Curvature of subdivision surfaces

— a differential geometric analysis and literature review —

Jörg Peters, jorg@cise.ufl.edu Georg Umlauf, georg.umlauf@gmx.de

Almost all subdivision algorithms in the current literature achieve tangent continuity but not curvature continuity. $(C^1 \text{ with infinite curvature!})$

Almost all subdivision algorithms in the current literature achieve tangent continuity but not curvature continuity. (C^1 with infinite curvature!)

Why is it difficult to achieve curvature continuity at an extraordinary point (*EOP*)?

Almost all subdivision algorithms in the current literature achieve tangent continuity but not curvature continuity. $(C^1 \text{ with infinite curvature!})$

Why is it difficult to achieve curvature continuity at an extraordinary point (*EOP*)?

The quantities to measure are *Gaussian and mean curvature* in a neighborhood of an EOP!

Almost all subdivision algorithms in the current literature achieve tangent continuity but not curvature continuity.

(C^1 with infinite curvature!)

Why is it difficult to achieve curvature continuity at an extraordinary point (*EOP*)?

The quantities to measure are *Gaussian and mean curvature* in a neighborhood of an EOP!

Sample result:

At EOP the determinant of the *Jacobian of the subdominant* eigenfunctions of a curvature continuous subdivision algorithm must have *lower degree* than the determinant of the Jacobian of the surface.

Motivation: Review

Understand important *lower bound* results better: Sabin 91, ($\geq bi$ -4)
Reif 93,96, ($\geq bi$ -6)
Prauzsch,Reif 99, ($\geq bi$ -r(k+1))
(Lower bounds on parametrization, not surface)

Understand *constructions* of curvature continuous piecewise polynomial subdivision algorithms
Prautzsch 97,
Prautzsch, Umlauf 98, Umlauf 99 (hybrid)

Reif 98.

Understand *stiffness* of such subdivision algorithms: infinite collection of polynomial pieces but generated by the *same* rule.

- The (few) basics. (nomenclature)
- express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

- The (few) basics. (nomenclature)
- \circ express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

- The (few) basics. (nomenclature)
- \circ express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

- The (few) basics. (nomenclature)
- \circ express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

Setting and definitions

The talk focusses generic subdivision (GS): generalization of C^2 box-spline subdivision generating regular C^1 surfaces; affine invariant, symmetric, linear, local, stationary. However applies to non-generic cases [Reif 98 (habil), Zorin 98 (thesis)] and non-polynomial cases.

Surface rings are box-splines (with basis $\mathcal{B}(u,v)$)

$$\mathbf{x}_m : \{0, \dots, n-1\} \times \Omega \to R^3, \quad \mathbf{x}_m(u, v) = \mathcal{B}(u, v)\mathbb{C}_m,$$

Setting and definitions

A is square, stochastic *subdivision matrix*: $\mathbb{C}_m = A^m \mathbb{C}_0$, diagonalizable with eigenvalues

$$1 = \lambda_0 > \underbrace{\lambda_1 = \lambda_2}_{=: \lambda} > \underbrace{\lambda_3 = \lambda_4 = \lambda_5}_{=: \mu} > \dots \ge 0,$$

where $\lambda_1 = \lambda_2$ correspond to the 1st and (n-1)st block, $\lambda_3 = \lambda_4$ (for n > 3) to the 2nd and (n-2)nd block and λ_5 to the 0th block of the Fourier decomposition of A. $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for all i yields eigendecomposition

$$\mathbb{C}_m = \sum_i \lambda_i^m \mathbf{v}_i \mathbf{p}_i, \qquad \mathbf{p}_i \in \mathbb{R}^3.$$

Setting and definitions

Expanded in the eigenfunction

$$\mathbf{e}^{i}: \{0,\ldots,n-1\} \times \Omega \to R, (u,v) \mapsto \mathcal{B}(u,v)\mathbf{v}_{i}$$

the surface ring x_m is of the form

$$\mathbf{x}_m(u,v) = \sum_i \lambda_i^m \mathcal{B}(u,v) \mathbf{v}_i \mathbf{p}_i = \sum_i \lambda_i^m \mathbf{e}^i(u,v) \mathbf{p}_i.$$

