subdivision,

λ = λL := (3 + 2c)/8.

• For the third, the polar layout, we define two alternative ct-maps. Both act
on S := ([0..2] × [1..2]) ≃ � and yield an annulus bounded by a single
spline consisting ofn smoothly joining pieces (Figure 4,top right). Both
polar ct-maps are periodic strips of tensor-product splines that are linear in
the radial direction. A strip is defined by two B-spline control polygons,
each withn control points uniformly distributed on the scaled unit circle.
The points of the first ct-map,ρp, are interpreted as (the two coordinates of)
cubic B-spline coefficients, defining aC2 map of degree (3,1). The points
of the second ct-map,ρg, are interpreted as uniform quadratic B-spline co-
efficients, making the map of degree (2,1) andC1 and, due to symmetry,
G2. Both can alternatively be defined in Bézier form.

The Bézier control points of theith segment ofρp are defined by rotating a
template patchr by iα about the origin. The template patch is of degree 3 in
‘circular’ and degree 1 in the ‘radial’ direction and its coefficientsrkj ∈ R

2,
k = 0, 1, 2, 3, j = 0, 1 are defined with the help of the reflectionRα across
the line through the origin and[cos α

2
, sin α

2
] (cf. Figure 5,left):

r00 := [ 1
0 ] , r10 :=

[

1
sin α

2+cos α

]

, r20 := Rαr10, r30 := Rαr00 = [ cos α
sin α ] ,

rk1 := λrk0.

6



30
20

20
10

10

0000

31 21
21 11

11
0101

Figure 5: Bézier coefficients of one segment of two polar ct-maps. (left) TheC2

ct-mapρp of degree (3,1). (right) TheG2 ct-mapρg of degree (2,1).

By construction, the polynomial pieces ofρp join C2.

Similarly, the ct-mapρg has a templater (see Figure 5,right)

r00 := [ 1
0 ] , r10 :=

[

1
tan(α/2)

]

, r20 = [ cos α
sinα ] , ri1 = λri0.

For bothρ = ρp andρ = ρg, any choice of0 < λ < 1 will yield a C2

prolongation. The simplest choice,λ = 1/2, is the default scaling factor.

In all cases, not only do the annuli, as sets inR
2, tesselate the neighborhood

of the origin, butρ andλρ join smoothly. Internally, each ring isC2 except for the
piecesρi

g that join with curvature continuity as follows.

Lemma 1 The segmentsρi
g, i = 0, . . . , n − 1 of ρg areC1 andG2 connected:

∂2
sρ

i+1
g (0, t) = ∂2

sρ
i
g(1, t) + k2∂sρ

i
g(1, t), k2 := 2 cos α − 2.

We summarize the ct-maps and their properties in Table 1.

Table 1: ThreeC2 and oneG2 ct-map.
symbol degree λ scale layout
ρC (3,3) λC Catmull-Clark
ρL 4 λL Loop
ρp (3,1) 1/2 polar
ρg (2,1) 1/2 polar
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4 Sampling operators

The sampling operatorh (not yet H) for tensor-product patches determines a
tensor-product patchh(f) in Bézier form, matching the derivatives of a given
mapf defined on� at the four corners, at least up to second order.

• The simplest operator,h55 generates a patch of degree(5, 5). For each
corner, it samples the partial derivatives, the (2,2)-jet of f ,

f ∂sf ∂2
sf

∂tf ∂s∂tf ∂2
s∂tf

∂2
t f ∂s∂

2
t f ∂2

s∂
2
t f

,

rerepresents them by its3 × 3 expansion in Bézier form. Together these
four groups of nine coefficients define the 36 coefficients of patch of degree
(5, 5) (Figure 6,left).

Figure 6: (left) Combining four (2,2)-jets in Bézier form into a segmentxm
j of a

polynomial patch of degree (5,5). (middle) Averaging (3,3)-jets to define a patch
of degree (6,6). (right) Averaging (3,2)-jets to define a patch of degree (6,5).

