
Computer Graphics Jorg Peters

OpenGL4

http://www.opengl-tutorial.org/ OpenGL 3.3 and later !

● Introduction
● Prerequisites
● Forget Everything
● Building the tutorials

○ Building on Windows
○ Building on Linux
○ Building on Mac
○ Note for Code::Blocks

● Running the tutorials
● How to follow these tutorials
● Opening a window

Tutorial 1 : Opening a window

http://www.opengl-tutorial.org/miscellaneous/math-cheatsheet/

Miscellaneous:

http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/

http://www.opengl-tutorial.org/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#introduction
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#prerequisites
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#forget-everything
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-the-tutorials
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-on-windows
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-on-linux
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-on-mac
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#note-for-codeblocks
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#running-the-tutorials
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#how-to-follow-these-tutorials
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#opening-a-window
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/
http://www.opengl-tutorial.org/miscellaneous/math-cheatsheet/
http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/

Computer Graphics Jorg Peters

webGL2

https://webgl2fundamentals.org/

Miscellaneous:

Opening a window

https://webgl2fundamentals.org/webgl/lessons/webgl-picking.html

➢ WebGL is JavaScript instead
of C

➢ WebGL is designed to run in
an Internet browser

➢ webGL has less functionality
than OpenGL 3.3+
 (no Tessellation,
Compute, Geometry
Shaders)

https://webgl2fundamentals.org/w
ebgl/lessons/webgl-setup-and-inst
allation.html

https://webgl2fundamentals.org/webgl/lessons/webgl-and-alpha.html

gl = canvas.getContext("webgl", { alpha: false }}

https://webgl2fundamentals.org/
https://webgl2fundamentals.org/webgl/lessons/webgl-fundamentals.html
https://webgl2fundamentals.org/webgl/lessons/webgl-picking.html
https://webgl2fundamentals.org/webgl/lessons/webgl-setup-and-installation.html
https://webgl2fundamentals.org/webgl/lessons/webgl-setup-and-installation.html
https://webgl2fundamentals.org/webgl/lessons/webgl-setup-and-installation.html
https://webgl2fundamentals.org/webgl/lessons/webgl-and-alpha.html

Computer Graphics Jorg Peters

Three.js (not used)

Threejs.org

https://threejs.org/docs/#manual/e
n/introduction/Creating-a-scene

➢ 3D graphics using JavaScript, without having to
learn WebGL

https://threejs.org/
https://threejs.org/docs/#manual/en/introduction/Creating-a-scene
https://threejs.org/docs/#manual/en/introduction/Creating-a-scene

Computer Graphics Jorg Peters

GPU memory and (vertex) shaders

Shader = GPU program (compiled at the start of the CPU OpenGL program!)

➢ B = Buffer = chunk of GPU memory
➢ VS = Vertex Shader = GPU program modifying vertices
➢ FS = Fragment Shader = GPU program modifying pixels
➢ VA = VertexAttribute = input to VS

○ Attribute index j = j th input argument to VS

Computer Graphics Jorg Peters

VS Attributes (VAO)

(Vertex) Attributes explain what is in the buffer

➢ ask for a handle (=name=int) to a VA: Gen.VA (1,&handle)
➢ (state:) for this spot in GPU memory: Bind.VA (buffertype,handle)
➢ of the j th Vertex Shader input: Enable.VA.array(j)
➢ define the input (buffer) format of kth argument of VS: VA.Pointer(k, length etc)
➢ Disable.VA.array(j)

Computer Graphics Jorg Peters

Buffer initialization (VBO)

 Buffer = data

➢ ask for a handle (=name=int) to a buffer: B.GenObject(1,&handle) ⇒
➢ (state:) for this spot in GPU memory: Bind.B.(B-type,handle)
➢ allocate memory for CPU data at currently bound buffer of this type:

 B.Data(B-type,size,CPU data source,usage)
➢ unbind: Bind.B(B-type,0)

Computer Graphics Jorg Peters

VAO VBO

To avoid messy binding/unbinding of buffers and passing all the settings for
each vertex attribute, best practice is to organize the code

initialization :
for each batch
➢ generate , store , bind VAO
➢ bind all buffers VBO for a draw call
➢ unbind VAO

main loop / whenever you r e n d e r :
for each batch
➢ bind VAO
➢ glDrawArrays (. . .) ; or glDrawElements (. . .) ; e t c .
➢ unbind VAO

Computer Graphics Jorg Peters

VAO VBO

Selftest:
How does the GPU allocation of memory and passing of data mirror that of C++ on the CPU?
What is a uniform?

Examples:
● http://openglbook.com/chapter-3-index-buffer-objects-and-primitive-types.html
● http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/
● https://www.khronos.org/opengl/wiki/Tutorial2:_VAOs,_VBOs,_Vertex_and_Fragment_Shaders_(C_/_SDL)

http://openglbook.com/chapter-3-index-buffer-objects-and-primitive-types.html
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/
https://www.khronos.org/opengl/wiki/Tutorial2:_VAOs,_VBOs,_Vertex_and_Fragment_Shaders_(C_/_SDL)

