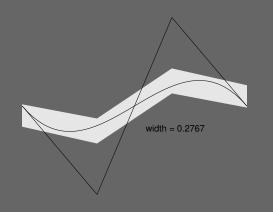
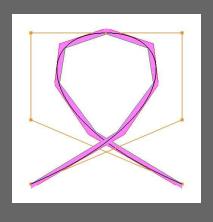
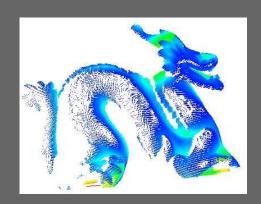


Mid-Structures Linking Curved and Linear Geometry

SIAM Geometric Design, Nov 10–13 2003

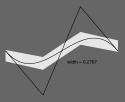






Jörg Peters, University of Florida http://www.cise.ufl.edu/~jorg

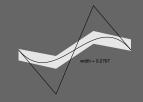
Goals and Outline



- (1) **SLEFEs**: Enclosing Functions
- (2) Mid-structures: Quantitatively Coupling Curved and pw Linear Geometry
- (3) Constrained Design: One-sided fitting

Improves Robustness (Collision, Rendering, Conversion)

SLEFEs: Enclosing Functions



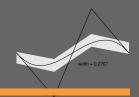
Find an explicit two-sided approximation $\overline{x}, \underline{x}$ of a map x so that $x < x < \overline{x}$ over the domain of interest.

- ☐ *Efficiently* (few pieces, easy to compute)
- ☐ Tightly
- ☐ (predictively) *Refinable*
- ☐ (Affinely) *Invariant*, ...

Then the pair $\underline{x}, \overline{x}$ is a

Subdividable Linear Efficient Function Enclosure (SLEFE) of x.

SLEFE construction



Given: space *B* of functions to be enclosed.

- 0) Choose U (domain of interest), H enclosure functions.
- 1) $s := \dim B \dim B \cap H < \infty$.

 Choose s functionals $\mathcal{F} : B \mapsto \mathbb{R}^s$ so that $\ker \mathcal{F} = B \cap H$.
- 2) Compute new basis $\mathbf{a}: \mathbb{R}^s \mapsto B$ so that $\mathcal{F}\mathbf{a}$ is identity on \mathbb{R}^s and each \mathbf{a}_{κ} matches the same $\dim(B \cap H)$ additional independent constraints.
- 3) Compute $\mathbf{a} L\mathbf{a} \in H^s$ and $\overline{\mathbf{a} L\mathbf{a}} \in H^s$ (lower and upper bound)
- 4) Compute $\mathcal{F}x\in\mathbb{R}^s$ and assemble \underline{x} and \overline{x} .
 - (0),(1),(2),(3) are offline (4) is cheap

Bézier SLEFE Construction

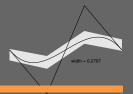


$$B=$$
 degree $d=3$ polynomial in Bézier form $x(u):=\sum_{k=0}^d\mathbf{b}_k(u)x_k$

- 0) U= [0..1] (domain of interest), $H=\mathbf{h}_{\mu}^{m}$ hat functions with break points at $\frac{\mu}{m}$, $\mu=0,\ldots,m$
- 1) $\dim B \dim B \cap H = 4 2 = 2 = s$. Functionals $\mathcal{F}: B \mapsto \mathbb{R}^s$ so that $\ker \mathcal{F} = B \cap H$: $\mathcal{F}_{\nu}x := x_{\nu-1} - 2x_{\nu} + x_{\nu+1}$.
- 2) New basis $\mathbf{a}: \mathbb{R}^s \mapsto B$: $\dim(B \cap H) = 2$ constraints: first and last coefficient = 0 coefficients of $\mathbf{a_1}: (0, -2, -1, 0)/3$, $\mathbf{a_2}: (0, -1, -2, 0)/3$, $\mathcal{F}\mathbf{a}$ is identity.
- 3) Compute broken line $\underline{{f a}_k-L{f a}_k}$, below and $\overline{{f a}_k-L{f a}_k}$ above.

- 4) Compute $\mathcal{F}x\in\mathbb{R}^s$ and assemble \underline{x} and \overline{x} .
 - (0),(1),(2),(3) are offline (4) is cheap.