Off hand, the guide must be at leastC2,2 at the sample points for the tensor 2-
jet to be well-defined (see, however, generalization (iii) at the end of this paper).
For the specific construction, we guarantee well-definedness of the tensor jet and
higher-order jets by making the rays that form the segment boundaries of the ct-
map (see Figure 7) match the domain boundaries of the polynomial pieces of the
guide. While the operatorh55 approximates the geometry of the guide surface
well and suffices to create a sequence ofC2 joinedC2 rings, we generally need
operators of slightly higher degree to createC2 surfaces in the limit. In particular,
for Lemma 4, the operator has to reproduce certain polynomials q ◦ ρ of degree
(6, 6) or total degree8.
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Figure 7: Three types of ct-maps:ρC , ρL, ρp. In each case, the rays emanat-
ing from the center are aligned with the sector boundaries ofthe domain of the
piecewise polynomial mapg.

• The operatorh66 samples partial derivatives up to third order, converts into
4 × 4 corner blocks of Bézier coefficients of degree(6, 6) and averages
coefficients at overlapping positions, to form a patch of degree(6, 6) (Figure
6, middle).

• The operatorh65 samples up to third order in one and up to second order in
the other direction and then averages overlapping entries of the4×3 corner
blocks to form a patch of degree(6, 5) (cf. Figure 6,right).

The operatorh8 (not yet H) for polynomial pieces of total degree (triangular
patches) is as follows.

• The sampling operatorh8, for patches of total degree eight, collects the
partial derivatives

(∂i
s∂

j
t f)0≤i+j≤4, ∂

3
s∂

2
t f, ∂3

s∂
2
t f,

and converts them into 17 Bézier coefficients filling a corner of the coef-
ficient array of a polynomial of degree8 in Bézier form. As illustrated in

332

323

Figure 8: The operatorh8 determines the Bézier points of the bold submesh. Three
such submeshes define a polynomial piece of degree 8. Points in positions of
overlap,323, 332, 233, are averaged.
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Figure 8, overlapping coefficients are averaged, and three operators define
a patch of degree 8.

5 Guided patchworks

We now define a guided ring,xm = H(f) wheref = g ◦ λmρ, ρ is a ct-map and

g : R
2 → R

3, (u, v) 7→ (x, y, z).

The contraction of the smoothly connected rings{λmρ}m is inherited by the se-
quence of compositions{g◦λmρ}m and the sampledC2 guided ringsxm will join
to form aC2 (G2) surface inR3 (cf. Remark (∗) Section 3). There are a number of
possible combinations ofh andρ and we focus on presenting the cases that have
higher degree and consist of few polynomial pieces. Section7 shows alternatives
of lower-degree and more pieces.

5.1 Guided polar patchworks

We discuss two polar constructions. Ifρ = ρp thenH = h6,5; if ρ = ρg then
H = h5,5.

Lemma 2 If ρ = ρp then the segmentsxm
i andxm

i+1 join C2. If ρ = ρg then the
segmentsxm

i andxm
i+1 join C1 andG2. In both cases,xm andxm+1 join C2.

Proof If ρ = ρp theng ◦ λmρ is C2 and adjacent segments,xm
i andxm

i+1, andxm
i

andxm+1
i share the same second-order expansion where they join. Ifρ = ρg then,

by Lemma 1,ρ is C1 and hence

∂s(g ◦ ρm
i+1)(0, t) = ∂s(g ◦ ρm

i )(1, t) .

Sincek2 is a constant,

∂2
s (g ◦ λmρi+1)(0, t) = ∂2

s (g ◦ λmρi)(1, t) + k2∂s(g ◦ λmρi)(1, t) .

