Modelling and Foundations of Multi-Sided Patches

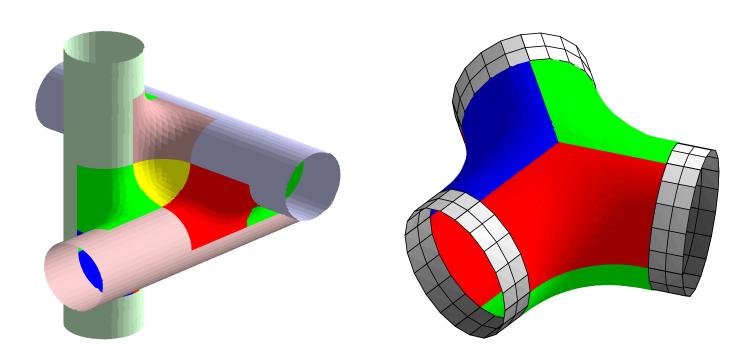
Kęstutis Karčiauskas (Vilnius University) Jörg Peters (University of Florida)

Part I: Modelling with Multi-Sided Patches, Jörg Peters

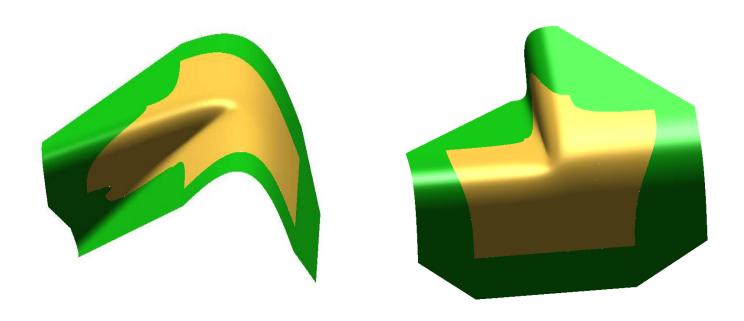
Outline

- 1. Multi-sided patches in blending
- 2. Artifacts of current approaches
- 3. Combinatorial structure of rational M-patches
- 4. Tensor-border of multi-sided patches
- 5. Inclusion of M-patches into B-spline surface
- 6. Guided and finite subdivision

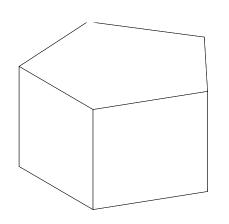
1 Multi-sided patches in blending

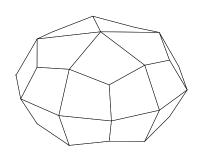


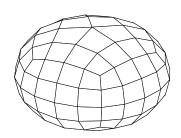
1 Multi-sided patches in blending

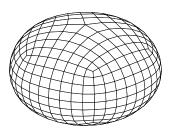


2 Artifacts: Catmull-Clark surfaces









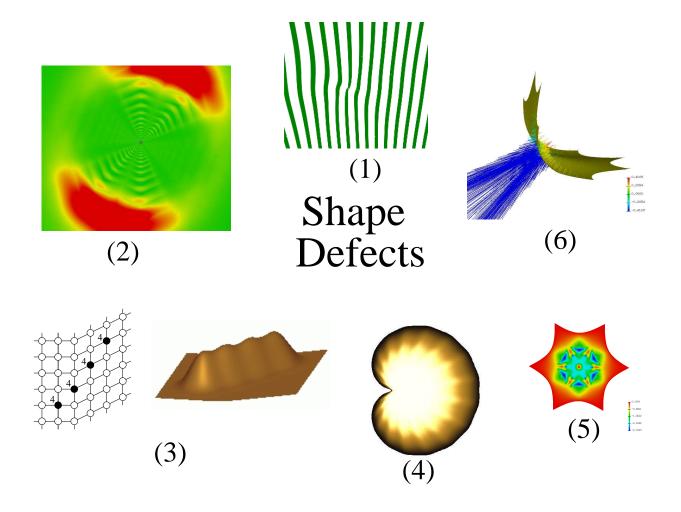
2 Artifacts of Catmull-Clark surfaces

left Control points of characteristic map (blue) are lifted onto paraboloid $z = 1 - x^2 - 0.6y^2$. The corresponding quad mesh (black) looks rather convex – inserting diagonals in direction "around extraordinary node" we get a convex triangulation.

middle 10 rings of Catmull-Clark subdivision surface.