Gauss curvature K and the mean curvature H are

$$\begin{split} \boldsymbol{K}(\boldsymbol{u},\boldsymbol{v}) &= \frac{e(u,v)g(u,v) - f(u,v)^2}{E(u,v)G(u,v) - F(u,v)^2}, \\ \boldsymbol{H}(\boldsymbol{u},\boldsymbol{v}) &= \frac{e(u,v)G(u,v) - 2f(u,v)F(u,v) + g(u,v)E(u,v)}{2(E(u,v)G(u,v) - F(u,v)^2)}, \end{split}$$

$$E = \mathbf{x}_u \mathbf{x}_u^t, \quad F = \mathbf{x}_u \mathbf{x}_v^t, \quad G = \mathbf{x}_v \mathbf{x}_v^t,$$
$$e = \mathbf{n} \mathbf{x}_{uu}^t, \quad f = \mathbf{n} \mathbf{x}_{uv}^t, \quad g = \mathbf{n} \mathbf{x}_{vv}^t,$$

and $\mathbf{n} = (\mathbf{x}_u \times \mathbf{x}_v) / \|\mathbf{x}_u \times \mathbf{x}_v\|$ is the normal. Since \mathbf{x} is regular, $EG - F^2 = \|\mathbf{x}_u \times \mathbf{x}_v\|^2$ is nonzero and

$$K = \frac{\det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{uu}) \det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{vv}) - \det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{uv})^{2}}{\|\mathbf{x}_{u} \times \mathbf{x}_{v}\|^{4}},$$

$$H = \frac{\det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{uu})(\mathbf{x}_{v}\mathbf{x}_{v}^{t}) - 2\det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{uv})(\mathbf{x}_{u}\mathbf{x}_{v}^{t}) + \det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{vv})(\mathbf{x}_{u}\mathbf{x}_{u}^{t})}{2\|\mathbf{x}_{u} \times \mathbf{x}_{v}\|^{3}}.$$

- The (few) basics. (nomenclature)
- express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

Gauss curvature and mean curvature at EOP

Expand into eigenfunctions e^i as in [Reif 93]

$$\mathbf{x}_{u} = \lambda^{m} \left(\mathbf{e}_{u}^{1} \mathbf{p}_{1} + \mathbf{e}_{u}^{2} \mathbf{p}_{2} \right) + \mu^{m} \left(\mathbf{e}_{u}^{3} \mathbf{p}_{3} + \mathbf{e}_{u}^{4} \mathbf{p}_{4} + \mathbf{e}_{u}^{5} \mathbf{p}_{5} \right) + o(\mu^{m}),$$

$$\mathbf{x}_{uv} = \lambda^{m} \left(\mathbf{e}_{uv}^{1} \mathbf{p}_{1} + \mathbf{e}_{uv}^{2} \mathbf{p}_{2} \right) + \mu^{m} \left(\mathbf{e}_{uv}^{3} \mathbf{p}_{3} + \mathbf{e}_{uv}^{4} \mathbf{p}_{4} + \mathbf{e}_{uv}^{5} \mathbf{p}_{5} \right) + o(\mu^{m}).$$

$$\mathbf{x}_{u} \times \mathbf{x}_{v} = \lambda^{2m} \Delta_{12} (\mathbf{p}_{1} \times \mathbf{p}_{2}) + o(\lambda^{2m}),$$

$$\det(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{uu}) = \lambda^{2m} \mu^{m} \sum_{i=3,4,5} \det(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{i}) D_{uu}^{i} + o(\lambda^{2m} \mu^{m}).$$

where

$$\Delta_{ij} := \mathbf{e}_u^i \mathbf{e}_v^j - \mathbf{e}_u^j \mathbf{e}_v^i,$$

$$D_{st}^i := \Delta_{12} \mathbf{e}_{st}^i - \Delta_{1i} \mathbf{e}_{st}^2 + \Delta_{2i} \mathbf{e}_{st}^1, \quad s, t \in \{u, v\},$$

$$P_{ij} := \det(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_i) \det(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_j),$$

$$K_{m} = \left(\frac{\mu}{\lambda^{2}}\right)^{2m} \frac{\sum_{i,j=3,4,5} P_{ij} \left(D_{uu}^{i} D_{vv}^{j} - D_{uv}^{i} D_{uv}^{j}\right) + o(1)}{\Delta_{12}^{4} \|\mathbf{p}_{1} \times \mathbf{p}_{2}\|^{4} + o(1)}.$$

 Δ_{12} is the Jacobi determinant of the subeigenfunctions ('characteristic map'). $\|\mathbf{p}_1 \times \mathbf{p}_2\|$ is positive for almost all initial control nets \mathbb{C}_0 . Hence denominator ok.