That is, circularly adjacent segments ofg ◦ λmρ areC1 andG2 connected. It
remains to show that this property is preserved byH. Neighboring patchesxm

i

andxm
i+1 match the expansion ofg ◦λmρ at the two endpoints, and the transversal

expansions have the same structure. Sincek2 does not vary witht,

∂sx
m
i+1(0, t) = ∂sx

m
i (1, t) ,

∂2
sx

m
i+1(0, t) = ∂2

sx
m
i (1, t) + k2∂sx

m
i (1, t).

The final claim follows sinceλmρ andλm+1ρ join C2. |||
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Figure 9: Sampling locations ofh(g ◦ ρ) for ρ = ρC (left), ρL (middle) andρp, ρg

(right).

5.2 Guided Catmull-Clark patchworks

Forρ = ρC andh = h6,6, H samplesg◦λmρ at the corners of the three elementary
patches that make up eachL-shaped segment (Figure 9,left). Arguments as in
Lemma 2 show that adjacentL-shapes join to form aC2 ring. But, although
the actual difference is very small, adjacent rings are not smoothly connected.
ThereforeH replaces the three outermost layers of Bézier coefficientsby a C2

extension of the patchxm−1
i (once subdivided to match the granularity). Form =

0, boundary data are extended. Figure 10 illustrates the algorithmic steps.

5.3 Guided Loop patchworks

We explain the combination ofρL andh8 to create the operatorH that generates,
per sector, threeC2-joined triangular patches of total degree8. The construction
is similar to the previous construction in that we need to establishC2 continuity
across interior boundaries, segment boundaries and ring boundaries. We recall
that, if two polynomial piecesp and p̃ in triangular Bézier form join along an

Figure 10: Construction of Catmull-Clark guided ring: (left) h6,6 defines four
layers of control points along the inward corner edges of patches of degree (6,6).
(middle) The three outermost layers of a degree (6,6) patch, obtained by sampling
a bicubic extension of the previous layer (at the circled points in Figure 9,left) are
subdivided to match the granularity of the points generatedby h6,6 (right).
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Figure 11: Indexing of three layers of Bézier coefficientsi0, j1 andk2 of two
(triangular) patchesp andp̃ of degree8 that join along a common boundary00−
−80 with indicesi0, i = 0, . . . , 8.

edgepj0 = p̃j0, j = 0, . . . , 8, then theC1 andC2 constraints respectively are

p̃j1 = −pj1 + pj0 + pj+1,0, j = 0, . . . , 7 (1)

p̃j2 = pj2 − 2pj1 − 2pj+1,1 + pj0 + 2pj+1,0 + pj+2,0, (2)

= p̃j1 − pj1 + p̃j+1,1 − pj+1,1, j = 0, . . . , 6.

These rules can directly be applied to prolong the existing patch complexp to a
piecep̃ of the ring (Figures 11 and 12,top right). Across all other ring boundaries,
segment boundaries and interior boundaries, imposing theC2 constraints results
in an underconstrained problem since bothp andp̃ can be adjusted. The following
symmetric modificationpnew

ij andp̃new
ij of coefficientspij andp̃ij initialized byh8

leavesp40 unchanged:

ξ :=
p40 − p20

2
, ξ̇ :=

p21 − p̃21

2
, ξ̈ :=

p22 − p̃22

2
, p̄ :=

p32 + p̃32

2
,

η :=
p40 − p60

2
, η̇ :=

p51 − p̃51

2
, η̈ :=

p42 − p̃42

2
.

pnew
31 := p̃21 + ξ + ξ̈, pnew

41 := p̃51 + η + η̈, pnew
32 := p̄ − (ξ̇ + η̇) + ξ̈ + η̈;

p̃new
31 := p21 + ξ − ξ̈, p̃new

41 := p51 + η − η̈, p̃new
32 := p̄ + ξ̇ + η̇ − (ξ̈ + η̈)

(3)

(see Figure 11).
Application of the operatorH consists of four steps illustrated in Figure 12.