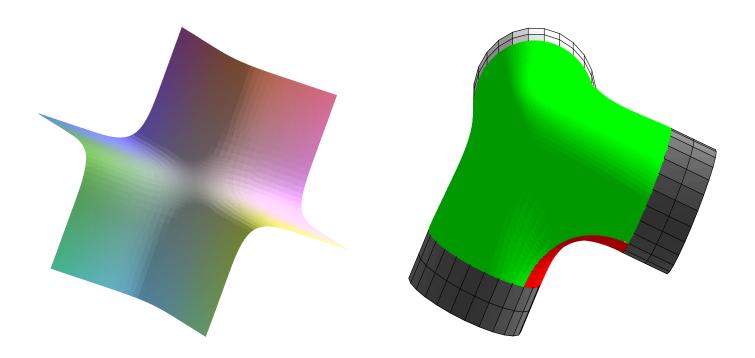
right A look through the microscope – Catmull-Clark surface is scaled by 50 in z-direction; its rings from 10th to 20th are displayed.

2 Shape Artifacts



Modeling with Multi-Sided Patches

2 What blends are difficult to make fair?



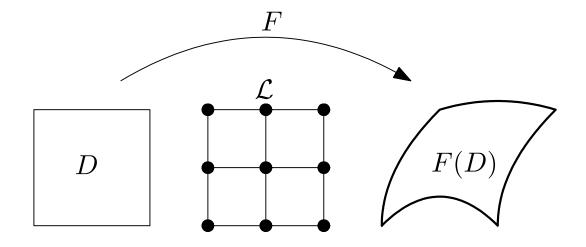
Observation: elliptic shape is a difficult configuration for all surfacing approaches.

2 Artifacts Defined

Consider a blend between multiple primary surfaces (=defining data)

Artifact:= curvature feature that is not present in the defining data.

3 Definition of a rational M-patch



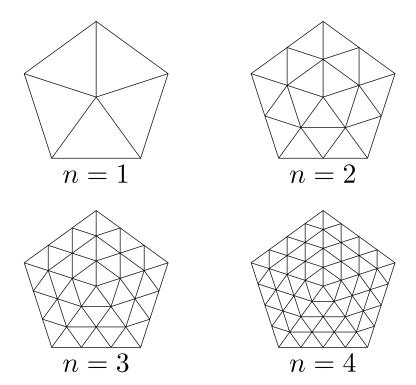
basis functions f_q , $q \in \mathcal{L}$ (index of control net) defined over a domain D.

For control points $\mathbf{p}_q \in \mathbb{R}^3$ and their weights $w_q \in \mathbb{R}$, $q \in \mathcal{L}$,

$$F := \frac{\sum_{q \in \mathcal{L}} w_q \mathbf{p}_q f_q}{\sum_{q \in \mathcal{L}} w_q f_q}.$$

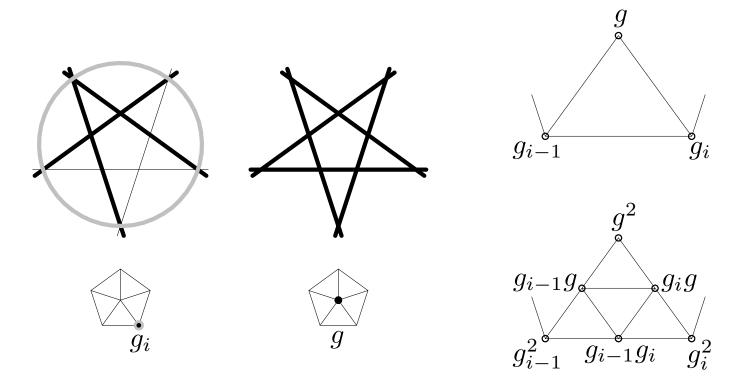
A rational patch := F(D).

