Curvature of subdivision surfaces

— a differential geometric analysis and literature review —

Jörg Peters, jorg@cise.ufl.edu
Georg Umlauf, georg.umlauf@gmx.de
Motivation

Almost all subdivision algorithms in the current literature achieve \textit{tangent continuity but not curvature continuity}. \((C^1\text{ with infinite curvature!})\)
Motivation

Almost all subdivision algorithms in the current literature achieve tangent continuity but not curvature continuity. \((C^1\) with infinite curvature!\)

Why is it difficult to achieve curvature continuity at an extraordinary point \((EOP)\)?
Motivation

Almost all subdivision algorithms in the current literature achieve tangent continuity but not curvature continuity. \((C^1\) with infinite curvature!\)

Why is it difficult to achieve curvature continuity at an extraordinary point \((EOP)\)?

The quantities to measure are Gaussian and mean curvature in a neighborhood of an EOP!
Motivation

Almost all subdivision algorithms in the current literature achieve *tangent continuity but not curvature continuity*. (C^1 with infinite curvature!)

Why is it difficult to achieve curvature continuity at an extraordinary point (*EOP*)?

The quantities to measure are *Gaussian and mean curvature* in a neighborhood of an EOP!

Sample result:
At EOP the determinant of the *Jacobian of the subdominant* eigenfunctions of a curvature continuous subdivision algorithm must have *lower degree* than the determinant of the Jacobian of the surface.
Motivation: Review

Understand important *lower bound* results better:
Sabin 91, (≥ bi-4)
Reif 93,96, (≥ bi-6)
Prautzsch,Reif 99, (≥ bi-7(k + 1))
(Lower bounds on parametrization, not surface)

Understand *constructions* of curvature continuous piecewise polynomial subdivision algorithms
Prautzsch 97,
Prautzsch, Umlauf 98, Umlauf 99 (hybrid)
Reif 98.

Understand *stiffness* of such subdivision algorithms:
infinite collection of polynomial pieces
but generated by the same rule.
Talk Outline

- The (few) basics. (nomenclature)

- express curvatures of mth spline ring converging towards the EOP

\[K_m = \left(\frac{\mu}{\lambda^2} \right)^2 m f^m_K(u, v), \quad H_m = \left(\frac{\mu}{\lambda^2} \right)^m f^m_H(u, v) \]

for scalar constants $\mu < \lambda$ and rational functions f_K, f_H.

μ/λ^2: implies necessary constraints

Necessary and sufficient contraints: PDEs

- Lower bounds

- Prautzsch’s sufficient condition and construction.

- The key open problem! (well, sort of)

- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
Talk Outline

- The (few) basics. (nomenclature)

- express curvatures of \(m \)th spline ring converging towards the EOP

\[
K_m = (\mu / \lambda^2)^2 \text{ } f_K^m(u, v), \quad H_m = (\mu / \lambda^2)^m \text{ } f_H^m(u, v)
\]

for scalar constants \(\mu < \lambda \) and rational functions \(f_K, f_H \).
\(\mu / \lambda^2 \): implies necessary constraints

Necessary and sufficient contraints: PDEs

- Lower bounds

- Prautzsch’s sufficient condition and construction.

- The key open problem! (well, sort of)

- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
Talk Outline

- The (few) basics. (nomenclature)

- express curvatures of mth spline ring converging towards the EOP

$$K_m = \left(\frac{\mu}{\lambda^2}\right)^2 f^K_m(u, v), \quad H_m = \left(\frac{\mu}{\lambda^2}\right)^m f^H_m(u, v)$$

for scalar constants $\mu < \lambda$ and rational functions f^K, f^H.

μ/λ^2: implies necessary constraints

Necessary and sufficient constraints: PDEs

- Lower bounds

- Prautzsch’s *sufficient condition and construction*.

- The key open problem! (well, sort of)

- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
Talk Outline

- The (few) basics. (nomenclature)
- Express curvatures of mth spline ring converging towards the EOP

$$K_m = \left(\frac{\mu}{\lambda^2}\right)^2 f_K^m(u,v), \quad H_m = \left(\frac{\mu}{\lambda^2}\right)^m f_H^m(u,v)$$

for scalar constants $\mu < \lambda$ and rational functions f_K, f_H.

