
Fast Safe Spline Surrogates for Large Point Clouds

Ashish Myles

Computer Science
University of Florida

Gainesville, FL 32611

Jörg Peters

Computer Science
University of Florida

Gainesville, FL 32611

Abstract

To support real-time computation with large, possibly
evolving point clouds and range data, we fit a trimmed uni-
form tensor-product spline function from one direction. The
graph of this spline serves as a surrogate for the cloud,
closely following the data safely in that, according to user
choice, the data are always ‘below’ or ‘above’ when viewed
in the fitting direction. That is, the point cloud is guaran-
teed to be completely covered from that direction and can
be sandwiched between two matching spline surfaces if re-
quired. This yields both a data reduction since only the
spline control points need to be further processed and de-
fines a continuous surface in lieu of the isolated measure-
ment points. For example, using a20× 20 spline, clouds of
300K points are safely approximated in less than 1/2 sec-
ond.

1 Introduction

When a dense cloud of points is sampled from a surface,
a number of algorithms are known to reconstruct a nearby
surface from the samples (e.g. [8, 9, 18], [1, 2], [5, 6] to
name just a few). Most recently, the direct manipulation
and display of such clouds has become feasible [17, 15],
aided by a technique that uses the point cloud as an attractor
to locally enrich the cloud in a consistent fashion [10, 3].
α-shapes [7] can be used to associate a a smooth skin or
accessible surface with a point set [4].

Our goal is slightly but crucially different from the above
approaches. We want to compute safe and structurally sim-
ple functions whose graphs serve as surrogate surfaces with
the ability to trade tightness of the fit for simplicity of the
surrogate surface. In particular, we want to take advantage
of higher-order approximation and the simplicity and wide
acceptance of uniform cubic splines. Heresafemeans that
we do not fit extremal points in the least squares sense, but
guarantee that all data points are below (or all are above) the
spline, according to the application, when viewed from the

Figure 1. 2D problem. Surrogate spline func-
tions of a cloud of N = 100 points in the plane
for four different directions. Each spline (in
one variable) has n = 20 knots. The direction
is indicated by the line segment anchored at
the center of the cloud.

fixed direction (see Figures 1, 11). Here and in the follow-
ing, we do not address the issue of noisy data but assume
that all data are accurate and relevant or that the risk of mis-
judging and discarding a point as noise is too high.

Our task is both simpler and harder than the challenges
listed in the first paragraph. It is simpler in that we only
want to delineate the extent of the point cloud from one
fixed direction. It is more challenging in that we want a
very fast and safemethod that, even for large clouds, tracks
the evolution tightly and safely by a simple, standard cubic
spline function.

Such a surrogate can not only serve as a high-quality im-
poster for display (as could almost any other surface fit that
improves over flat billboards) but can be used for conserva-

1



tive occlusion tests or intersection tests such as for coarsely
machining a mechanical part. For example, any ray within
a certain cone about the viewing axis can be written as a
linear function(u(t), v(t), r(t)) = (at + b, ct + d, r(t))
in the coordinate system(u, v, ∗) of the surrogate spline
functionf(u, v) (the∗ slot is the direction of the axis); in-
tersection then amounts to finding the roots of the spline
f(at+b, ct+d)−r(t) in one variablet, for which there ex-
ists an unconditionally, quadratically convergent algorithm
[12]. By specifying the (density of the) knot set, we ob-
tain surrogates of different complexity (see Figure 2). Dif-
ferent knot spacings allow for (local) refinement. Labeling
segments of the spline as‘free’ allows to substitute energy
minimization, for example where there are not enough data.

To set the stage, we describe, in Section 3, a possible but
ultimately inefficient approach in one variable. Section 4
describes an alternative approach that can safely fit uniform
piecewise linear functions. The idea of this intermediate
scheme is leveraged and generalized in Section 5 to safely
and fast fit in one variable; and in Section 6 to fit in two
variables. Section 7 characterizes the cost of the algorithm.

2 Technical Preliminaries

We denote the scattered data cloud as

{xi}, xi ∈ R
2 or xi ∈ R

3, i = 0, . . . , N.

Throughout this paper,f is auniform cubic splinewith in-
teger knots−3,−2, . . . , n + 2 and B-spline coefficients

b−1, b0, ..., bn−1, bn, b−1 = b0 andbn−1 = bn.

The Greville abscissae forb0, ..., bn−1 are therefore
0, . . . , n − 1. For b := [b1, . . . , bn]t the difference oper-
ator∆ib is defined as

∆ib := bi−1 − 2bi + bi+1.