3 Control point net of M-patch



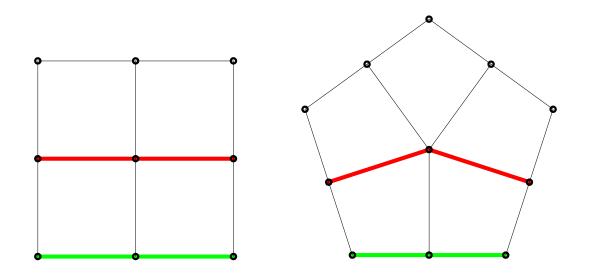
Control nets of M-patches of various depth n.

3 Basis functions of M-patch



Monomial structure of basis functions.

4 Tensor-border nets: degree 2 and order 1



left Biquadratic *tensor-product* net:

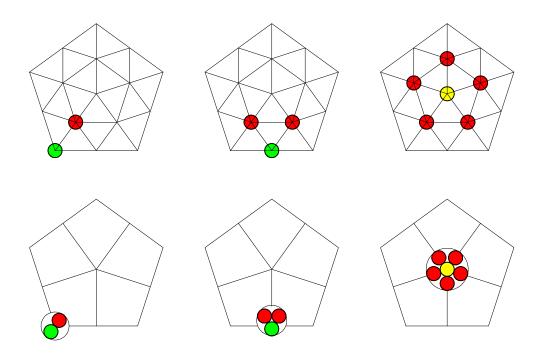
$$\sum_{i=0}^{2} \sum_{j=0}^{2} c_{ij} b_i^2(u) b_j^2(v) \text{ where } b_i^2(t) := {2 \choose i} (1-t)^{2-i} t^i.$$

right multi-sided tensor-border net of degree 2 and order 1 (Sabin net).

green – define boundary curve;

green + red - first derivative across curve.

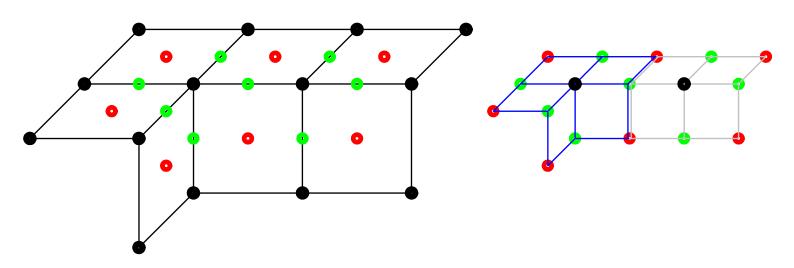
4A M-patch \rightarrow order 1 tensor-border patch



Linearly independent basis functions of order 1 tensor-border patch are derived as the linear combinations of basis functions of M-patch.

M-patch of depth $n \to \text{order } 1$ tensor-border patch of degree n.

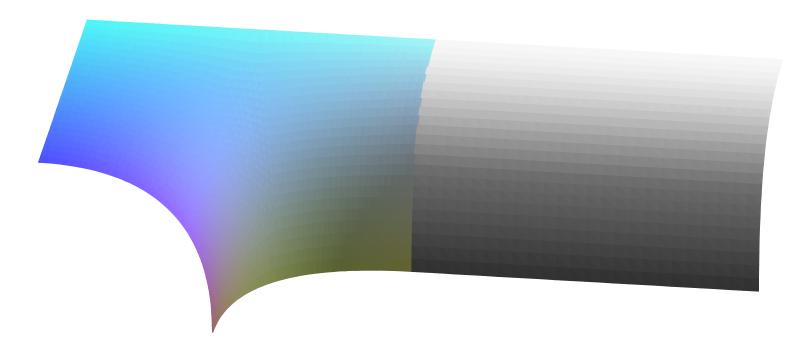
$4\mathbf{A}$ Simplest C^1 spline scheme



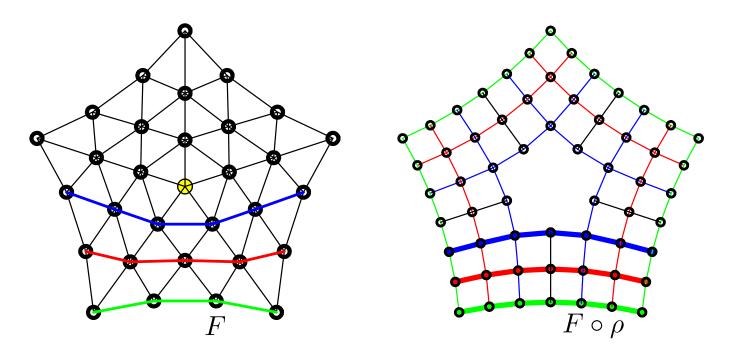
red – centroids of the quads;

green – midedges.

