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tangent continuity but not curvature continuity.
(C! with infinite curvature!)

Why is it difficult to achieve curvature continuity
at an extraordinary point (EOP)?

The quantities to measure are Gaussian and mean curvature
In a neighborhood of an EOP!

Sample result:

At EOP the determinant of the Jacobian of the subdominant eigenfunctions
of a curvature continuous subdivision algorithm must have lower degree
than the determinant of the Jacobian of the surface.



Motiv ation: Review

Understand important lower bound results better:
Sabin 91, (>bi-4)

Reif 93,96, (>bi-6)

Prauzsch,Reif 99, (>bi-r(k + 1))

(Lower bounds on parametrization, not surface)

Understand constructions of curvature continuous piecewise polynomial
subdivision algorithms

Prautzsch 97,

Prautzsch, Umlauf 98, Umlauf 99 (hybrid)

Reif 98.

Understand stiffness of such subdivision algorithms:
Infinite collection of polynomial pieces
but generated by the same rule.
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Setting and definitions

The talk focusses generic subdivision (GS):

generalization of C? box-spline subdivision generating regular C* surfaces;
affine invariant, symmetric, linear, local, stationary.

However applies to non-generic cases [Reif 98 (habil), Zorin 98 (thesis)] and non-
polynomial cases.

Surface rings are box-splines (with basis B(u, v))

Xm :{0,...,n — 1} x Q = R, Xm(u,v) = B(u, v)C,p,




Setting and definitions

A Is square, stochastic subdivision matrix: C,, = A™C,, diagonalizable with
eigenvalues

12)\0>)\1:)\2>2\3:)\4:)\§>"'ZO,

=:\ =l
where \; = A\ correspond to the 1st and (n — 1)st block, A3 = A4 (for n > 3) to the
2nd and (n — 2)nd block and )5 to the 0th block of the Fourier decomposition of A.
Av; = \;v, for all ¢ yields eigendecomposition

Cm =) A'vipi, DPi€ R
i




Setting and definitions

Expanded in the eigenfunction
e :{0,....n -1} x Q= R, (u,v) — B(u,v)v;

the surface ring x,,, is of the form




Gauss curvature K and the mean curvature H are

— e(u, v)g(u, U) — f(’LL, ’U)2
K(u7v) E(U,U)G(U, ’U) —F(U,U)2,
H(u, v) = e(u,v)G(u,v) — 2f(u,v)F(u,v) + g(u,v)E(u, v)

t t

_ _ _ ¢
E=x,x,, F=x\x,, G=Xx,X

v

t
uu?

t t

e = nx f =nx,,, g¢g=nx,,,

and n = (x, xXX,)/||x.xx%,]|| is the normal. Since x is regular, EG—F? = ||x, xX,||?
IS honzero and

K — det(xua Xv)y qu) det(XU7 Xvs XU’U) 2 det(x’w Xv, XUU)2
[y X X[ ,

e det(Xy, X, Xuu) (XoXE) — 2 det(Xy, Xy, Xuo) (XuXh) + det(Xy, Xy, Xop) (XuXL,)
_ 2||xy X X2 '
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Gauss curvature and mean curvature at EOP

Expand into eigenfunctions e* as in [Reif 93]

Xy = A" (e,p1 +e,p2) + 1 (€,P3 + €,ps + €,ps5) + o(u™),
Xuv = AT (eivpl + eivp2) + ,um (ezvp3 + eivp‘l + e15u)p5) + O(:U“m)
Xy X Xy = )\2mA12(P1 X p2) + 0()\2m),

det(Xy, Xy, Xuu) = A2 ™ Z det(p1,p2, pi) D, + o(A*™u™).
i=3,4,5

where

R A B R}
Azy =e, e —e e,

i : 2 1
D!, := Ajse’, — Ayes, + Agie,,, st € {u,v},

PZ] = det(plv P2, pZ) det(ph P2, p]))



> Pj;(D.,Di,—D.,Di,) +o(1)

B\ 4,5=3,4,5
Kn=(32)

Afollp1 X pal|* + o(1)

A15 Is the Jacobi determinant of the subeigenfunctions (‘characteristic map’).
|p1 X p2|| Is positive for almost all initial control nets Cy. Hence denominator ok.

o If 14 > )\? then the Gauss curvature at the EOP is infinite. [Catmull-Clark 78,
Loop 87, Qu 90]

o If 1, < )\? then the Gauss curvature at the EOP is zero. [Prautzsch & Umlauf
'98]

o If 1 = )\? then the Gauss curvature at the EOP is bounded by the second factor
of K,, but is possibly non-unique [Sabin 91,Holt 96].

