
Mesh Refinement based on Euler Encoding

Le-Jeng Shiue
University of Florida
sle-jeng@cise.ufl.edu

Jörg Peters
University of Florida

jorg@cise.ufl.edu

Abstract

A sequence of mesh manipulations that preserves the
Euler invariant is called an Euler encoding. We propose
new, efficient Euler encodings for primal and dual mesh re-
finement. The implementations are analyzed and compared
to array-based, connectivity-free refinement and to recon-
struction of the refined mesh.

1. Introduction

Euler operators reconfigure the neighborhood of a mesh
node while preserving the structural invariant of the Euler
count. They are the standard atomic operation for editing
meshes [14]. Euler operators are often realized as updat-
ing adjacency pointers of the mesh data structure (such as
the halfedge data structure [22]). A subset of Euler opera-
tors are shown in Figure4. Mesh algorithms such as pro-
gressive mesh [9], mesh remeshing [1, 7], mesh compres-
sion [16], and mesh refinement are based on a sequence of
Euler operators to assure the combinatorial integrity of the
transformed mesh. The corresponding sequence of opera-
tion is called anEuler encoding.

Mesh refinement is a core operation for many computa-
tional and graphics applications, including subdivision al-
gorithms (see e.g. [21]) and multiresolution modeling. Fig-
ure1 illustrates four common refinement schemes. Figure2
shows a mesh sequence generated by a PQQ-based subdi-
vision algorithm where new nodes are placed as weighted
averages of old ones to smooth the polyhedron. The local
neighborhood of the old nodes is called stencil, and the cor-
respondence between the new node and its stencil is called
stencil correspondence. An Euler encoding of mesh refine-
ment isefficientif it (i) minimizes the operation count, and
(ii) encodes updates (i.e. stencil correspondences) without
the need for extraneous data structures, such as tagging ver-
tices. The encoded updates are crucial in implementing a
generic library of mesh refinement on a generic mesh data
structure [19].
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Figure 1: Refinement schemes (initial meshtop, refined
meshbottom): primal quadrilateral quadrisection (PQQ),
primal triangle quadrisection (PTQ), dual quadrilateral
quadrisection (DQQ) and

√
3 triangulation.

Figure 2: Refinement of a rook model by Catmull-Clark
subdivision [5]. Nodes of the refined mesh are placed ac-
cording to geometry rules that depend on the local neigh-
borhood graph.

This paper focuses on Euler-encoding primal and dual
quadrisection refinements. Dual schemes are often consid-
ered incompatible with Euler encoding, but, in fact, weex-
hibit three new, alternative Euler encodings for the dual
quadrilateral quadrisection! The performance effect of us-
ing Euler operations is evaluated by comparing the encod-
ing of the PQQ refinement with an optimized array-based
implementation which is connectivity-free. The three Eu-
ler encodings of the DQQ refinement are compared and an-
alyzed, and we establish the advantage of the Euler encod-
ing over another type of approach, namely reconstructing
the refined mesh.
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Figure 3: The two flavors of the halfedge mesh data struc-
ture: each halfedge points to aprevious, anextand anoppo-
sitehalfedge.

2. Mesh Data Structures and Euler Opera-
tions

A meshis a graph whose primitives (i.e. vertices, edges
and facets) carry attribute information such as vertex po-
sitions or facet colors. The topology of a mesh is rep-
resented by a combinatorial manifold structure. A mesh
M = {F,E,V}, whereF, E andV are sets of facets, edges
and vertices. A facet is an ordered set of vertices (f =
{v0,v1, ...vn−1}, n is the valence), and an edge is a vertex
pair (e= {v0,v1}). A mesh is2-manifoldif every inner point
has a neighborhood homeomorphic to a disk (or to a half-
disk on the mesh boundary). In this paper, a mesh is always
a 2-manifold mesh.

The most popular data structures for manipulat-
ing meshes areedge-based, i.e. use the adjacency of edges
to represent the connectivity. Examples of edge-based
mesh data structures are the winged-edge data struc-
ture [2], the halfedge data structure [22], and the quadedge
data structure [8]. Adjacency of primitives are usually real-
ized as pointers (calledadjacency pointers), and low level
mesh editing (such as adding or deleting edges) amount
to updating adjacency pointers. Thehalfedge data struc-
ture best combines simplicity and flexibility and comes
in two flavors (Figure3). Each halfedge has an oppo-
site pointer to its paired halfedge, pointers to the previ-
ous and the next halfedges of the incident facet (or vertex),
and pointers to the incident facet and vertex. Depend-
ing on the regularity of the mesh some adjacency pointers
can be omitted [4]. The Computational Geometry Al-
gorithm Library (CGAL) represents polyhedron meshes
(Polyhedron 3) [10] based on the halfedge data struc-
ture.