Using de Boor’s algorithm, it is easy to see that for allv ∈
[0, n− 1], and⌊⌋ returning the next lower integer,

h := ⌊v⌋ ∈ Z, u := v − ⌊v⌋ = v − h ∈ [0, 1],

Figure 2. Fitting a 2-dimensional point cloud
from the same direction with 16, 24, and 32
uniform knots.

f(v) = (1− u)bh + ubh+1 (1)

+
1

6
(1− u)3∆hb +

1

6
u3∆h+1b.

Throughout this paper, the indexh and the local variableu
depend on the argument off in precisely this manner.

Given a vectors of size|s| of parameters{si} ⊂ [0..n−
1], the evaluation off ats can be rewritten in matrix form:

f(s) =

(

Is +
1

6
SsD

)

b. (2)

Here D is a three-bandedn × n matrix whose rows are the
second difference masks1,−2, 1 except for the first and last
row which are first differences due to the repeated control
point at each end:

D(i, i− 1) = D(i, i + 1) = 1, D(i, i) = −2,

i = 2, . . . , n− 1,

D(1, 1) = D(n, n) = −1, D(1, 2) = D(n, n− 1) = 1.

The two-banded matrices Ss and Is are of size|s| × n and

h := ⌊si⌋, ui := si − h,

Ss(i, h) = (1− ui)
3, Ss(i, h + 1) = u3

i ,

Is(i, h) = 1− ui, Is(i, h + 1) = ui.

3 Trial-and-Error 2D Cloud Surrogate

Consider data points(xi, yi) ∈ R
2 to be fit safely from

they-direction. A naive, trial-and-error method repeatedly
searches for the most constraining points and interpolates
them with a splinef in the hope that the remaining data
points will end up below this spline.

1. Assign parameters: Shift and scalexi so that they lie
in the interval[0..n − 1]. Use the resulting values as
parametersti of yi.

2. Select points: Forj ∈ {1, . . . , n}, select oneyi whose
parameterti falls into the unit interval[j−0.5, j+0.5].
Setsj := ti andf(sj) = yi to form thejth equation of
the system (2). If noti lies in [j− 0.5, j +0.5], thejth
equation enforces that the second difference vanish.

3. Fit spline: Solve the system.

4. Check spline: If someyl lies above the spline andtl
lies in [j − 0.5, j + 0.5], then replacesj := tl and the
jth equation of the system with andf(sj) = yl, and
repeat step 3.

2



Since the matrix in step 3 is band-diagonal with at most two
bands on each side of the diagonal, step 3 takesO(n) time
and the overall time complexity isO(n + |s|). Apart from
the concern of convergence, we will see that this trial-and-
error heuristic becomes very expensive in the case of two
variables, because the matrix in step 3 no longer has the
simple banded structure. We therefore consider an alterna-
tive approach that constructs a spline that stays to one side
of a piecewise linear interpolant of uniform point data. This
is not the problem we set out to solve but its solution will
be leveraged to obtain an efficient algorithm for the original
problem.

4 Broken Line Surrogate

Given a piecewise linear functionℓ with uniform knots,
the goal is to construct a nearby splinef such thatf ≥
ℓ. The simplicity and quality of the construction depends
crucially on the following nontrivial characterization.

Lemma 4.1 The uniform cubic splinef is boundedbelow
by the piecewise linear functionℓ : [0, n − 1] → R with
breakpoints(i, ℓi), i = 0, . . . , n− 1,

ℓi := bi +
1

6
min{∆ib, 0}. (3)

Figure 3 illustrates the relationship between coefficientsbi

and breakpointsℓi. Readers familiar with spline theory will
spot the quasi-interpolant of cubic spline interpolation.The
proof of Lemma 4.1 is subsumed by the proof of Lemma
5.1, and is therefore deferred until then. Among the lower
bounds, the choice in Lemma 4.1 best balances (i) mini-
mizing the distance betweenℓ andf and (ii) minimizing
the unavoidable Gibbs oscillation of splines when gradients
change rapidly, say at fault lines. Moreover, it is the sim-
plest choice other than the trivial and insufficient straight
line below the control polygon off .

∆ib < 0

∆ib > 0

ℓi = bi

bi

ℓi = bi + 1

6
∆ib

Figure 3. Interpretation of the function ℓ con-
structed in Lemma 4.1. ( left) At local minima,
the control polygon and ℓ coincide; ( right) at
local maxima, the control polygon defines a
quasi-interpolant matching ℓ.