Note combination of tangent continuity and infinite curvature for o > \2.



If » = )\? then the limit for m — oo yields at the EOP

P, D. DI —Di Dj
K = Z J uu™ vv wv Uy

a rational function in v and v that must be constant!

P;j(= Pj;) = det(p1, p2, Ps) det(p1, P2, p;) arbitrary
Implies each summand has to be constant!

Eigenfunctions e!,...,e°> must satisfy the six partial differential equations (G-
PDE):
D, D} —2D: D + D! D) = Aj,-const;, fori,j € {3,4,5}, j > 1,
D, Dy, —(D;,)? = Ajy-const;,  fori=3,4,5.

Summary A GS has for almost all initial nets non-zero Gauss curvature at the
EOP if and only if » = A\? and G-PDE holds. (9 additional partial differential
equations for H)



General: GS is curvature continuous if © = A\? and the differential equations for G
and H hold, because
the principal curvatures

k1% = Hm £ \/HZ — Knm,

converge like O(p™/ ™) for m — co.

Since [ dx,, = O(A*™) and p < A

Z/ |/-{'1"?2|2de — ZO(u2m/)\2m) < 00.

which implies [Reif Schroder '00] for p = 2. The principal curvatures of the limit
surface of a GS are square integrable.
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Lower bounds on the degree

formal degree vs true degree deg (= number of non-constant derivatives)

Recall Gauss PDE

D, D} —2D: D + D! D! = Aj,-const, fori,j € {3,4,5}, j > 1,
Dt D' — (D! )* = Af,-const;, for: =3,4,5.
Simple count with d = deg(xy) total degree (resp. bi-degree) of regular

parametrization. Left side of PDE

— <22(d—1)+d—-2)=6d—38
e <2(2d—14+d—1)=6d— 4,
whereas right side of PDE

— formal of AL, is 4(2d — 2)

— formal of A%, is 4(2d — 1).

Degree mismatch: (unless d = 0)

If the true degree equals the formal degree

then GS is curvature continuous if and only if @ < \?
l.e. EOP is a flat point.



A GS with ; = \? is curvature continuous
only if the true degree of the Jacobian A5 is less than its formal degree!
Options:

(i) The true degree of e! or e? is less than d.

(i) The leading terms in the Jacobian A, cancel.

If not (ii) and not flat then d" := deg(e') = deg(e?), d := deg(xo)):
deg(left;;) = 2(2d’ + d — 4) and deg(A},) = 4(2d' — 2)
deg(left;;) = 2(2d’ + d — 2) and deg(Af,) = 4(2d' — 1).
Compare to find 2d" = d:

If not (ii) then GS is curvature continuous and not flat only if the
true (bi-)degree of the surface is at least twice the true (bi-)degree of the
subdominant eigenfunctions e! and e?.



Comparison with earlier estimates

2d" = d is consistent with degree estimate of Reif 93, 96, Zorin 97

View surface as a function over the tangent plane parametrized by e! and e?.
Then non-flat implies non-tangential component at least quadratic in e! and e?,
l.e.d > 2d'.

[Prautzsch, Reif 99]

If the non-tangential component of the surface is at least of degree r in e! and e?
then the surface representation has to be at least of degree rd’.

Since e! and e? have to have a minimal degree to form C* rings, e.g. d’ > k + 1 in
the tensor-product case, a lower bound is »(k + 1).

(parametrization dependent reasoning about surfaces!)



