Mesh Mutation
in Programmable Graphics Hardware

Le-Jeng Shiue, University of Florida
Vineet Goel, ATI
Jörg Peters, University of Florida
Mesh Mutation

Refinement | Adjustment
Mesh Mutation: No Refinement
Mesh Mutation: Subdivision + Displacement Map
Mesh Modeling

User-interaction → Mesh Mutation

Refinement → Adjustment

Rendering
Mesh Modeling

Mesh Mutation

CPU

User-interaction

Refinement

Adjustment

GPU

Rendering
Mesh Modeling

CPU
User-interaction

GPU
Mesh Mutation
Refinement
Adjustment
Rendering
Mesh in Graphics Hardware: Goals & Tools

- Reduce \textit{CPU\rightarrow GPU} traffic (data and rendering instructions)
- Use parallel computing on the GPU
- Improve the rendering quality for meshes
- Increase the level of abstraction for the programmer

- Separate connectivity and attributes (structure and operations)
- Avoid adjacency pointers where possible
- Maximize algorithmic parallelism
Mesh in Graphics Hardware: Goals & Tools

- Reduce CPU→GPU traffic (data and rendering instructions)
- Use parallel computing on the GPU
- Improve the rendering quality for meshes
- Increase the level of abstraction for the programmer

- Separate connectivity and attributes (structure and operations)
- Avoid adjacency pointers where possible
- Maximize algorithmic parallelism
Mesh Processor

App. Memory

User Interaction

Mesh Processor

Texture Memory

Attribute Memory

Vertex Processor

Primitive Assembly

(Mutation/render states)

(Geometry)

(Topology)

(Geometry)

(Mutation/render states)

(Geometry)

(Render states)
Mesh and Refinement Structure

Data Flow

Mesh Shader

Data

Mesh Initialization

Refinement

Node Visit

Adjustment

D-facet Visit

Primitive Compiler

Attribute Addressing

Attribute Parser

D-facet D-edge D-vertex

Connectivity

Rendering Attrs

Algorithimc Attrs

Point Normal

Attributes
Atlas, Charts and Attributes

- **Static** domain connectivity
- **Index-based** halfedge structure: no adjacency pointers
- **Pure connectivity** structure, no attributes associated
Atlas, Charts and Attributes

- **Dynamic** and **regular** refinement connectivity
- **Index enumeration**: not a real structure
- Chart-based **adaptive** refinement using the auxiliary layer
Atlas, Charts and Attributes

- **Generic**: instantiated with memory base and attribute size
- **User-definable**: attribute types and addressing modes
- **Computed access**
Mesh in Programmable Graphics Hardware (MiPGH)
MiPGH: Refinement

- User-transparent

- Support quadrisection on quad or triangle polygons
MiPGH: Adjustment

- **User-transparent** global mesh traversal
- **User-programmable** mesh shader (adjustment rule) on user-defined attributes
- **1-disk local access** in the mesh shader
MiPGH: Mesh Shader

... const float mask[9] = {36/64.0, 6/64.0, 6/64.0, 6/64.0, 6/64.0, 1/64.0, 1/64.0, 1/64.0, 1/64.0};
readAttribute4(IPositionHandle, IVertexIndices, mesh, 9);
Position = inner_product(mesh, mask, 9);
...
MiPGH: Rendering

- **User-defined** rendering attributes
- **Chart** is the rendering primitive
MiPGH

Mesh Shader

Refinement → Node Visit → Adjustment → D-facet Visit → Primitive Compiler
Subdivision + Displacement Map
Extended Attributes: Crease Value
Extented Attributes: Crease Value

Thank You!