Euler operations change the mesh and, by the same time,
preserve the combinatorial integrity represented by the Eu-
ler characteristicV −E + F = 2− 2g whereV, E, andF
are respectively the numbers of vertices, edges, and facets
andg is the genus. Any two meshes homeomorphic to each
other have the same Euler characteristic and can be trans-
formed into each other through a sequence of Euler oper-
ations. Some commonly-used Euler operations are shown
in Figure 4 and Figure5. The number of the pointer up-
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splitFacet(f )

joinFacet(e)

splitVertex(v)

joinVertex(e)

flipEdge(e)

breakFacet(f )

weldFacet(v)

Figure 4: Commonly used examples of Euler operations.
Gray indicates the updated edges and vertices.
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fillStar(v)

splitStar(v)

splitCorner(v, f )

Figure 5: Additional examples of Euler operations.

join/split join/split flip break/weld split
facet vertex edge facet star
14 15 14 12n+1 15n

Table 1: Number of pointer updates for Euler operations
(see Figures4 and 5) using the complete linked halfedge
data structure. Heren is the degree of the facet or the ver-
tex.

dates of a Euler operation is summarized in Table1. The
number is based on a halfedge data structure with the com-
plete set of the adjacency pointers (i.e. 3 pointers to adja-
cent halfedge, 1 each to the incidental facet and vertex.)

One special subset of Euler operations is theStellar op-
erations[12]. Stellar operations applies to simplicial com-
plexes, i.e. trianglated 2-manifolds. Theflip-edge is called
Stellar move, and thebreakFacet is called Stellar subdivi-
sion. Stellar operations have been used in mesh refinements
on a triangulated mesh. Because Stellar operations are re-



Figure 6: The array-based implementation of the PQQ re-
finement. (top) refined mesh lines, (bottom) layout of nodes.
amounts to scaling the vertex array.

INPUT : i n i t i a l mesh M = {F,E,V}
OUTPUT : PQQ−r e f i n e d mesh

Ve := {}
f o r a l l e∈ E do

ve ← i n s e r t V e r t e x (e) . . . . . ( a )
Ve := Ve∪ve

end fo r
fo r a l l f ∈ F do

V f := Ve∩ f
e ← s p l i t C o r n e r (f , v∈ f ∩V ) . . . . . ( b )
vf ← i n s e r t V e r t e x (e ) . . . . . ( c )
i n s e r t E d g e (vf ,V f −e ) . . . . . ( d )

end fo r

Listing 1: Euler encoding of PQQ refinement (see Figure7).
Here f is the set of vertices that define the facet.

stricted to triangles, a special data structure and a prepro-
cessing step are required to support general meshes. Eu-
ler operations is more flexible in supporting general meshes
and various refinement schemes.

To implement mesh refinements, array-based data struc-
tures [15, 18] represent an alternative to edge-based data
structures, when the mesh is limited to quadrilateral and tri-
angle meshes. Figure6 describes the process of the PQQ
refinement of a quadrilateral mesh. Here, the adjacency re-
lations of the array are implicit (hence no adjacency point-
ers), and refinement scales the underlying array.

3. Euler Encoding of Mesh Refinement

Mesh refinement recursively reconfigures the ini-
tial mesh by dividing facets (e.g. PQQ refinement) or split-
ting vertices (e.g. DQQ refinement). Uniform facets or ver-
tices are recursively generated in the process. Figure1
shows four regular refinement schemes. A mesh refine-
ment is called primal if we can naturally associate a vertex
of refined mesh with each vertex of the original mesh. Eu-
ler encodings of primal schemes only involve vertex and
edge insertions. The Euler encoding of the

√
3 triangula-

tion can be expressed as inserting a barycentric vertex in
each facet and then flipping every old edges. The Euler en-
coding of PQQ refinement requires more steps as shown in

INPUT : i n i t i a l mesh M = {F,E,V}
OUTPUT : DQQ r e f i n e d mesh

V f := {}
f o r a l l f ∈ F do

vf ← b r e a k F a c e t (f )
V f := V f ∪vf

end fo r
fo r a l l v∈ V f do

s p l i t S t a r (v)
we ldFace t (v)

end fo r
fo r a l l e∈ E do

d e l e t e E d g e (e)
end fo r
fo r a l l v∈ V do

f i l l S t a r (v)
we ldFace t (v)

end fo r

Listing 2: Splitting encoding of DQQ refinement (see Fig-
ure8).