μ/λ^2: implies necessary constraints

Necessary and sufficient contraints: PDEs

- Lower bounds

- Prautzsch’s sufficient condition and construction.

- The key open problem! (well, sort of)

- Preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
The talk focusses generic subdivision (**GS**): generalization of \(C^2 \) box-spline subdivision generating regular \(C^1 \) surfaces; affine invariant, symmetric, linear, local, stationary. However applies to non-generic cases [Reif 98 (habil), Zorin 98 (thesis)] and non-polynomial cases.

Surface rings are box-splines (with basis \(B(u, v) \))

\[
\mathbf{x}_m: \{0, \ldots, n-1\} \times \Omega \rightarrow \mathbb{R}^3, \quad \mathbf{x}_m(u, v) = B(u, v) \mathbb{C}_m,
\]
Setting and definitions

\(A \) is square, stochastic **subdivision matrix**: \(C_m = A^m C_0 \), diagonalizable with eigenvalues

\[
1 = \lambda_0 > \lambda_1 = \lambda_2 > \lambda_3 = \lambda_4 = \lambda_5 > \cdots \geq 0,
\]

where \(\lambda_1 = \lambda_2 \) correspond to the 1st and \((n - 1)\)st block, \(\lambda_3 = \lambda_4 \) (for \(n > 3 \)) to the 2nd and \((n - 2)\)nd block and \(\lambda_5 \) to the 0th block of the Fourier decomposition of \(A \).

\(Av_i = \lambda_i v_i \) for all \(i \) yields eigendecomposition

\[
C_m = \sum_i \lambda_i^m v_i p_i, \quad p_i \in \mathbb{R}^3.
\]
Setting and definitions

Expanded in the *eigenfunction*

\[\mathbf{e}^i : \{0, \ldots, n - 1\} \times \Omega \rightarrow \mathbb{R}, (u, v) \mapsto \mathcal{B}(u, v)\mathbf{v}_i \]

the surface ring \(\mathbf{x}_m \) is of the form

\[\mathbf{x}_m(u, v) = \sum_i \lambda_i^m \mathcal{B}(u, v)\mathbf{v}_i \mathbf{p}_i = \sum_i \lambda_i^m \mathbf{e}^i(u, v)\mathbf{p}_i. \]
Gauss curvature K and the mean curvature H are

$$K(u, v) = \frac{e(u, v)g(u, v) - f(u, v)^2}{E(u, v)G(u, v) - F(u, v)^2},$$

$$H(u, v) = \frac{e(u, v)G(u, v) - 2f(u, v)F(u, v) + g(u, v)E(u, v)}{2(E(u, v)G(u, v) - F(u, v)^2)},$$

where

$$E = x_u x_u^t, \quad F = x_u x_v^t, \quad G = x_v x_v^t,$$

$$e = nx_{uu}^t, \quad f = nx_{uv}^t, \quad g = nx_{vv}^t,$$

and $n = (x_u \times x_v)/\|x_u \times x_v\|$ is the normal. Since x is regular, $EG - F^2 = \|x_u \times x_v\|^2$ is nonzero and

$$K = \frac{\det(x_u, x_v, x_{uu}) \det(x_u, x_v, x_{vv}) - \det(x_u, x_v, x_{uv})^2}{\|x_u \times x_v\|^4},$$

$$H = \frac{\det(x_u, x_v, x_{uu}')(x_v x_v^t) - 2 \det(x_u, x_v, x_{uv}')(x_u x_v^t) + \det(x_u, x_v, x_{vv}')(x_u x_u^t)}{2\|x_u \times x_v\|^3}.$$
Talk Outline

- The (few) basics. (nomenclature)

- Express curvatures of mth spline ring converging towards the EOP

 \[K_m = (\mu/\lambda^2)^m f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v) \]

 for scalar constants $\mu < \lambda$ and rational functions f_K, f_H.
 μ/λ^2: implies necessary constraints

 Necessary and sufficient contraints: PDEs

- Lower bounds

- Prautzsch’s sufficient condition and construction.

