OpenGL4

Computer Graphics Jorg Peters

http://www.opengl-tutorial.org/ OpenGL 3.3 and later !

Tutorial 1 : Opening a window

Introduction
Prerequisites
Forget Everything
Building the tutorials
o Building on Windows
o Building on Linux
o Building on Mac
o Note for Code::Blocks
Running the tutorials
How to follow these tutorials
Opening a window

http://www.opengl-tutorial.org/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#introduction
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#prerequisites
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#forget-everything
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-the-tutorials
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-on-windows
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-on-linux
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#building-on-mac
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#note-for-codeblocks
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#running-the-tutorials
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#how-to-follow-these-tutorials
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/#opening-a-window
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/
http://www.opengl-tutorial.org/miscellaneous/math-cheatsheet/
http://www.opengl-tutorial.org/miscellaneous/clicking-on-objects/

webGL2

Computer Graphics Jorg Peters

https://webgl2fundamentals.orqg/

Opening a window

> WebGL is JavaScript instead
of C
> WebGL is designed to run in

https://webgl2fundamentals.org/w
an Internet browser

ebal/lessons/webgl-setup-and-inst
allation.html

> webGL has less functionality
than OpenGL 3.3+
(no Tessellation,
Compute, Geometry
Shaders)

https://webgl2fundamentals.org/
https://webgl2fundamentals.org/webgl/lessons/webgl-fundamentals.html
https://webgl2fundamentals.org/webgl/lessons/webgl-picking.html
https://webgl2fundamentals.org/webgl/lessons/webgl-setup-and-installation.html
https://webgl2fundamentals.org/webgl/lessons/webgl-setup-and-installation.html
https://webgl2fundamentals.org/webgl/lessons/webgl-setup-and-installation.html
https://webgl2fundamentals.org/webgl/lessons/webgl-and-alpha.html

Three.js (not used)

Computer Graphics Jorg Peters

Threejs.org

> 3D graphics using JavaScript, without having to

https://threejs.org/docs/#manual/e
learn WebGL

n/introduction/Creating-a-scene

https://threejs.org/
https://threejs.org/docs/#manual/en/introduction/Creating-a-scene
https://threejs.org/docs/#manual/en/introduction/Creating-a-scene

GPU memory and (vertex) shaders

Computer Graphics Jorg Peters

Shader = GPU program (compiled at the start of the CPU OpenGL program!)

B = Buffer = chunk of GPU memory
VS = Vertex Shader = GPU program modifying vertices
FS = Fragment Shader = GPU program modifying pixels
VA = VertexAttribute = input to VS

o Attribute index j = j th input argument to VS

VYVYY

VS Attributes (VAO)

Computer Graphics Jorg Peters

VYVVYY

(Vertex) Attributes explain what is in the buffer

ask for a handle (=name=int) to a VA: Gen.VA (1,&handle)

(state:) for this spot in GPU memory: Bind.VA (buffertype,handle)

of the j th Vertex Shader input: array(j)

define the input (buffer) format of kth argument of VS: VA.Pointer(k, length etc)

.array(j)

Buffer initialization (VBO)

Computer Graphics Jorg Peters

Buffer = data

VYV

ask for a handle (=name=int) to a buffer: B.GenObject(1,&handle) =

(state:) for this spot in GPU memory: Bind.B.(B-type,handle)

allocate memory for CPU data at currently bound buffer of this type:
B.Data(B-type,size,CPU data source,usage)

unbind: Bind.B(B-type,0)

VAO VBO

Computer Graphics Jorg Peters

To avoid messy binding/unbinding of buffers and passing all the settings for
each vertex attribute, best practice is to organize the code

initialization :

for each batch

> generate, store, bind VAO

> bind all buffers VBO for a draw call
> unbind VAO

main loop / wheneveryou render:

for each batch

> bind VAO

> glDrawArrays (...); or glDrawElements(...);etc.
> unbind VAO

VAO VBO

Computer Graphics Jorg Peters

Examples:
e http://openglbook.com/chapter-3-index-buffer-objects-and-primitive-types.html
e http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/
e hitps://www.khronos.org/opengl/wiki/Tutorial2: VAOs._VBOs._Vertex_and_Fragment _Shaders (C_/ SDL)

Selftest:
How does the GPU allocation of memory and passing of data mirror that of C++ on the CPU?
What is a uniform?

http://openglbook.com/chapter-3-index-buffer-objects-and-primitive-types.html
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/
https://www.khronos.org/opengl/wiki/Tutorial2:_VAOs,_VBOs,_Vertex_and_Fragment_Shaders_(C_/_SDL)