- If $\mu > \lambda^2$ then the Gauss curvature at the EOP is infinite. [Catmull-Clark 78, Loop 87, Qu 90]
- If $\mu < \lambda^2$ then the Gauss curvature at the EOP is zero. [Prautzsch & Umlauf '98]
- If $\mu = \lambda^2$ then the Gauss curvature at the EOP is bounded by the second factor of K_m but is possibly non-unique [Sabin 91,Holt 96].

Note combination of tangent continuity and infinite curvature for $\mu > \lambda^2$.

If $\mu = \lambda^2$ then the limit for $m \to \infty$ yields at the EOP

$$K = \sum_{i,j=3,4,5} \frac{P_{ij}}{\|\mathbf{p}_1 \times \mathbf{p}_2\|^4} \frac{D_{uu}^i D_{vv}^j - D_{uv}^i D_{uv}^j}{\Delta_{12}^4}.$$

a rational function in u and v that must be constant!

 $P_{ij}(=P_{ji}) = \det(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_i) \det(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_j)$ arbitrary implies each summand has to be constant!

Eigenfunctions e^1, \dots, e^5 must satisfy the *six partial differential equations* (G-PDE):

Summary A GS has for almost all initial nets non-zero Gauss curvature at the EOP if and only if $\mu=\lambda^2$ and G-PDE holds. (9 additional partial differential equations for H)

General: GS is *curvature continuous* if $\mu = \lambda^2$ and the differential equations for G and H hold, because the *principal curvatures*

$$\kappa_{1,2}^m = H_m \pm \sqrt{H_m^2 - K_m},$$

converge like $O(\mu^m/\lambda^{2m})$ for $m \to \infty$.

Since $\int d\mathbf{x}_m = O(\lambda^{2m})$ and $\mu < \lambda$

$$\sum_{m} \int_{\mathbf{x}_m} |\kappa_{1,2}^m|^2 d\mathbf{x}_m = \sum_{m} O(\mu^{2m}/\lambda^{2m}) < \infty.$$

which implies [Reif Schröder '00] for p=2: The principal curvatures of the limit surface of a GS are *square integrable*.

- The (few) basics. (nomenclature)
- \circ express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

Lower bounds on the degree

formal degree vs *true degree* deg (= number of non-constant derivatives)

Recall Gauss PDE

Simple count with $d = deg(\mathbf{x}_0)$ total degree (resp. bi-degree) of regular parametrization. Left side of PDE

- total degree $\leq 2(2(d-1)+d-2)=6d-8$
- bi-degree $\leq 2(2d-1+d-1) = 6d-4$,

whereas right side of PDE

- formal total degree of Δ_{12}^4 is 4(2d-2)
- formal bi-degree of $\overline{\Delta_{12}^4}$ is 4(2d-1).

Degree mismatch: (unless d=0)

If the *true* degree equals the *formal* degree then GS is curvature continuous if and only if $\mu < \lambda^2$, i.e. EOP is a flat point.

A GS with $\mu=\lambda^2$ is curvature continuous only if the *true degree of the Jacobian* Δ_{12} *is less than its formal degree!* Options:

- (i) The true degree of e^1 or e^2 is less than d.
- (ii) The leading terms in the Jacobian Δ_{12} cancel.

```
If not (ii) and not flat then \mathbf{d'} := \deg(\mathbf{e}^1) = \deg(\mathbf{e}^2), \mathbf{d} := \deg(\mathbf{x}_0)): total degree \deg(\mathsf{left}_{ij}) = 2(2d'+d-4) and \deg(\Delta_{12}^4) = 4(2d'-2) bi-degree \deg(\mathsf{left}_{ij}) = 2(2d'+d-2) and \deg(\Delta_{12}^4) = 4(2d'-1). Compare to find 2\mathbf{d'} = \mathbf{d}:
```

If *not (ii)* then GS is curvature continuous and not flat only if the true (bi-)degree of the surface is *at least twice* the true (bi-)degree of the subdominant eigenfunctions e^1 and e^2 .

Comparison with earlier estimates

2d'=d is consistent with degree estimate of Reif 93, 96, Zorin 97:

View surface as a function over the tangent plane parametrized by e^1 and e^2 . Then non-flat implies non-tangential component at least quadratic in e^1 and e^2 , i.e. $d \ge 2d'$.