- The key open problem! (well, sort of)

- Preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
Gauss curvature and mean curvature at EOP

Expand into eigenfunctions \(e^i \) as in [Reif 93]

\[
x_u = \lambda^m (e^1_u p_1 + e^2_u p_2) + \mu^m (e^3_u p_3 + e^4_u p_4 + e^5_u p_5) + o(\mu^m),
\]
\[
x_{uv} = \lambda^m (e^1_{uv} p_1 + e^2_{uv} p_2) + \mu^m (e^3_{uv} p_3 + e^4_{uv} p_4 + e^5_{uv} p_5) + o(\mu^m).
\]
\[
x_u \times x_v = \lambda^{2m} \Delta_{12}(p_1 \times p_2) + o(\lambda^{2m}),
\]
\[
\det(x_u, x_v, x_{uu}) = \lambda^{2m} \mu^m \sum_{i=3,4,5} \det(p_1, p_2, p_i) D^i_{uu} + o(\lambda^{2m} \mu^m).
\]

where

\[
\Delta_{ij} := e^i_u e^j_v - e^j_u e^i_v,
\]
\[
D^i_{st} := \Delta_{12} e^i_{st} - \Delta_{1t} e^2_{st} + \Delta_{2t} e^1_{st}, \quad s, t \in \{u, v\},
\]
\[
P_{ij} := \det(p_1, p_2, p_i) \det(p_1, p_2, p_j),
\]
\[K_m = \left(\frac{\mu}{\lambda^2} \right)^{2m} \sum_{i,j=3,4,5} P_{ij} \left(D_{uu}^i D_{vv}^j - D_{uv}^i D_{uv}^j \right) + o(1) \]

\[\Delta_{12}^4 \| p_1 \times p_2 \|^4 + o(1) \]

\(\Delta_{12} \) is the Jacobi determinant of the subeigenfunctions (‘characteristic map’). \(\| p_1 \times p_2 \| \) is positive for almost all initial control nets \(C_0 \). Hence denominator ok.

- If \(\mu > \lambda^2 \) then the Gauss curvature at the EOP is infinite. [Catmull-Clark 78, Loop 87, Qu 90]

- If \(\mu < \lambda^2 \) then the Gauss curvature at the EOP is zero. [Prautzsch & Umlauf ’98]

- If \(\mu = \lambda^2 \) then the Gauss curvature at the EOP is bounded by the second factor of \(K_m \) but is possibly non-unique [Sabin 91, Holt 96].

Note combination of tangent continuity and infinite curvature for \(\mu > \lambda^2 \).
If $\mu = \lambda^2$ then the limit for $m \to \infty$ yields at the EOP

$$K = \sum_{i,j=3,4,5} \frac{P_{ij}}{\|p_1 \times p_2\|^4} \frac{D_{uu}^i D_{vv}^j - D_{uv}^i D_{uv}^j}{\Delta_{12}^4}.$$

a rational function in u and v that **must be constant**!

$$P_{ij}(= P_{ji}) = \det(p_1, p_2, p_i) \det(p_1, p_2, p_j) \text{ arbitrary implies each summand has to be constant!}$$

Eigenfunctions e^1, \ldots, e^5 must satisfy the **six partial differential equations** (G-PDE):

$$D_{uu}^i D_{vv}^j - 2D_{uv}^i D_{uv}^j + D_{vv}^i D_{uu}^j = \Delta_{12}^4 \cdot \text{const}_{ij}, \quad \text{for } i, j \in \{3, 4, 5\}, \ j > i,$$

$$D_{uu}^i D_{vv}^i - (D_{uv}^i)^2 = \Delta_{12}^4 \cdot \text{const}_{ii}, \quad \text{for } i = 3, 4, 5.$$

Summary A GS has for almost all initial nets non-zero Gauss curvature at the EOP if and only if $\mu = \lambda^2$ and G-PDE holds. (9 additional partial differential equations for H)
General: GS is *curvature continuous* if $\mu = \lambda^2$ and the differential equations for G and H hold, because the *principal curvatures*

\[
\kappa_{1,2}^m = H_m \pm \sqrt{H_m^2 - K_m},
\]

converge like $O(\mu^m/\lambda^{2m})$ for $m \to \infty$.