[0–3] SLEFE construction: derivation



Given

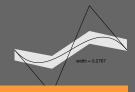
$$p(t) := -\mathbf{b}_1^3(t) + \mathbf{b}_2^3(t), \qquad \mathbf{b}_j^d := \binom{d}{j} (1-t)^{d-j} t^j$$

coefficient sequence $(c_j)_{j=0,...,3} = (0,-1,\overline{1,0}).$

With
$$\ell(t) := p(0)(1-t) + p(1)t$$
 and $\mathbf{a}_1^3(t) := -\frac{2}{3}\mathbf{b}_1^3(t) - \frac{1}{3}\mathbf{b}_2^3(t), \mathbf{a}_2^3(t) := -\frac{1}{3}\mathbf{b}_1^3(t) - \frac{2}{3}\mathbf{b}_2^3(t),$

$$p(t) = \ell(t) + 3\mathbf{a}_1^3(t) - 3\mathbf{a}_2^3(t).$$

[0-3] SLEFE construction: derivation

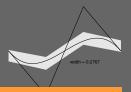


$$p(t) = \ell(t) + 3\mathbf{a}_1^3(t) - 3\mathbf{a}_2^3(t).$$

 \mathbf{a}_1^3 is strictly convex, easy to bound above (and below)

$$p(t) \le \overline{p}(t) = \ell(t) + 3\overline{\mathbf{a}_1^3}(t) - 3\mathbf{a}_2^3(t)$$

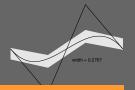
t =	0	1/3	2/3	1
a[3, 3, -, 1,]	0695214343	4398918047	3153515940	0087327217
a[3, 3, +, 1,]	0	3703703704	2962962963	0



- Input Bézier piece of degree d: $\mathbf{x}(u) := \sum_{k=0}^{d} \mathbf{b}_k(u) x_k$
- \mathbf{h}_{μ}^{m} hat functions with break points at $\frac{\mu}{m}$, $\mu = 0, \ldots, m$

$$\overline{oldsymbol{x}}(t) := \sum_{\mu=0}^m ilde{x}_\mu \mathbf{h}_\mu^m(t), \quad ext{ where } \quad [ilde{x}_0, \dots, ilde{x}_m] := ext{slefe}([x_0, x_1, \dots, x_d], m, +1)$$

$$\underline{oldsymbol{x}}(t) := \sum_{\mu=0}^m \underline{x}_\mu \mathbf{h}_\mu^m(t), \quad ext{ where } \quad [\underline{x}_0, \dots, \underline{x}_m] := \mathsf{slefe}([x_0, x_1, \dots, x_d], m, -1).$$



$$\overline{m{x}}(t) := \sum_{\mu=0}^m ilde{x}_\mu \mathbf{h}_\mu^m(t), \quad ext{ where } [ilde{x}_0, \dots, ilde{x}_m] := ext{slefe}([x_0, x_1, \dots, x_d], m, +1)$$

$$slefe([x_0, ..., x_d], m, sgn) := [q_0, ..., q_m]$$

$$q_{\mu} := x_0(1 - \frac{\mu}{m}) + x_d(\frac{\mu}{m}) + \sum_{\nu=1}^{d-1} \mathcal{F}_{\nu} x \ a_{\nu,\mu}$$

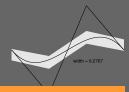
$$\mathcal{F}_{\nu}x := x_{\nu-1} - 2x_{\nu} + x_{\nu+1},$$

$$a_{\nu,\mu} := a[d, m, sign(\mathcal{F}_{\nu}x) \times sgn, \nu, \mu].$$

For degree d and m segments $1 \le \nu \le d$, $1 \le \mu \le m$ and $sgn \in \{-1, +1\}$ $a[d, m, sgn, \nu, \mu]$ is a table of numbers

[to be obtained, for example from the SubLiME web page]

For example, ⁻	t =	0	1/3	2/3	1
	a[3, 3, -, 1,]	0695214343	4398918047	3153515940	0087327217
	a[3,3,+,1,]	0	3703703704	2962962963	0



Input:

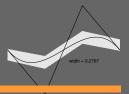
 x_k ,

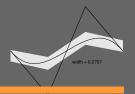
 $a[d, m, sgn, \nu, \mu],$

 $slefe([x_0,\ldots,x_d],m,sgn).$ 2d(m+1) ops

Output:

$$\overline{x} \geq x \geq \underline{x}$$

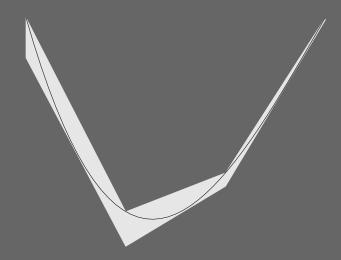


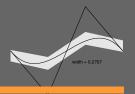


Near Optimality: the width

$$w_{\mu} := \overline{\mathbf{x}}(\frac{\mu}{m}) - \underline{\mathbf{x}}(\frac{\mu}{m}) = \sum_{\nu} (a[d, m, +, \nu, \mu] - a[d, m, -, \nu, \mu]) |\Delta_{\nu}^{2}x|.$$

is close to minimal in the *recursively applied* L^{∞} *norm*.