We label asAm
i , Bm

i andCm
i the polynomial pieces of degree 8 that make up a

sectorxm
i .
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a b c
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Figure 12: Steps 1 – 4 of the operatorH generating three degree8 patches per
sector.

1. (Figure 12,top left): Apply the operatorh8 ata,b,. . . ,e.

2. (Figure 12,top right): Across the ring boundaryBm−1
i (Am

i , Cm
i ),

if m = 0 use theC2 rules (1) and (2) to extrapolate the existing patch com-
plexB−1

i and obtain layers0, 1 and2 of Bézier coefficients of̃p across the
ring boundary (̃p is not yet split into layers ofAm

i , Bm
i , Cm

i );
if m > 0, apply the symmetric assignment of Equation (3) to obtain the
three layers of coefficients ofBm−1

i and the adjacent layers ofp̃.
Note that the innermost (topmost) layers ofBm

i are generated in the subse-
quent iteration.

The layers of̃p are split (by subdivision) to define layers0, 1, 2 of Am
i

and Bm
i and Cm

i . In general, this changes theh8 data atb (at a and c,
the coefficients remain identical to those of the local application ofh8). We
adjust the points labeledB512 andB521 in Figure 13 to restoreC2 continuity
along the interior edges emanating fromb

Bnew
512 :=

B512 + B521

2
+ k, Bnew

521 :=
B512 + B521

2
− k,

k :=
1

512

(

p̃10 − p̃70 + 4(p̃20 − p̃60) + 5(p̃30 − p̃50)

+ p̃01 − p̃71 + 5(p̃11 − p̃61) + 9(p̃21 − p̃51) + 5(p̃31 − p̃41)

+ p̃02 − p̃62 + 4(p̃12 − p̃52) + 5(p̃22 − p̃42)
)

,
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02 22 62
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B512 B521

Figure 13: Additional illustration of Step 2. (left) Extrapolated layers of̃p (cf. Fig-
ure 11). (right) Modification of coefficients to satisfy the requirements ofLemma
4 (cf. Figure 12,top right).

and then recompute their neighborsBnew
503 andBnew

530 on the edges to enforce
theC1 constraints.

3. (Figure 12,bottom left): Across the segment boundaryCm
i−1 Am

i , apply the
symmetric assignment of Equation (3).

4. (Figure 12,bottom right): Across the interior boundaryAm
i Bm

i and across
Bm

i Cm
i apply the symmetric assignment of Equation (3).

Steps 3 and 4 ensure that each ringxm is C2 and Step 2 insures that the rings
xm andxm+1 areC2-connected andx0 is C2-connected to the surrounding spline
surface.

6 Properties of Patchworks

A patchwork is the finite union
⋃

m<m0,i∈Zn

xm
i of segmentsxm

i as defined in the
previous section by(ρ, h) and their correction byH. We summarize the results of
Section 5.

Lemma 3 (Second order continuity of patchworks) The patchworks defined by
any of(ρC , h6,6), (ρL, h8) or (ρp, h

6,5) andH are C2. The patchwork defined by
(ρg, h

5,5) is curvature continuous.

To see how well the guided rings capture shape, we show that guided rings re-
produce compositions with quadratic guide surfaces. Denote bygi;k the homoge-
neous part of degreek of gi. That isgi;k is a linear combination of monomials
of total degreek in the expansion of theith segment ofg with respect to the
parameters(u, v). Thengi;k(λ·) = λkgi;k and,

for m > 0, xm
i;k = H(gi;k ◦ λmρ) = λmkH(gi;k ◦ ρ). (4)
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This yields the decomposition (x0 is perturbed by the boundary data)

xm
i =

d
∑

k=0

λ(m−1)kx1
i;k . (5)

Lemma 4 (Reproduction) For m > 0,

xm
i;0 + xm

i;1 + xm
i;2 = (gi,0 + gi,1 + gi,2) ◦ λmρ . (6)