Since $\int d\mathbf{x}_m = O(\lambda^{2m})$ and $\mu < \lambda$

\[
\sum_m \int_{x_m} |\kappa_{1,2}^m|^2 d\mathbf{x}_m = \sum_m O(\mu^{2m}/\lambda^{2m}) < \infty.
\]

which implies [Reif Schröder ’00] for $p = 2$: The principal curvatures of the limit surface of a GS are *square integrable*.
Talk Outline

- The (few) basics. (nomenclature)

- express curvatures of mth spline ring converging towards the EOP

$$K_m = \left(\frac{\mu}{\lambda^2}\right)^{2m} f_K^m(u, v), \quad H_m = \left(\frac{\mu}{\lambda^2}\right)^m f_H^m(u, v)$$

for scalar constants $\mu < \lambda$ and rational functions f_K, f_H.

μ/λ^2: implies necessary constraints

Necessary and sufficient contraints: \textbf{PDEs}

- Lower bounds

- Prautzsch’s sufficient condition and construction.

- The key open problem! (well, sort of)

- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
Lower bounds on the degree

formal degree vs **true degree** \(\deg (= \text{number of non-constant derivatives}) \)

Recall Gauss PDE

\[
\begin{align*}
D_u^i D_v^j - 2D_u^i D_v^i D_{uv}^j + D_v^i D_{uv}^j &= \Delta_{12}^4 \cdot \text{const}_{ij}, \quad \text{for } i, j \in \{3, 4, 5\}, \ j > i, \\
D_u^i D_v^i - (D_u^i)^2 &= \Delta_{12}^4 \cdot \text{const}_{ii}, \quad \text{for } i = 3, 4, 5.
\end{align*}
\]

Simple count with \(d = \deg(x_0) \) total degree (resp. bi-degree) of regular parametrization. **Left side** of PDE

- total degree \(\leq 2(2(d - 1) + d - 2) = 6d - 8 \)
- bi-degree \(\leq 2(2d - 1 + d - 1) = 6d - 4 \),

whereas **right side** of PDE

- formal total degree of \(\Delta_{12}^4 \) is \(4(2d - 2) \)
- formal bi-degree of \(\Delta_{12}^4 \) is \(4(2d - 1) \).

Degree mismatch: (unless \(d = 0 \))

If the **true** degree equals the **formal** degree

then GS is curvature continuous if and only if \(\mu < \lambda^2 \),

i.e. EOP is a flat point.
A GS with $\mu = \lambda^2$ is curvature continuous only if the true degree of the Jacobian Δ_{12} is less than its formal degree! Options:

(i) The true degree of e^1 or e^2 is less than d.

(ii) The leading terms in the Jacobian Δ_{12} cancel.

If not (ii) and not flat then $d' := \deg(e^1) = \deg(e^2), d := \deg(x_0))$:

- Total degree $\deg(\text{left}_{i,j}) = 2(2d' + d - 4)$ and $\deg(\Delta^4_{12}) = 4(2d' - 2)$
- Bi-degree $\deg(\text{left}_{i,j}) = 2(2d' + d - 2)$ and $\deg(\Delta^4_{12}) = 4(2d' - 1)$.

Compare to find $2d' = d$:

If not (ii) then GS is curvature continuous and not flat only if the true (bi-)degree of the surface is at least twice the true (bi-)degree of the subdominant eigenfunctions e^1 and e^2.
Comparison with earlier estimates

$2d' = d$ is consistent with *degree estimate of Reif 93, 96, Zorin 97*:

View surface as a function over the tangent plane parametrized by e_1 and e_2. Then non-flat implies non-tangential component at least quadratic in e_1 and e_2, i.e. $d \geq 2d'$.