[Prautzsch, Reif 99]

If the non-tangential component of the surface is at least of degree r in e^1 and e^2 then the surface representation has to be at least of degree rd'.

Since e^1 and e^2 have to have a minimal degree to form C^k rings, e.g. $d' \ge k + 1$ in the tensor-product case, a lower bound is r(k+1).

(parametrization dependent reasoning about surfaces!)

Or – (i) the leading terms of Δ_{12} cancel

- total degree: $\deg(\mathsf{left}_{ij}) = 2\max\{\deg(\Delta_{12}) + d 2, 2(d-1) + d 2\} = 6d 8$
- bi-degree: $\deg(\mathsf{left}_{ij}) = 2\max\{\deg(\Delta_{12}) + d 1, 2d 1 + d 1\} = 6d 4.$

Comparing with $deg(\Delta_{12}^4) = 4 deg(\Delta_{12})$.

If the true degree of e^1 and e^2 is not less than d then GS is curvature continuous and not flat only if the total degree $deg(\Delta_{12}) \leq 3d/2 - 2$, (bi-degree $deg(\Delta_{12}) \leq 3d/2 - 1$).

That is possible! E.g. if bi-d=4 then $\deg(\Delta_{12})=5$ is needed as if $\deg(\mathbf{e}^1)=\deg(\mathbf{e}^2)=3$

- The (few) basics. (nomenclature)
- \circ express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

Curvature continuous subdivision constructions

[Prautzsch & Umlauf '98]:

induce *flat spots* to get low degree, small mask, curvature continuous subdivision algorithms.

[Sabin 91, Holt 96]:

adapt the leading eigenvalues to get non-zero bounded curvature.

Otherwise need degree-reduced Jacobian.

(Trivial) regular case of any C^2 box-spline: ${\bf e}^1$ and ${\bf e}^2$ are linear.

(Non-trivial) Projection of Prautzsch '97, Reif '98.

Prautzsch 98: Sufficient conditions

$$e^{i} = a_{i}(e^{1})^{2} + b_{i}e^{1}e^{2} + c_{i}(e^{2})^{2}, \quad a_{i}, b_{i}, c_{i} \in \mathbb{R}, \quad \text{for } i = 3, 4, 5.$$

Then (proof)

$$\begin{array}{lcl} \mathbf{e}_{u}^{i} & = & 2a^{i}\mathbf{e}^{1}\mathbf{e}_{u}^{1} + b^{i}(\mathbf{e}_{u}^{1}\mathbf{e}^{2} + \mathbf{e}^{1}\mathbf{e}_{u}^{2}) + 2c^{i}\mathbf{e}^{2}\mathbf{e}_{u}^{2}, \\ \mathbf{e}_{uu}^{i} & = & 2a^{i}\left((\mathbf{e}_{u}^{1})^{2} + \mathbf{e}^{1}\mathbf{e}_{uu}^{1}\right) + b^{i}\left(\mathbf{e}_{uu}^{1}\mathbf{e}^{2} + 2\mathbf{e}_{u}^{1}\mathbf{e}_{u}^{2} + \mathbf{e}^{1}\mathbf{e}_{uu}^{2}\right) + 2c^{i}\left((\mathbf{e}_{u}^{2})^{2} + \mathbf{e}^{2}\mathbf{e}_{uu}^{2}\right) \\ \Delta_{1i} & = & \Delta_{12}(b^{i}\mathbf{e}^{1} + 2c^{i}\mathbf{e}^{2}), \\ \Delta_{2i} & = & -\Delta_{12}(2a^{i}\mathbf{e}^{1} + b^{i}\mathbf{e}^{2}) & \text{and} \\ D_{uu}^{i} & = & 2\Delta_{12}(a_{i}(\mathbf{e}_{u}^{1})^{2} + b_{i}\mathbf{e}_{u}^{1}\mathbf{e}_{u}^{2} + c_{i}(\mathbf{e}_{u}^{2})^{2}). \end{array}$$

$$K = \sum_{i,j=3,4,5} rac{P_{ij}}{\|\mathbf{p}_1 imes \mathbf{p}_2\|^4} \cdot f_{ij}$$
 and $H = \sum_{\substack{i=3,4,5 \ k,l=1,2,\ k \geq l}} rac{ ilde{P}_{ikl}}{\|\mathbf{p}_1 imes \mathbf{p}_2\|^3} \cdot ilde{f}_{kl}$

with constant (!)