Proof The patchwork is completely defined by the compositiong ◦ λρ. If
the degree ofxm

i;k exceeds the degree ofgi,k ◦ λmρ, the latter is reproduced by
sampling. By definition, degreegi,k = k, and the degree ofρ is one of(3, 3),
(3, 1), (2, 1) and 4, so that degree((gi,0 + gi,1 + gi,2) ◦ λmρ) = 2 degree(ρ) ≤
degree(xm

i;0 + xm
i;1 + xm

i;2). |||
By construction, the operatorsH generate ringsxm of sufficient degree to

reproduceqλmρ whereq is any polynomial of degree 2. By assumption, the
guideg is twice continuously differentiable at(0, 0) and sufficiently smooth at the
sampling sites. Together, this implies curvature continuity of the infinite union of
guided rings.

Theorem 1 (Curvature continuous Guided Subdivision)The infinite union of
guided rings,

⋃

m∈N,i∈Zn

xm
i , of the four types listed in Lemma 3 form aC2 surface.

The second-order expansion at the limit pointx∞
i matches that ofg.

Proof We define a new parametrizationy(u, v) of x = ∪xm as

ym
i (u, v) := xm

i (s, t), (u, v) := λmρi(s, t),

wherei enumerates the sectors. Theny is defined on a punctured disk surrounding
but excluding the origin. From decomposition (5)

yi(u, v) =

d
∑

k=0

yi;k(u, v) , (7)

where the functionsyi;k satisfy

yi;k(λu, λv) = λkyi;k(u, v) . (8)
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Due toC2 continuity of the guide, the second order expansions of eachsector,
gi,0 + gi,1 + gi,2, are part of a single quadratic polynomial

q(u, v) = a0 + a1u + a2v + a3u
2 + a4uv + a5v

2,

and, by Lemma 4, the decomposition (7) has the form

yi(u, v) = qi(u, v) +
d

∑

k=3

yi;k(u, v) . (9)

whereqi is the restriction ofq to the domain ofyi. Differentiating (8), we get

∂α
u ∂β

v yi;k(λu, λv) = λk−α−β∂α
u ∂β

v yi;k(u, v) , α + β < 3 , k ≥ 3 . (10)

Then (9) and (8) imply that the ringsxm contract to a central pointg(0, 0) = a0

of the guide surface. Settingy(0, 0) := a0, makes the parametrizationy(u, v)
continuous at the origin. By (9) and (10) the derivatives ofy(u, v) up to order2
have well-defined limits at(0, 0) and these coincide with the quadratic expansion
q(u, v) of g. |||

The parametrizationy was pointed out in [Pra98] and the final argument is
adapted from [WW02]. The parametrizationy shows in particular that surfaces
based onρg areC2 at the extraordinary point from the point of view of differential
geometry.

Guided surfaces with�-sprocket layout match the lower bound on the de-
gree of curvature continuous subdivision surfaces [Rei96]. Curvature continuous
guided polar subdivision surfaces of degree(5, 5) do not contradict this bound
since the patch layout is different from the one assumed in [Rei96]. Section 7
shows that the polar layout allows reducing the radial degree to3 and, replacing
C2 continuity by geometricG2 continuity, degree4 suffices in the circular direc-
tion. This yields curvature continuous guided surfaces of degree (4,3).

6.1 Efficient computation of polynomially guided rings

Consecutive guided rings can be computed efficiently and numerically stably by
precalculated formulas if the guide is piecewise polynomial.

Observation 1 (Stationary rules) If the guide is (piecewise) polynomial then the
construction of the contracting guided patchwork rings is stationary.
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Figure 14: Hermite data merged to define macropatches of degree (i,j) and
smoothnessCi−1,j−1. Formulas a) through d) define the unknown Bézier coeffi-
cients (hollow circles) in terms of given coefficients (solid black disks). Formulas
a) and b) define Bézier coefficients of aC2 cubic spline. Formulas c) and d) define
Bézier coefficients of aC3 spline of degree 4.