We can restate the lower bound relation in matrix form
as follows. (We do not yet consider control points marked

free, i.e. whose Greville abscissa falls in a unit interval[j −
0.5..j+0.5] that has no associated data.) Defining the vector

σ := [σ1, . . . , σn],

σi := sgn(b, i) :=

{

1 if ∆ib < 0,

0 else,

we have, with diag(σ) denoting the matrix with diagonalσ,

ℓ =

(

I +
1

6
diag(σ)D

)

b = Mb. (4)

The task is to compute the coefficientsbi so that the spline
f lies aboveℓ. The inversion

b = M−1ℓ

of the diagonally dominant matrix M is deceptively simple.
There are two types of unknowns,bi andσi, in Equation
(4); andbi andσi depend on one another.

Nevertheless, there is a very efficient heuristic to solve
(4). Given a choice of signsσi, (4) can be solved in only
12n flops using a banded solver. Mimicking least squares
fitting for with unknown parameters or Remez’s algorithm
for max-norm optimization, we alternate between choosing
the signsσi and solving for the coefficientsbi until theσi

agree with the signs of∆ib.

Heuristic(σ, b)

1. Initializeσi ← sgn(ℓ, i).

2. Solveℓ = Mb for b givenσ.

3. If sgn(b, i) = σi for all i, stop; else, setσi =
sgn(b, i) and go to step 2.

Typically, this iteration converges intwo iterationsand
we have never observed more than three iterations. A his-
togram analogous to those in Figure 9 shows a single large
spike at 2 with negligible counts at 1 and 3. In particular,
the number of iterations appears to be independent ofn with
all sign changes localized to one of several point neighbor-
hoods. Effectively, the initializationσi = sgn(ℓ, i) is very
close to optimal (just as the initialization of Remez’s algo-
rithm [13] by expanded Chebyshev points is observed to
yield rapid convergence).

By contrast, solving the constrained optimization prob-
lem:

min f − ℓ subject tof ≥ ℓ

over [0, . . . , n], is nontrivial. (Recently [14] reduced this
type of problem to a linear program, but this approach is
still orders of magnitude slower than the proposed method.)

Equation (4) changes slightly when a pointℓi is marked
free. To avoid working with an underconstrained system

3



Figure 4. Inversion with 0,1,2 or 3 free break-
points and energy minimization.

and seizing on the chance to improve the spline surrogate,
we can replace the constraint row in M by another linear
equality constraint that does not make the system singular.
For example, Figure 4 shows the effect of one, two and three
free points when the corresponding second differences are
set to zero. Since the change only amounts to replacing the
correspondingith row of M with [. . . , 0, 1,−2, 1, 0, . . .]/6
and settingℓi = 0, the complexity of the inversion process
is not affected.

5 2D Scattered Points Surrogate

The surrogate computed in the previous section will now
be generalized to a lower bound with arbitrary breakpoints
(ti, ℓ(ti)). We can then ignore the piecewise linear nature
of ℓ and view(ti, ℓ(ti)) as dataxi. Our immediate goal
though is to compute coefficientsbi so thatℓ lies above a
constraining piecewise-linear functionΛ with knots ti ∈
[0..n− 1], i.e.

f ≥ ℓ ≥ Λ.

Lemma 5.1 Let ℓ : [0..n − 1] → R be a piecewise linear
function whose knots{si} include but is not restricted to the
integers0, . . . , n− 1. Then the uniform cubic splinef with
knots0, . . . , n−1 is bounded below byℓ if ℓ has breakpoints

ℓ(si) := (1− u)bh + ubh+1

+ (1− u)3
1

6
min{∆hb, 0}

+ u3 1

6
min{∆h+1b, 0}. (5)

ProofWe may focus on a subsequence{κi} of s between
two knotsj, j+1, j ∈ 0, ..., n− 2 of the spline. Forv := κi

1/6

κ0 = j κ1 κ2 κ3 = j + 1

u = κ̂0 = 0 κ̂1 κ̂2 u = κ̂3 = 1

g(u)

g(u) := 0

g(u)

Figure 5. Bounding g(u) = (1 − u)3 with two
piecewise linear functions with specified lo-
cal break knots κ̂i := κi − ⌊κi⌋ ∈ [0, 1).

and localκ̂i := κi − ⌊κi⌋ ∈ [0, 1), u := v − ⌊v⌋ ∈ [0, 1]
andg(u) := 1

6
(1− u)3 andg(1− u) := 1

6
u3, we have

f(v)−
(

(1− u)bh + ubh+1

)

= g(u)∆hb + g(1− u)∆h+1b.