$4\mathbf{A}$ Simplest C^1 spline surface



4B Induced order 2 tensor-border of M-patch



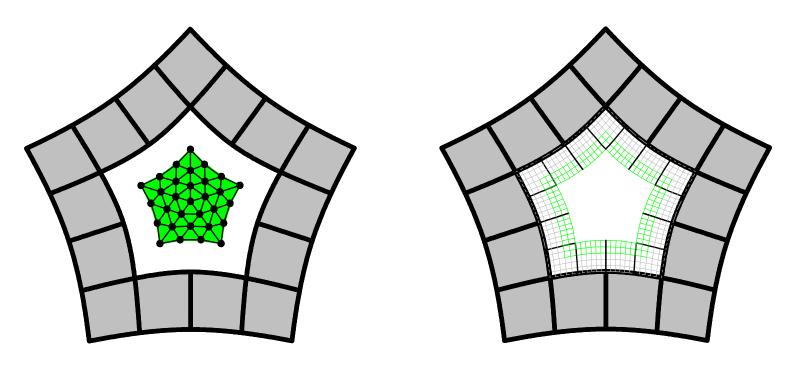
Induced order 2 tensor-border of degree 6 of M-patch of depth 3.

New basis functions are dependent.

Outline

- 1. Multi-sided patches in blending
- 2. Artifacts of current approaches
- 3. Combinatorial structure of rational M-patches
- 4. Tensor-border of multi-sided patches
- 5. Inclusion of M-patches into B-spline surface
- 6. Guided and finite subdivision

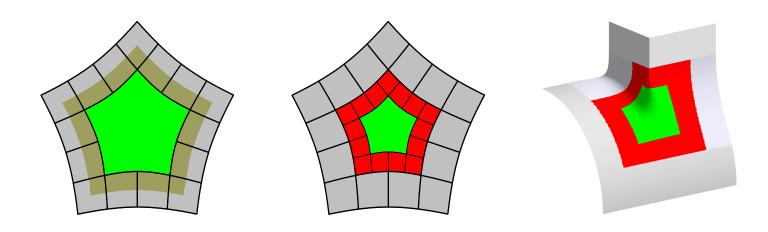
$5 \ C^2$ inclusion of M-patch into B-spline surface



 $b_{3,3}$ and F

$$b_{3,3} \circ \tau = F \circ \rho$$

5 Transition from input data



left M-patch is included into B-spline surface directly.

middle M-patch is included into B-spline surface via intermediate fairing ring (red).

right The features of surrounding surface like creases, incompatible data are pushed into fairing ring leaving M-patch in peace.

Example: two intersecting planes are blended with cylinder.

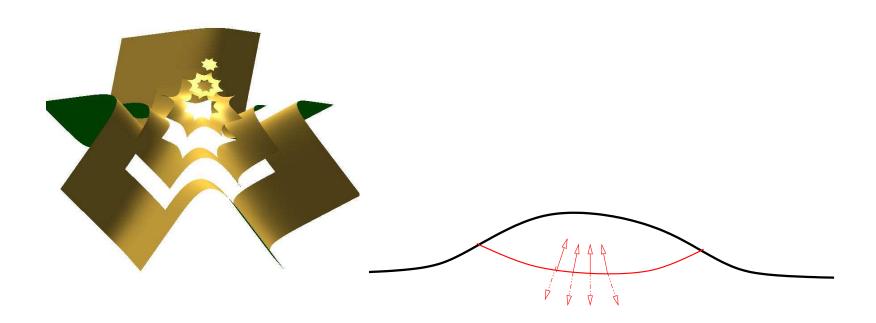
6 Representation of M-patches via rational Bézier patches