[Prautzsch, Reif 99]
If the non-tangential component of the surface is at least of degree r in e_1 and e_2 then the surface representation has to be at least of degree rd'. Since e_1 and e_2 have to have a minimal degree to form C^k rings, e.g. $d' \geq k + 1$ in the tensor-product case, a lower bound is $r(k + 1)$.

(parametrization dependent reasoning about surfaces!)
Or – *(i)* the leading terms of Δ_{12} cancel

- **total degree:** $\deg(\text{left}_{i,j}) = 2 \max\{\deg(\Delta_{12}) + d - 2, 2(d - 1) + d - 2\} = 6d - 8$

- **bi-degree:** $\deg(\text{left}_{i,j}) = 2 \max\{\deg(\Delta_{12}) + d - 1, 2d - 1 + d - 1\} = 6d - 4$

Comparing with $\deg(\Delta_{12}^4) = 4 \deg(\Delta_{12})$.

If the true degree of e^1 and e^2 is not less than d then GS is curvature continuous and not flat only if the total degree $\deg(\Delta_{12}) \leq 3d/2 - 2$, (*bi-degree*) $\deg(\Delta_{12}) \leq 3d/2 - 1$.

That is possible! E.g. if bi-$d = 4$ then $\deg(\Delta_{12}) = 5$ is needed as if $\deg(e^1) = \deg(e^2) = 3$
Talk Outline

- The (few) basics. (nomenclature)

- Express curvatures of mth spline ring converging towards the EOP

\[K_m = (\mu/\lambda^2)^m f^m_K(u, v), \quad H_m = (\mu/\lambda^2)^m f^m_H(u, v) \]

for scalar constants $\mu < \lambda$ and rational functions f_K, f_H.

μ/λ^2: implies necessary constraints

Necessary and sufficient constraints: PDEs

- Lower bounds

- Prautzsch’s *sufficient condition and construction*.

- The key open problem! (well, sort of)

- Preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
Curvature continuous subdivision constructions

[Prautzsch & Umlauf ’98]:
induce flat spots to get low degree, small mask, curvature continuous subdivision algorithms.

[Sabin 91, Holt 96]:
adapt the leading eigenvalues to get non-zero bounded curvature.

Otherwise need degree-reduced Jacobian.

(Trivial) regular case of any C^2 box-spline: e^1 and e^2 are linear.

(Non-trivial) Projection of Prautzsch ’97, Reif ’98.
Sufficient conditions

\[e^i = a_i(e^1)^2 + b_i e^1 e^2 + c_i(e^2)^2, \quad a_i, b_i, c_i \in R, \quad \text{for } i = 3, 4, 5. \]

Then (proof)

\[
\begin{align*}
e^i_u &= 2a^i e^1 e_u^1 + b^i (e_u^1 e^2 + e^1 e_u^2) + 2c^i e^2 e_u^2, \\
e^i_{uu} &= 2a^i ((e_u^1)^2 + e^1 e_{uu}^1) + b^i (e_{uu}^1 e^2 + 2e_u^1 e_u^2 + e^1 e_{uu}^2) + 2c^i ((e_u^2)^2 + e^2 e_{uu}^2) \\
\Delta_{1i} &= \Delta_{12} (b^i e^1 + 2c^i e^2), \\
\Delta_{2i} &= -\Delta_{12} (2a^i e^1 + b^i e^2) \quad \text{and} \\
D^i_{uu} &= 2\Delta_{12} (a_i (e_u^1)^2 + b_i e_u^1 e_u^2 + c_i (e_u^2)^2).
\end{align*}
\]
\[
K = \sum_{i,j=3,4,5} \frac{P_{ij}}{\|\mathbf{p}_1 \times \mathbf{p}_2\|^4} \cdot f_{ij} \quad \text{and} \quad H = \sum_{i=3,4,5} \frac{\tilde{P}_{ikl}}{\|\mathbf{p}_1 \times \mathbf{p}_2\|^3} \cdot \tilde{f}_{kl}
\]

with constant (!)

\[
f_{ij} = \begin{cases}
4(a_i c_j + a_j c_i) - 2b_i b_j & \text{for } i \neq j \\
4a_i c_i - (b_i)^2 & \text{for } i = j
\end{cases} \quad \text{and} \quad \tilde{f}_{kl} = \begin{cases}
c_i & \text{for } k = l = 1 \\
a_i & \text{for } k = l = 2 \\
-b_i/2 & \text{for } k \neq l
\end{cases}
\]
Prautzsch’s algorithm (Free-form splines)

- v_1 and v_2 eigenvectors to the subdominant eigenvalue λ of the Catmull-Clark algorithm. (Then e^1 and e^2 have bi-degree 3.)