Since, on[0..1], g is non-negative and concave upward, it
is bounded below by0 and above by the piecewise linear
interpolantg of g at theκ̂i (see Figure 5). Then, combining
negative numbers with upper bounds and positive numbers
with lower bounds (zero), we get

f(v)− ((1− u)bh + ubh+1)

= g(u) (min{∆hb, 0}+ max{∆hb, 0})+

g(1− u) (min{∆h+1b, 0}+ max{∆h+1b, 0})

≥ g(u)min{∆hb, 0}+ g(1− u)min{∆hb, 0}.

As in the simpler bound in Section 4,ℓ(t) is computed in
time linear in|s|. Since fors = (0, ..., n−1), we haveu = 0
for all breakpoints, Lemma 4.1 follows. The lower bound
is similar to the one derived by [11] and [16]. However,
those bounds rely on tabulated pre-optimized piecewise-
linear bounds forg(u) with breakpoints at uniformly spaced
κ̂. Our new piecewise linear bound does not require pre-
computation sinceg(u) is easily determined online by the
simple evaluation ofg at κ̂. Therefore, our new bound can
adapt to breakpoints on the fly.

We rewrite (5) in matrix form with D,b, Ss and Is as
defined in Section 2 andσ as defined near (4):

ℓ =

(

Is +
1

6
Ssdiag(σ)D

)

b = Mb. (6)

4



This system has|t| rows, i.e. as many as there are break
knotsti. Since for our applicationsN = |t| >> n, we need
to selectn equations, or, equivalently,n knotst∗j of the ti.
To do so, we associate eachti with the closest integer, and
hence spline Greville abscissa, and select exactly onet∗j for
each integerj = 0, . . . , n. We encode this in a selection
matrix Cλ of sizen×N). All its entries are zero except for
Cλ(j, λj) = 1 if λj is the index of the selected knot. The
resulting system

(CλM)b = Λ (7)

can be solved forb in O(n) operations since CλM is banded
with at most two bands on each side.

In addition to the two vectors of unknowns,b andσ, we
now have to determineλ. This selection is updated every
time the choice ofb andσ is valid. If anyΛ(tk) > ℓ(tk)
then thek with maximalΛ(tk)− ℓ(tk) is selected to replace
the equation in row round(tk) in (7).

Since the knots ofΛ can be chosen exactly as needed,
and the equations depend only on the breakpoint values,
we need no longer viewΛ as a piecewise linear function.
Rather, it can beany, unordereddataxi of the form (knot,
value). From here on, we will therefore consider

Λ a collection of scattered data points.

The heuristic is summarized as follows.

Heuristic(σ, b, λ) non-uniform data

1. Initializeλj as the point inΛ on the interval[j−
0.5..j + 0.5] with the maximal value:

λj := max{yi : (ti, yi) ∈ Λ and round(ti) = j}.

2. Initialize allσj = 1.

3. Solveℓ = CλMb for b givenσ andλ.

4. If sgn(b, j) = σj for all j, continue; else, set
σj = sgn(b, j) and go to step 3.

5. For the currentb, determine thei so thatΛ(ti)−
ℓ(ti) is maximal and positive. If noi exists, stop.
Otherwise, updateλ⌊ti⌋ = i and go to step 3.

The complexity of the heuristic isO(n + |t|) wheret is
the vector of break knots ofΛ. The constant of the big O
notation is the number of iterations until convergence. In
almost all cases, this number is less or equal to 10 and only
occasionly have we encountered a case where the number
is up to 20 (see Figure 9,right). If any control point does
not have any associatedℓ breakpoints, it is free and treated
as in the previous section. The results of this method are
illustrated in Figures 1 and 2.

6 Surface Surrogates

Suppose we wanted to interpolate a subset ofm×n data
xi ∈ R

3 (satisfying the Schoenberg-Whitney conditions)
by a spline surface withm × n control points. The corre-
sponding interpolation matrix is of sizemn × mn. If the
parameter values associated withxi ∈ R

3 do not have spe-
cial structure the cost of interpolation isO(m3n3) and the
overall cost of mimicking the naive procedure in Section 3
is O(m3n3 + N). However, if the data are on au, v grid,
the interpolation matrix factors into two banded matrices
and we can tensor interpolation, reducing the overall cost to
O(mn + N) as follows.

1. Use the naive curve-fitting method in Section 3 along
theu directionm times to obtainm intermediate spline
curves withn control points each.