INPUT : i n i t i a l mesh M = {F,E,V}
OUTPUT : DQQ r e f i n e d mesh

V f := {}
f o r a l l v∈ V do

s p l i t S t a r (v)
we ldFace t (v)

end fo r
fo r a l l e= −−→v1v2 ∈ E do

s p l i t C o r n e r (v1 , f : −−→v1v2 ∈ f )
s p l i t C o r n e r (v2 , f : −−→v2v1 ∈ f )
d e l e t e E d g e (e)

end fo r

Listing 3: Tilting encoding of DQQ refinement (see Figure
8).

Listing 1 and illustrated in Figure7. The PQQ Euler en-
coding (a) inserts a (edge-)vertex on each edge, then, for
each facet, (b) an edge is inserted between two neigh-
bor edge-vertices, (c) a (facet-)vertex is added on that edge,
and (d) edges are inserted to connect all edge-vertices of
the facet. In a generic mesh data structure with no spe-
cific tag to indicate the type (i.e. the stencil correspondences
such as edge-vertex and facet-vertex) of the vertex in re-
fined mesh, the order of the Euler operations is used to
determine the stencil correspondences of a refined ver-
tex [17].

Encoding dual refinement is more tricky since the ini-
tial mesh is not retained, and even trickier to maintain the
stencil correspondences without tagging the vertex. Fig-
ure8 shows three Euler encodings of the DQQ refinement.
Factoring decomposes the DQQ refinement into two mid-
edge refinements. A midedge refinement inserts a vertex
on each edge, connects the new vertices within a facet, and
then deletes the initial vertices. Loop and

√
3 subdivision in

OpenMesh [3] are similarly factored [20]. Thesplitting en-
coding generates, for each vertex, new nodes, correspond-
ing to the corners of the incident facets. Both the factoring
and splitting generate intermediate vertices that are deleted
in the end of the encoding. The number of intermediate ver-



Subdivision Step tripod gripper
Splitting Tilting Rebuild Splitting Tilting

1 0.0007 (4484) 0.0006 (2720) 0.0006 0.0261 (180764) 0.0212 (109616)
2 0.0026 (18016) 0.0022 (10956) 0.00280.1275 (722656) 0.1034 (438084)
3 0.0101 (71800) 0.0084 (43572) 0.02140.4820 (2891944) 0.3902 (1753596)
4 0.0564 (286936) 0.0471 (174036) 0.27481.8639 (11569096) 1.5577 (7015644)
5 0.1939 (1147480) 0.1594 (695892) 7.47897.6093 (46277704) 6.0163 (28063836)

Table 2: Refinement (in seconds) and pointer updates (in parentheses) of Doo-Sabin subdivision on the tripod and the gripper
model. “Rebuild” indicates the implementation based on thereconstruction of the refined mesh.

tices in factoring is the number of initial edges. The number
of intermediate vertices in splitting is the number of initial
facets. Since the number of edges is larger than the num-
ber of facets, splitting has a smaller number of connectiv-
ity updates than factoring. In a quadrilateral mesh, splitting
creates only half intermediate vertices of factoring. How-
ever, we can do even better. Thetilting avoids all intermedi-
ate vertices by leveraging thateach new vertex corresponds
to a halfedge. The algorithms of the DQQ refinement based
on splitting and tilting encodings are listed in List2 and3
and illustrated in Figure??.

4. Implementation and Performance Analysis

The PTQ, PQQ, DQQ and
√

3 refinements were real-
ized as Euler encodings onCGAL::Polyhedron 3 based on
the generic programming paradigm and static binding1.
We implemented Loop [13], Catmull-Clark, Doo-Sabin [6]
and

√
3 [11] subdivisions of the test meshes shown in Fig-

ure 9. The tripod contains 20 vertices, 18 facets, and
36 edges; the rook contains 130 vertices, 256 trian-
gles, and 384 edges; the gripper contains 716 vertices, 726
facets, and 1452 edges. Mesh refinements in general triple
or quadruple the mesh size by each refinement. For exam-
ple, one step PQQ refinement on the gripper mesh creates
2894 vertices, 2904 facets, and 5808 edges. Test pro-
grams are compiled with GCC 3.3.2 and run on an In-
tel Pentium4 2.4GHz with 1GB RAM.

Comparison of three alternative Euler encodingsof the
DQQ refinement introduced in Figure8. Here, we count the
number of the pointer updates on a halfedge data structure.
Assume that the initial mesh containsnf quadrilaterals,ne

edges andnv vertices. To simplify the formulas, the average
valence is also assumed to be four. Then the following table
lists thelength L of each Euler encoding. The length is the
total number of the pointer updates in the encoding.