Or — (i) the leading terms of A, cancel
o deg(left;;) = 2max{deg(A12) +d—2,2(d—1)+d—2} =6d — 8
o deg(left;;) = 2max{deg(A12) +d—1,2d —1+d — 1} = 6d — 4.

Comparing with deg(A7,) = 4deg(A12).

If the true degree of e! and e? is not less than d
then GS is curvature continuous and not flat only if
the total degree deg(A12) < 3d/2 — 2, ( bi-degree deg(A13) < 3d/2 — 1).

That is possible! E.qg. if bi-d = 4 then deg(A12) = 5 is needed
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Curvature contin uous subdivision constructions

[Prautzsch & Umlauf "98]:

Induce flat spots to get low degree, small mask, curvature continuous subdivision
algorithms.

[Sabin 91, Holt 96]:
adapt the leading eigenvalues to get non-zero bounded curvature.

Otherwise need degree-reduced Jacobian.
(Trivial) regular case of any C? box-spline: e! and e are linear.

(Non-trivial) Projection of Prautzsch '97, Reif '98.



Prautzsch 98: Sufficient conditions
e' = a;(eh)? + be'e® + ¢i(e®)?, a;bi,c; € R, fori=3,4,5.

Then (proof)

e/ = 2a'e'el +b'(ele’ +e'el) + 2c'e’e’,
el,, = 2a' ((e,)’+e'ey,)+b (e, +2e,e.+e'e,)+2c ((e)” +e’el,)
Ay = Ap(be' +2c'€?),
Agi = —Ai2(2a'e’ +b'e?) and

Di = 2A12(ai(ei)2 + bieiei + ci(e2)2).

u



~

P.. P'kl _
K = E v) . f and H = ? . fkl
o P> P2t 7Y Z [p1 % p2®
k,l=1,2, k>1

with constant (!)

.. C; fork=1=1
fij _ { 4(a7;cj O CLjCZ') — 2[)7;[)]' for ¢ 75 7 fk;l _ a; fork —]—92

o — (B2 SN
4azcz (bz) for ¢ i —bz/2 for k ?é :



Prautzsch’s algorithm (Free-form splines)

e v; and vy eigenvectors to the subdominant eigenvalue X\ of the Catmull-Clark
algorithm. (Then e! and e? have bi-degree 3.)

o Sete’® = (el)? e? = ele? and e® = (e?)? with control nets w;,i = 3,4, 5.
w; and wy, are the control nets of e! and e?, respectively, in a

degree-doubled representation.

e Subdivision matrix A = M DM ™ where

M = [1, w1, Wa, W3, Wq, Ws], D :=diag(1,\, X\, A%, A%, \%), MT := (M'M) M.

The only non-zero eigenvalues of A are 1, \(2-fold), A?(3-fold)
corresponding to the eigenvectors 1, wq, ..., ws.
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Big Question

For what choices of eigenfunctions e! and e? of a GS is

deg(A12) < 2deg(xo) — 2

deg(Aq2) < 2deg(xg) — 17



Partial Answer

Define the tensor-product mapping of the subeigenfunctions E : (e!,e?) so that
deg(E) = bi-4 and deg(A(e', e?)) = deg(ele? — e2el) = 5.

C? quartics: .. knot insertion —



Partial Answer: Construction

1. Choose e! and e? of the 4n

corner patches initially to form ¢ of

true degree bi-2.

2. Choose the non-corner patches to

be of true degree bi-3

and so that the ring of patches is C?.

3. Perturb the z-component of the
coefficient of the corner

patch. (no influence on next rings;

A12(gz + , gy + 0)).

Then deg(E) = 5 for the non-corner patches and for the corner patch

deg(A(e', e?)) = max{(3,3),(0,0), (max{(3,4) + (2,1),(4,3) + (1,2)},(0,0)}
= bi-5.



Find the e, e?, e® (solve the PDEs for their coefficients). Any volunteers?

Fits nicely with alternative answer:

New C? biquartic free-form surface splines (modification of my Oberwolfach
construction 1998)



Conclusion

It is worth looking for curvature continuous subdivision schemes

whose regular rings are polynomial of degree less than 6!