2. Apply the same method to the resultingm×n array of
control points along thev directionn times to obtain
an array ofn spline curves withm control points each.
The result is them × n array of control points for the
surface.

To apply this cheaper solution to our ungridded data, we
exploit the fact that the splines output by the heuristics in
Sections 4 and 5 stay above the linear interpolant of their
input point set. We proceed as follows (see Figure 6).

... ...

safe fit

safe fit

(1)

(2)

(3)

Figure 6. Surrogate construction. (1)
Project all the points to their neighboring u-
parameter lines. (2) Safely fit the resulting
non-uniform data along the u direction. (3)
Safely fit the resulting uniform data along the
v direction.

5



Reduction to gridded data

1. Project all the points in the cloud to their two
neighboringu-parameter lines.

2. For each of them u-parameter lines, use the gen-
eralHeuristic(σ, b, λ) of Section 5 to fit a spline
curve withn control points on the non-uniform
data. This results in anm × n array of control
points, which can also be thought of as uniform
data for the next step.

3. For each of then v-parameter lines, use the
simplerHeuristic(σ, b) for piecewise lines from
Section 4 withm control points on the uniform
data. The resultingm × n control points define
the safe spline surrogate.

Exchangingu and v and averaging symmetrizes the
heuristic but is not necessary. The tensored surrogate com-
putation has time complexity ofO(mn+N). The resulting
surface stays above the bilinear interpolant of two projec-
tions of each point which, in turn, is guaranteed to be above
the original point before projection. Therefore, the resulting
surface stays above the input point cloud.

Similarly, since the surface surrogate is to one side of
the bilinear interpolant of two projections of each point, ap-
plying the construction to one direction and its opposing
direction creates a pair ofnon-intersectingsurfaces that
sandwich the point cloud. Figure 12 shows cross sections
of such a two-sided fit.

f

ff

f

f

f

ffff
f

f

f

f ff

f

ff

f

ff
fff

f

ff

f

f

f

ffff
f

f

f

f ff

f

ff

f

ff
fff

Figure 7. ( left) Determining free grid points
(labeled f) that will not influence the shape of
the surrogate spline. ( right) Piecewise linear
trim lines (see also Figure 11).

A problem inherent to tensor-product splines isaliasing.
The B-spline footprint (support) betrays the underlying grid
of knot lines by zig-zaging along them. This becomes visi-
ble along the boundary of the orthogonally projected point
set (Figure 8). Piecewise linear trimming along and di-
agonal to grid cells of the outer boundary is a simple an-

swer (see Figure 7). Of course, along sharp interior jumps,
aliasing and the Gibbs (overshooting) effects are still visible
from side views (see Figure 10,middle).

Figure 8. ( left) Range Data, ( middle) surface fit
from below and ( right) trimmed surface.

7 Test Cases and Timing

This method is parallelizable in that, in Step 2, each of
them sets of computation are independent of one another
and, in Step 3, each of then computations. Our implemen-
tation reviewed below, however, was on a single processor.

To test our theory and implementation, we created a se-
quence of surrogates for the union of two moving spherical
scatter clouds. On this synthetic data, we varyN andn, the
number of data points and then + 2×n + 2 control points.
Since we are using a heuristic, we computed all numbers by
averaging over 10 different configurations and 20 surrogate
computations. The times in Tables 1, 2 include
(i) the projection of the point cloud to a plane parallel to the
fitting direction for parameter assignment;
(ii) the projection of the points to two nearby parameter
lines; in addition to
(iii) the heuristic to obtain the control points.
The computational environment is a generic desktop PC
with a 2.4GHz Pentium 4 with 512Mb RAM, running
Linux.

N 10K 30K 50K 100K 300K
msecs 14.5 42.5 71.0 141 445

Table 1. Time in milliseconds for construct-
ing a spline surrogate for a cloud of N points
(N = 10, 000 to 300, 000) and a 20× 20 auxiliary
(i.e. n = 20).

n 10 20 30 40 50 60
msecs 42.5 42.5 45.0 51.0 55.5 64.5

Table 2. Time for constructing an n×n spline
surrogate for a cloud of N = 30K points.

As expected, the times reported in Table 1 increase lin-

6



early in the size,N , of the cloud. Indeed, Table 2 indicates
that for the typicalN >> n, and ann× n spline, the linear
complexity inN dominates time quadratic complexity inn.

Figure 9. Histogram of the total number of
iterations (LDL decompositions of the ma-
trix) of the general Heuristic(σ, b, λ) of Section
5 when computing a surrogate surface for
N = 30K, N = 300K data points and n × n
control points, n = 20.