Near Optimality: the *width*

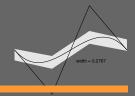
$$w_{\mu} := \overline{\mathbf{x}}(\frac{\mu}{m}) - \underline{\mathbf{x}}(\frac{\mu}{m}) = \sum_{\nu} (a[d, m, +, \nu, \mu] - a[d, m, -, \nu, \mu]) |\Delta_{\nu}^{2}x|.$$

Nonlinear problem – cannot expect linear SLEFE construction to be optimal!

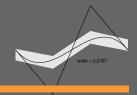
- (1) optimal for degree d = 1, 2
- (2) d=3 no inflection, m=3 segments:
- optimal enclosure can be computed (nontrivial); ratio of minimal width to SLEFE width is < 1.07.
- (3) d=4 no inflection, m=4 segments: <1.04

General theorem still missing! (It depends on B, U, H, \mathcal{F})

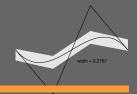
Difficulty: useful characterization of optimal enclosure (note piecewise!)



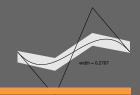
- [1] Near Optimality: $w_\mu:=\sum_
 u(a[d,m,+,
 u,\mu]-a[d,m,-,
 u,\mu])|{\color{red}\Delta^2_
 u x}|$
- [2] Invariance under addition of linear terms



- [1] Near Optimality: $w_\mu:=\sum_
 u(a[d,m,+,
 u,\mu]-a[d,m,-,
 u,\mu])|{\color{red}\Delta^2_
 u x}|$
- [2] Translation invariance
- [3] Refinement: Increase segments or Subdivide.



- [1] Near Optimality: $w_\mu:=\sum_{
 u}(a[d,m,+,
 u,\mu]-a[d,m,-,
 u,\mu])|{\color{red}\Delta_{
 u}^2}x|$
- [2] Translation invariance
- [3] Refinement: Increase segments or Subdivide.
- In the limit, w_{μ} shrinks by 1/4. $(\max_{j} |\Delta_{\nu}^{2}x| \text{ shrinks to } \leq 1/4 \text{ its size})$.
- For specific a[..] (Bézier), every w_{μ} shrinks by at least $\frac{3}{8}$ for d=2,3,4.



- [1] Near Optimality: $w_\mu:=\sum_{
 u}(a[d,m,+,
 u,\mu]-a[d,m,-,
 u,\mu])|{\color{red}\Delta_{
 u}^2x}|$
- [2] Translation invariance
- [3] Refinement: Increase segments or Subdivide.

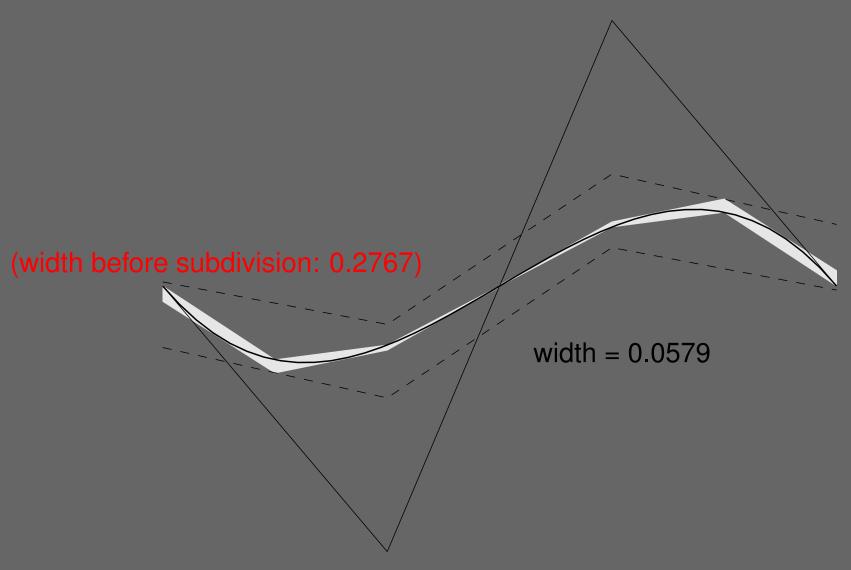
If the second differences are replaced by

$$\sum_{i=0}^d \Delta_i^{
u}(x), \qquad \Delta_i^{
u} ext{ is }
u ext{th difference applied to } x_i, \dots, x_{i+
u+1}.$$

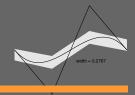
then *every* w_{μ} shrinks by $\frac{1}{2}$ at every step.