A general m-sided M-patch of depth n can be represented as a collection of

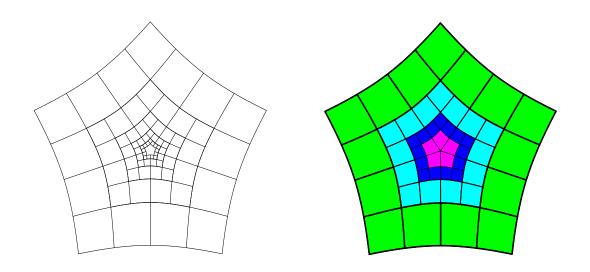
m rational Bézier patches of bidegree ((m-2)n,(m-2)n).

Here $n \geq 4$.

6 Reapproximation: Hermite + Smoothness



6 Guided subdivision and Finite subdivision



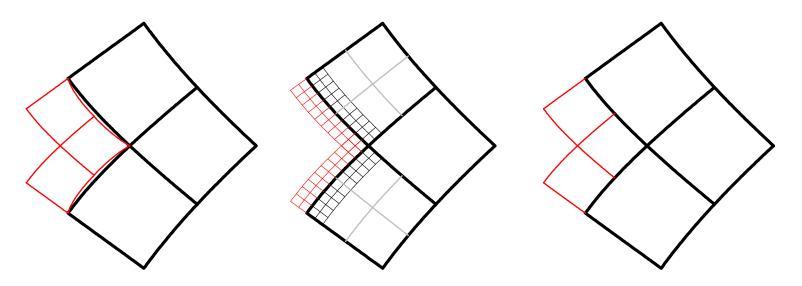
left Infinite sequence of patches:

bidegree (6,6) patches \rightarrow curvature continuous surface.

bidegree (5,5) patches \rightarrow curvature bounded surface.

right Ordinary patches are capped by degree (11,11) patches.

6 Gluing adjacent rings



left Inner (red) and outer (black) annulus are juxtaposed.

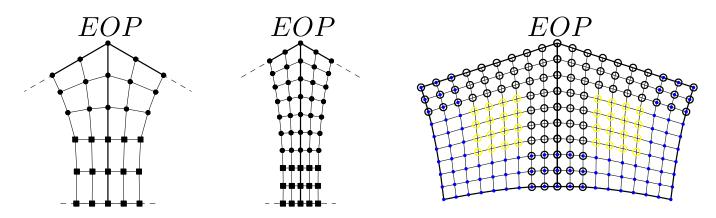
middle The outer patches are subdivided; the subdivided data is C^2 extended to the inner ring.

left Outer ring and corrected inner ring are C^2 connected.

Summary

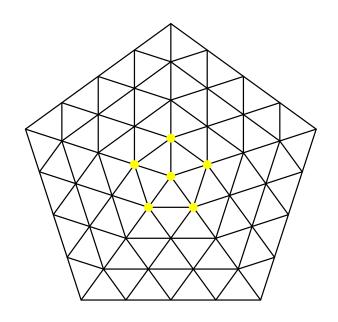
- 1. A finite spline scheme that empirically produces fair surfaces.
- 2. Shape for filling a multisided hole is from the M-patch.
- 3. The shape is captured by polynomial patches of moderate degree (guided finite subdivision).

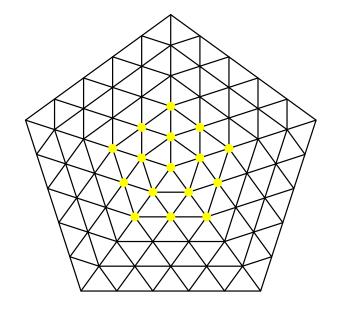
Challenges: Problems of piecewise approaches



- 1) For low degree patches, the smoothness constraints result in very stiff connection of control points. This restricts the geometry..
- 2) For high degree patches, the control structures are underconstrained and difficult to control.
- 3) In particular, unconstrained control points (yellow) are difficult to set to match an elliptic shape intent.

Unconstrained control points of M-patch





left M-patch of depth 4 – current version in C^2 construction; unconstrained (yellow) points are under control.

right M-patch of depth 5; unconstrained (yellow) points – current problem.