Figure 10. Real-time safe surrogate spline for
two moving spherical scatter clouds. ( middle)
Although not visible from the front, a side
view shows the aliasing of tensor-product
splines at the steep jump between the two
clouds when the direction is skew to the line
through the centers of the two point clouds.

8 Summary

By computing a simple safe spline surrogate, in real-time
for moderately sized point clouds ofN = 30K points, we
are able to safely replace a large unstructured discontinuous
cloud of point data by a structured smooth spline defined
by a uniformn × m grid of spline control points. As the
standard higher-order representation of scientific comput-
ing, this surrogate can then be used for real time safe track-
ing, compression, comparison over time and other compu-
tations and queries of the point cloud.

Figure 11. Real-time directionally safe surro-
gates for range data of the Stanford bunny
(N = 40, 256). (left) Safe front fit (58ms), ( right)
Safe back fit (59.5ms).

9 Acknowledgments

Work supported in part by NSF Grants DMI-0400214
and CCF-0430891.

References

[1] Amenta, Choi, and Kolluri. The power crust, unions of balls,
and the medial axis transform.CGTA: Computational Ge-
ometry: Theory and Applications, 19, 2001.

[2] N. Amenta, S. Choi, and R. K. Kolluri. The powercrust.
In D. C. Anderson and K. Lee, editors,Proceedings of the
Sixth Symposium on Solid Modeling and Application (SM-
01), pages 249–260, New York, June 6–8 2001. ACM Press.

[3] N. Amenta and Y. J. Kil. Defining point-set surfaces.ACM
Trans. Graph., 23(3):264–270, 2004.

[4] H. Cheng, T. Dey, H. Edelsbrunner, and J. Sullivan. Dy-
namic skin triangulation.Discrete Computational Geome-
try, 25:525–568, 2001.

[5] T. K. Dey, J. Giesen, and J. Hudson. Delaunay based shape
reconstruction from large data. InIEEE Symposium in Par-
allel and Large Data Visualization and Graphics, pages 19–
27, 2001.

[6] T. K. Dey and S. Goswami. Tight cocone: A water-tight sur-
face reconstructor.Journal of Computing and Information
Science in Engineering, 3:302–307, 2003.

[7] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha
shapes.ACM Trans. Graphics, 13(1):43–72, Jan. 1994.

[8] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,
J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise
smooth surface reconstruction.Computer Graphics, 28(An-
nual Conference Series):295–302, July 1994.

7



Figure 12. Three slices through the ensem-
ble of safe front fit, range data cloud and safe
back fit. Front and back fits do not intersect
but yield a proper bunny sandwich.

[9] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to
dense polygon meshes.Computer Graphics, 30(Ann. Conf.
Series):313–324, 1996.

[10] D. Levin. Mesh-independent surface interpolation. In
H. Brunnett and Mueller, editors,Geometric Modeling
for Scientific Visualization, pages 37–49. Springer-Verlag,
2003.

[11] D. Lutterkort and J. Peters. Tight linear envelopes for
splines. Numerische Mathematik, 89(4):735–748, Oct.
2001.

[12] K. Moerken and M. Reimers. An uncondition-
ally convergent method for computing zeros of splines
and polynomials. submitted for publication, 2005.
http://heim.ifi.uio.no/∼martinre/publications.html.

[13] F. D. Murnaghan and J. W. Wrench, Jr. The determination
of the Chebyshev approximating polynomial for a differ-
entiable function.Mathematical Tables and Other Aids to
Computation, 13(67):185–193, July 1959.

[14] A. Myles and J. Peters. Threading splines through 3d chan-
nels.Computer Aided Design, 37(2):139–148, 2004.

[15] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. In J. Hodgins and
J. C. Hart, editors,Proceedings of ACM SIGGRAPH 2003,
volume 22(3) ofACM Transactions on Graphics, pages
641–650. ACM Press, 2003.

[16] J. Peters and X. Wu. Sleves for planar spline curves.
Computer Aided Geometric Design, 21(6):615–635, 2004.
http://authors.elsevier.com/sd/article/S0167839604000615.

[17] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. In K. Akeley, ed-
itor, Siggraph 2000, Computer Graphics Proceedings, An-

nual Conference Series, pages 343–352. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[18] T. Várady, R. R. Martin, and J. Cox. Reverse engineering
of geometric models - an introduction.Computer-aided De-
sign, 29(4):255–268, 1997.

8