(crucial estimate of proof: $\sum_{r=0}^{n} {r \choose c}/2^r < 2$ for r, c, n nonegative integers)

Subdivision



Are SLEFEs nested under subdivision?

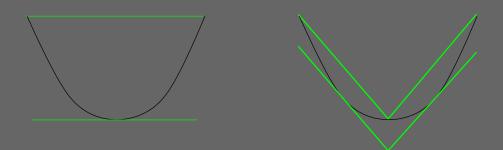


Near Optimality

Translation invariance

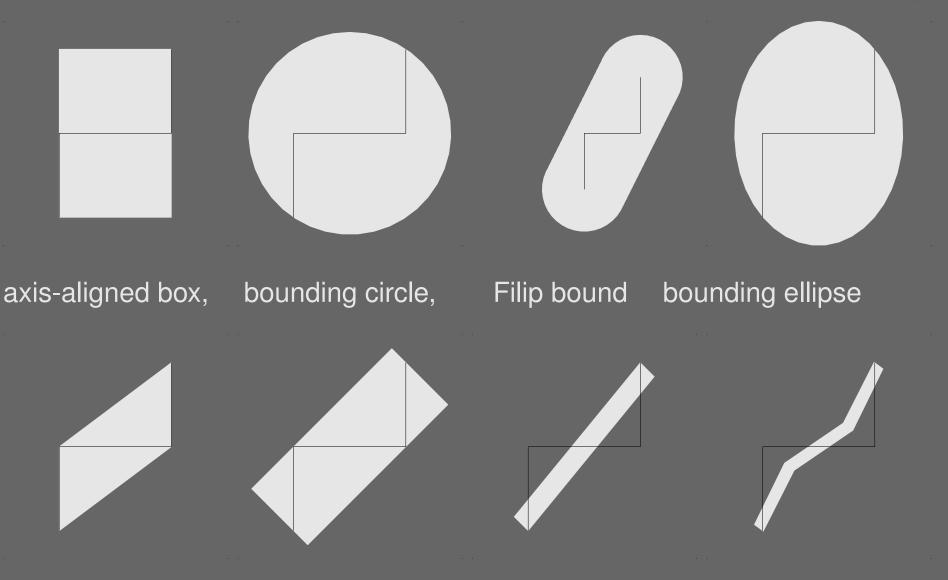
Refinement: Increase segments or Subdivide

Not nested:



How good are SLEFEs compared to other bounding constructs?

Bounding Constructs in Comparison



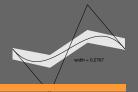
convex hull,

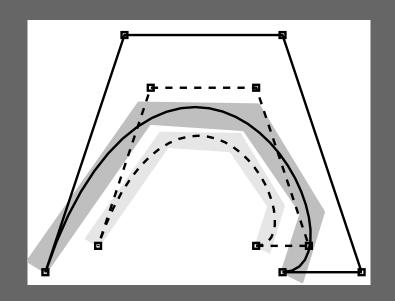
oriented bounding box,

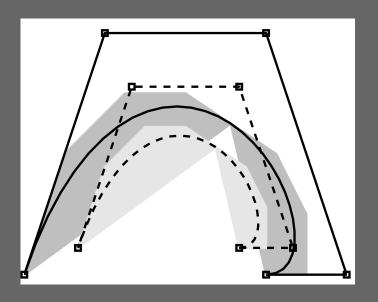
'fat arc',

3-piece slefe.

Intersection testing



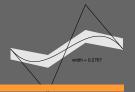




SLEFE (separation)

subdivided convex hull (no separation)

SLEFE construction: reprise



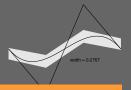
Given: *B* space of functions to be enclosed.

- 0) Choose U (domain of interest), H enclosure functions.
- 1) $s := \dim B \dim B \cap H < \infty$.