L f actor = (ne+4nf )Iv +4(2nf +nv)Ie+(nv +ne)Wf
Lsplit = nf Bf +nf Ss+(nf +nv)Wf +neDe+nvFs

Ltilt = nvSs+nvWf +2neIe+neDe

1 http://www.cgal.org/

subdivision tripod gripper
SI (%) LR (%) SI (%) LR (%)

1 14.2857 39.3399 18.7739 39.3596
2 15.3846 39.1874 18.9020 39.3786
3 16.8317 39.3148 19.0456 39.3627
4 16.4894 39.3468 16.4279 39.3588
5 17.7927 39.3548 20.9349 39.3578

Table 3: Speed improvement and reduction of the Euler en-
coding of Tilting vs Splitting. SI indicates the speed im-
provement, and LR indicates the length reduction.

whereIv,e andDe indicate the number of the updated point-
ers for eachinsertVertex, insertEdge and deleteEdge;
Wf and Bf indicate the number for eachweldFacet and
breakFacet; Ss and Fs indicate the number for each
splitStar and fillStar. Table 2 summarizes the split-
ting and tilting encoding: the length is reduced by 39.4%
and the speed is improved by 20.9% in the fifth refine-
ment on the gripper mesh (see Table3). Table 2 also
compares withmesh reconstructionbased on the in-
cremental builder and modifier callback mechanism of
CGAL::Polyhedron 3. Our Euler encoding is almost 14
times faster after five refinements on the tripod mesh.

Euler operations vs array-based mesh refinement.
Array-based implementation takes advantages of the reg-
ularity of the quadrisection of a quadrilateral: since the
new vertices are arranged in a 2D array the connec-
tivity is implied by the grid and simple index calcula-
tion. Nodes on boundaries of arrays need to be repli-
cated and there is overhead for collecting and distribut-
ing data for (irregular-)corners of the array. This over-
head makes array-based refinement slower in the first steps
of the PQQ refinement. The interesting question is, af-
ter how many steps the cost of applying the Euler oper-
ations to a refined mesh exceeds this overhead. Table4
shows that only after three steps array-based implementa-
tion, where applicable, is superior.

Comparison with OpenMesh. To gauge the efficiency of
our implementation, we compare with the OpenMesh im-



subdivision tripod gripper
Array Halfedge Array Halfedge

1 0.0004 0.0003 0.0157 0.0094
2 0.0013 0.0010 0.0585 0.0413
3 0.0043 0.0038 0.1810 0.2139
4 0.0156 0.0155 0.6595 0.8313
5 0.0621 0.0718 2.6196 3.4718

Table 4: Array-based and halfedge-based Catmull-Clark
subdivision on the tripod and the gripper model. At refine-
ment level 5, array-based implementation is 30% faster than
Euler-based halfedge implementation on the gripper model.
All statistics are in seconds.

Subdivision Loop subdivision
√

3 subdivision
CGAL OpenMesh CGAL OpenMesh

1 0.0013 0.0284 0.0022 0.0230
2 0.0215 0.1161 0.0069 0.0712
3 0.0226 0.4672 0.0270 0.2101
4 0.1173 1.8459 0.1235 0.6693
5 0.4529 7.5003 0.3777 1.8574

Table 5: Subdividing the triangulated rook mesh. All statis-
tics are in seconds

plementation of Loop and
√

3 subdivisions which are based
on factoring. Table5 reflects the fact that factoring the re-
finement introduces an additional connectivity and geome-
try overhead; and geometry operations are usually compu-
tational expensive.

5. Conclusion

Euler operators are standard atomic editing operations
on meshes and their optimization is crucial for the software
performance. This paper introduced new, efficient Euler en-
codings for PQQ and DQQ refinements on a generic mesh
data structure. For the limited set where it applies, array-
based refinement outperforms Euler encoding after the first
few refinements, but rebuilding the mesh from scratch is
shown to be slower than Euler encoding.
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Initial Mesh Refined Mesh
Euler Encoding

Figure 7: An Euler encoding of the PQQ refinement (see Listing1). Light blue indicates the insertion of the new vertex and
edge.

Initial Mesh Refined Mesh
Factoring

Splitting

Tilting

Figure 8: Three alternative Euler encodings of the DQQ refinement (see Listing2 and Listing3). Light blue indicates the
insertions of the vertex and the edge.

Figure 9: Test models of the Euler encoding: tripod, rook, and gripper rendered with Catmull-Clark subdivision.
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