Proof Computing the restriction

gi(λ·) := ∆ → R
3

of gi to λ∆ involves only convex combinations since the Bézier pointsof a piece
of the patch are convex combinations of the Bézier coefficients of the complete
patch. This computation is numerically stable and the rulesfor determiningg(λm+1·)
from g(λm·) are the same as for determiningg(λ·) from g. Givenf := g(λm·),
the rules for determiningH(f ◦ ρ) do not change withm. |||
We also note that Guided Subdivision has a fast evaluation algorithm based on the
subdivision (4) and superposition (5) of eigenfunctions.

7 Spline-reduced low-degree sampling operators

Careful analysis shows that the degree of the patches inC2 polar construction can
be reduced to (6,4) and that of theG2 construction to (4,4). However, we can
reduce the degree of the sampled patches even further by choosing it as a spline
rather than as a single polynomial and Lemma 3, Lemma 4, Observation 1 and
hence Theorem 1 continue to hold. Figure 14 shows several options for polar
operators that can be used withρp andρg, respectively. For example, position,
first and second derivative at the ends, define a uniqueC2 spline consisting of
three cubic segments (Formulas for Bézier coefficients aregiven in a) and b)).
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• Applying this procedure toh65 yields, for example,h63(f) consisting of
threeC2 connected patches of degree (6,3) as shown in Figure 14 (6,3).

Instead of splitting the patch into three, a more complex analysis shows that two
pieces suffice. Alternatively, we can construct aC3 spline consisting of two degree
4 pieces by the formulas c) and d).

• Applying this procedure in one and the previous procedure inthe other di-
rection toh55 yields a Hermite interpolanth43 consisting of sixC2 con-
nected patches of degree(4, 3) as shown in Figure 14 (4,3).

These lower-degree operators generate very similar surfaces to those in Sec-
tion 4.

8 Generalizations

The practicality and good shape of the specific constructions of this paper have
been verified by implementation (see e.g. Figure 15). Over a wide range of in-
put data, guided rings consistently introduced fewer shapeand curvature artifacts
than an equal number of conventional, mesh-based subdivision steps. The imple-
mented constructions presented in this paper are, however,only a small sample of
many options, and, the reader may already have thought aboutextensions, modi-
fications and generalizations for specific applications. Here we list a few that we
have explored or considered over the last years.
(a) Higher smoothness requires higher-order ct-maps and higher-order sampling.
(b) Some other form of (quasi-)interpolation can replace the jet-sampling of the
operatorH. In particular,
(c) the proof of Theorem 1 points to the fact that guides need not beC2 except for
a common quadratic jet (common expansion) at the central point (cf. [KMP06]).
The operatorH needs only suitably average theh-sampled data to guarantee that
the guided rings areC2. We found that piecewise polynomialC1 guides with a
straightforward averaging strategy are a viable option.
(d) If we consider a sequence of guide surfaces, it is sufficient to have the devia-
tions from a single quadratic jet of the possibly different central jets of each sector
vanish sufficiently fast.
(e) Observation 1 hints that the operatorH can be replaced by mapping the jets
directly to jets of the next refinement step [KMP06].
(f) By varying the common quadratic jet with each refinement step, we can create
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a polarC2 subdivision scheme of degree (6,4) that refines a control net. Since the
rules are derived from guided subdivision, they involve theentire control net of
the previous iteration.
(g) Bothρ andH can vary withm and eveni.
(h) Rational guides andC2 patchworks can be constructed by applying the ap-
proach in homogeneous space. Lemma 4 then implies that quadratic surfaces, for
example spheres, can be reproduced.
(i) The guide principle can be applied to other box splines.
(j) We have used guided rings with good results to transitionto a finite, low-degree
piecewise polynomial cap for many-sided surface gaps.

Acknowledgement:This work was supported by NSF Grant CCF-0430891 and
DMI-0400214.
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