 Choose s functionals $\mathcal{F} : B \mapsto \mathbb{R}^s$ so that $\ker \mathcal{F} = B \cap H$.
- 2) Compute new basis $\mathbf{a}: \mathbb{R}^s \mapsto B$ so that $\mathcal{F}\mathbf{a}$ is identity on \mathbb{R}^s and each \mathbf{a}_{κ} matches the same $\dim(B \cap H)$ additional independent constraints.
- 3) Compute $\underline{\mathbf{a} L\mathbf{a}} \in H$ and $\overline{\mathbf{a} L\mathbf{a}} \in H$ (lower and upper bound)
- 4) Compute $\mathcal{F}x$ and assemble \underline{x} and \overline{x} .

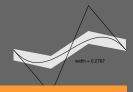
Note: (0),(1),(2),(3) are offline (4) is cheap

more SLEFEs



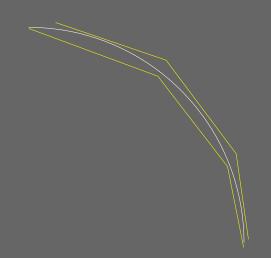
How widely is the construction applicable?

more SLEFEs

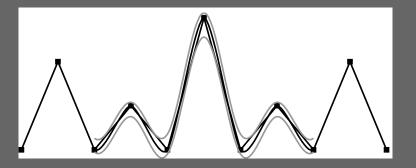


Rational functions:

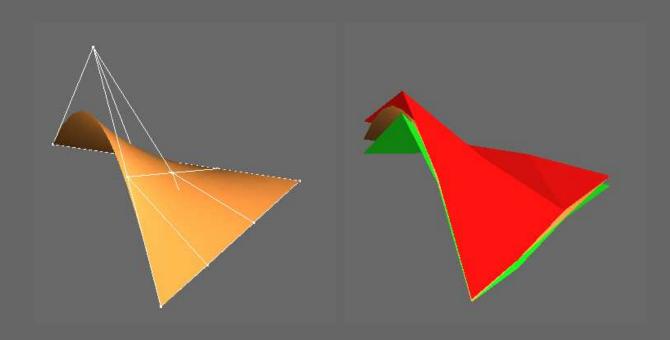
Compute SLEFE of components + SLEFE for rational linear function



B=4-point scheme, H= cubic splines ($\mathcal{F}=4$ th differences):



3-sided patches



$$B={
m total}$$
 degree Bézier

U = unit triangle

$$H=$$
 bivariate hat functions $\mathcal{F}_{
u}x:=egin{bmatrix} -1 & 1 \ 1 & -1 \end{bmatrix}$.

Tensor-product SLEFEs



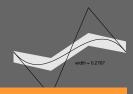
$$x(s,t) := \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} x_{ij} \mathbf{b}_j^{d_2}(t) \mathbf{b}_i^{d_1}(s). \quad \mathbf{b}_k^d(u) := \frac{d!}{(d-k)!k!} (1-u)^{d-k} u^k$$

for
$$i=0,\ldots,\ d_1,\quad [\tilde{x}_{i0},\tilde{x}_{i1},\ldots,\tilde{x}_{im_2}]:=\mathsf{slefe}([x_{i0},x_{i1},\ldots,x_{id_2}],m_2,+1)$$

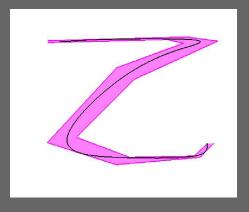
for
$$j=0,\ldots,m_2,\quad [\widetilde{\widetilde{x}}_{0j},\widetilde{\widetilde{x}}_{1j},\ldots,\widetilde{\widetilde{x}}_{m_1j}]:=\mathsf{slefe}([\widetilde{x}_{i0},\widetilde{x}_{i1},\ldots,\widetilde{x}_{im_2}],m_1,+1).$$

$$\overline{\boldsymbol{x}}(s,t) := \sum_{i=0}^{m_1} \sum_{i=0}^{m_2} \widetilde{\widetilde{x}}_{ij} \mathbf{h}_i^{m_2}(s) \mathbf{h}_j^{m_1}(t).$$

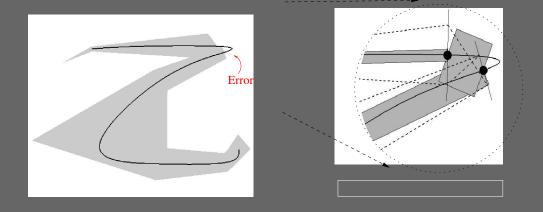
Spline Curves



nontrivial!