- Set $e^3 = (e^1)^2$, $e^4 = e^1 e^2$ and $e^5 = (e^2)^2$ with control nets $w_i, i = 3, 4, 5$. w_1 and w_2 are the control nets of e^1 and e^2, respectively, in a degree-doubled representation.

- Subdivision matrix $A = MDM^+$ where

 \[
 M := [\mathbf{1}, w_1, w_2, w_3, w_4, w_5], \quad D := \text{diag}(1, \lambda, \lambda, \lambda^2, \lambda^2, \lambda^2), \quad M^+ := (M^t M)^{-1} M^t.
 \]

The only non-zero eigenvalues of A are $1, \lambda (2\text{-fold}), \lambda^2 (3\text{-fold})$ corresponding to the eigenvectors $\mathbf{1}, w_1, \ldots, w_5$.
Talk Outline

- The (few) basics. (nomenclature)
- Express curvatures of \(m \)th spline ring converging towards the EOP

\[
K_m = \left(\frac{\mu}{\lambda^2} \right)^m f^m_K(u, v), \quad H_m = \left(\frac{\mu}{\lambda^2} \right)^m f^m_H(u, v)
\]

for scalar constants \(\mu < \lambda \) and rational functions \(f_K, f_H \).
\(\mu/\lambda^2 \): implies necessary constraints
Necessary and sufficient contraints: PDEs

- Lower bounds
- Prautzsch’s sufficient condition and construction.
- The *key open problem*! (well, sort of)

- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/
For what choices of eigenfunctions e_1^1 and e_2^2 of a GS is

total degree $\deg(\Delta_{12}) \leq 2 \deg(x_0) - 2$

bi-degree $\deg(\Delta_{12}) \leq 2 \deg(x_0) - 1$?
Define the tensor-product mapping of the subeigenfunctions \(E : (e^1, e^2) \) so that \(\text{deg}(E) = \text{bi-4} \) and \(\text{deg}(\Delta(e^1, e^2)) = \text{deg}(e^1_u e^2_v - e^2_u e^1_v) = 5. \)
Partial Answer: Construction

1. Choose \(e^1 \) and \(e^2 \) of the 4n corner patches initially to form \(q \) of true degree bi-2.
2. Choose the non-corner patches to be of true degree bi-3 and so that the ring of patches is \(C^2 \).
3. **Perturb** the \(x \)-component of the common coefficient of the corner patch. (no influence on next rings; \(\Delta_{12}(q_x + x, q_y + 0) \)).

Then \(\deg(E) = 5 \) for the non-corner patches and for the corner patch

\[
\deg(\Delta(e^1, e^2)) = \max\{(3, 3), (0, 0), (\max\{(3, 4) + (2, 1), (4, 3) + (1, 2)\}, (0, 0)\} = \text{bi-5}.
\]
Find the e^3, e^4, e^5 (solve the PDEs for their coefficients). Any volunteers?

Fits nicely with *alternative answer*:

New C^2 biquartic free-form surface splines (modification of my Oberwolfach construction 1998)
Conclusion

express curvatures of mth spline ring converging towards the EOP

\[
K_m = \left(\frac{\mu}{\lambda^2}\right)^2 m f^m_K(u, v), \quad H_m = \left(\frac{\mu}{\lambda^2}\right)^m m f^m_H(u, v)
\]

μ/λ^2: implies necessary constraints
Necessary and sufficient constraints: PDEs
Lower bounds
Prautzsch’s sufficient condition and construction.
The key open problem
preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

It is worth looking for curvature continuous subdivision schemes
whose regular rings are polynomial of degree less than 6!