$$f_{ij} = \left\{ \begin{array}{ll} 4(a_ic_j + a_jc_i) - 2b_ib_j & \text{for } i \neq j \\ 4a_ic_i - (b_i)^2 & \text{for } i = j \end{array} \right., \qquad \tilde{f}_{kl} = \left\{ \begin{array}{ll} c_i & \text{for } k = l = 1 \\ a_i & \text{for } k = l = 2 \\ -b_i/2 & \text{for } k \neq l \end{array} \right..$$

Prautzsch's algorithm (Free-form splines)

- \mathbf{v}_1 and \mathbf{v}_2 eigenvectors to the subdominant eigenvalue λ of the Catmull-Clark algorithm. (Then \mathbf{e}^1 and \mathbf{e}^2 have bi-degree 3.)
- Set $e^3 = (e^1)^2$, $e^4 = e^1e^2$ and $e^5 = (e^2)^2$ with control nets \mathbf{w}_i , i = 3, 4, 5. \mathbf{w}_1 and \mathbf{w}_2 are the control nets of e^1 and e^2 , respectively, in a degree-doubled representation.
- Subdivision matrix $A = MDM^+$ where

$$M:=[\mathbf{1},\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3,\mathbf{w}_4,\mathbf{w}_5],\ D:=\mathsf{diag}(1,\lambda,\lambda,\lambda^2,\lambda^2,\lambda^2),\ M^+:=(M^tM)^{-1}M^t.$$

The only non-zero eigenvalues of A are $1, \lambda(2\text{-fold}), \lambda^2(3\text{-fold})$ corresponding to the eigenvectors $1, \mathbf{w}_1, \dots, \mathbf{w}_5$.

- The (few) basics. (nomenclature)
- \circ express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

- Lower bounds
- Prautzsch's sufficient condition and construction.
- The key open problem! (well, sort of)
- preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

Big Question

For what choices of eigenfunctions e^1 and e^2 of a GS is

total degree
$$deg(\Delta_{12}) \leq 2 deg(\mathbf{x}_0) - 2$$

bi-degree
$$\deg(\Delta_{12}) \leq 2\deg(\mathbf{x}_0) - 1$$
?

Partial Answer

Define the tensor-product mapping of the subeigenfunctions $E:(\mathbf{e}^1,\mathbf{e}^2)$ so that $\deg(E)=$ bi-4 and $\deg(\Delta(\mathbf{e}^1,\mathbf{e}^2))=\deg(\mathbf{e}^1_u\mathbf{e}^2_v-\mathbf{e}^2_u\mathbf{e}^1_v)=$ 5.

 C^2 quartics:

knot insertion \rightarrow

Partial Answer: Construction

- 1. Choose e^1 and e^2 of the 4n corner patches initially to form q of true degree bi-2.
- 2. Choose the non-corner patches to be of true degree bi-3 and so that the ring of patches is C^2 .
- 3. Perturb the x-component of the common coefficient of the corner patch. (no influence on next rings; $\Delta_{12}(q_x+x,q_y+0)$).

Then deg(E) = 5 for the non-corner patches and for the corner patch

$$deg(\Delta(\mathbf{e}^1, \mathbf{e}^2)) = \max\{(3, 3), (0, 0), (\max\{(3, 4) + (2, 1), (4, 3) + (1, 2)\}, (0, 0)\}$$
$$= bi-5.$$

Find the e^3 , e^4 , e^5 (solve the PDEs for their coefficients). Any volunteers?

Fits nicely with *alternative answer:*

New C^2 biquartic free-form surface splines (modification of my Oberwolfach construction 1998)

Conclusion

express curvatures of mth spline ring converging towards the EOP

$$K_m = (\mu/\lambda^2)^{2m} f_K^m(u, v), \quad H_m = (\mu/\lambda^2)^m f_H^m(u, v)$$

 μ/λ^2 : implies necessary constraints

Necessary and sufficient contraints: PDEs

Lower bounds

Prautzsch's sufficient condition and construction.

The key open problem

preprint: http://www.cise.ufl.edu/research/SurfLab/papers/

It is worth looking for curvature continuous subdivision schemes whose regular rings are polynomial of degree less than 6!