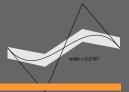


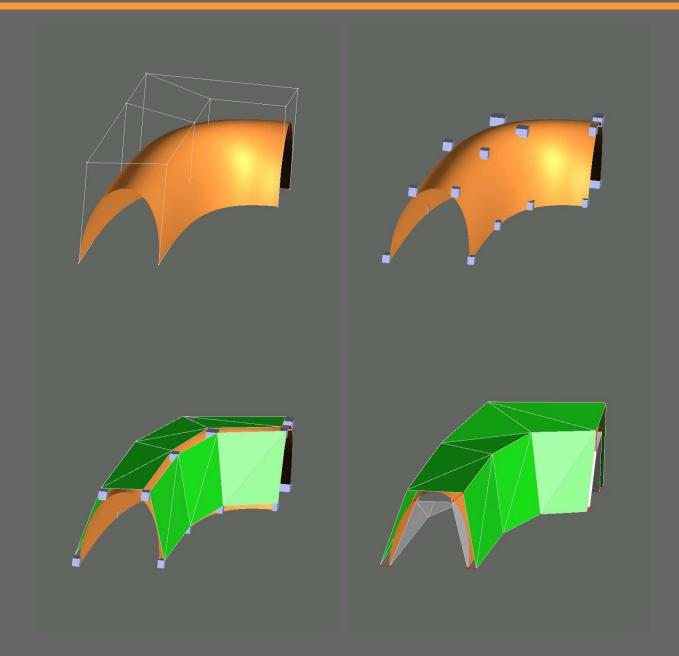
SLEVE (correct) (P & Wu 2003)



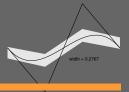
alternative construction in the literature

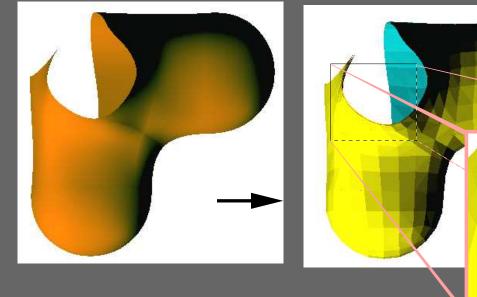
Spline surfaces

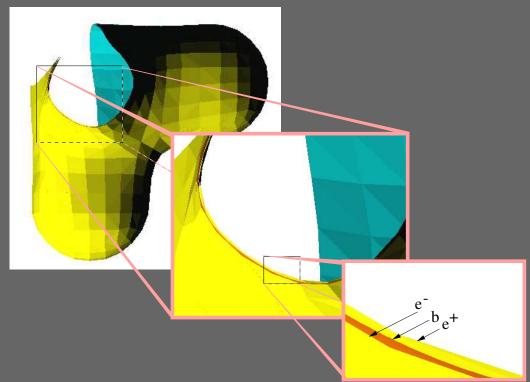




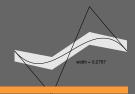
Spline surfaces

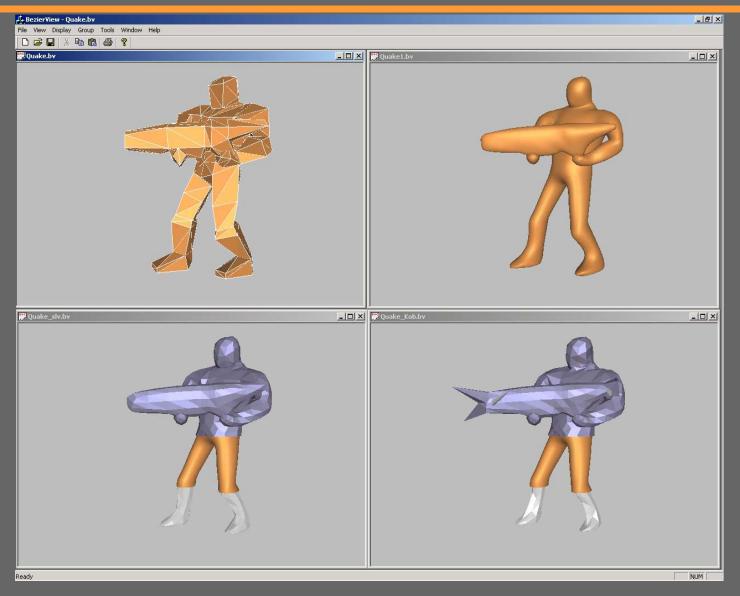






Subdivision schemes





SLEFE

alternative (incorrect!)

Life before SLEFEs

Life with SLEFEs



