Trackball: 2D integer change of mouse position \rightarrow 3D rotation

Computer Graphics Jorg Peters

- Associate each mouse position $=(i, j)$ with the point on a unit hemisphere: (1) For $w=$ width, scale the x component to $(2 i-w) / w$ and the y component to $-(2 j-w) / w$.
(2) set $z:=\sqrt{1-x^{2}-y^{2}}$.
centered, but mouse starts at 0

- Two consecutive points P_{1} and P_{2} on the hemisphere define a normal direction $n=P_{1} \times P_{2}$.
- Rotate about n.

Euler angles: rotation about axes

$>$ Anisotropy, Coordinate system dependence:

- Ordering and orientation of coordinate axes is important. (Parameters lack a simple, local geometric interpretation.)
$>$ Finding the Euler angles for a given orientation is difficult - getMatrix () helps
$>$ Gimbal Lock: a degree of freedom can vanish
> Easy to implement and widely used

Euler angles: Gimbal Lock

Mechanical problem: gyroscopes using three nested rotating frames. after a y-rotation by $\pi / 2$ (rotates x-axis onto $-z$-axis) an x-rotation by α equals z-rotation by $-\alpha$.

- Objects seem to ‘stick'.
- Some orientations are difficult to obtain from 'the wrong direction'.
- interpolation through singularity behaves unpredictable.

Euler angles: Gimbal Lock

$$
\begin{array}{rl}
\text { If } \alpha_{y} & =\pi / 2 c_{y}=\cos \left(\alpha_{y}\right) \text { etc. } \\
R_{y}=\left[\begin{array}{cccc}
c_{y} & 0 & -s_{y} & 0 \\
0 & 1 & 0 & 0 \\
s_{y} & 0 & c_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
R_{x} R_{y} R_{z} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{x} & -s_{x} & 0 \\
0 & s_{x} & c_{x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
1 & c & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
c_{z} & -s_{z} & 0 & 0 \\
s_{z} & c_{z} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
0 & -s \\
0 & 0
\end{array} 0
$$

Quaternions: motivating analogy

2D rotation $\mathrm{x}=(\mathrm{x} 1, \mathrm{x} 2)$ by angle $\alpha: \quad\left[\begin{array}{cc}c & -s \\ s & c\end{array}\right], \quad \begin{aligned} & c:=\cos (\alpha), \\ & s:=\sin (\alpha) .\end{aligned}$
or, alternatively, expressing x as the complex number $x_{1}+i x_{2}$ where $i:=\sqrt{-1}$. as multiplication in the complex field by

$$
e^{i \alpha}=\cos (\alpha)+i \sin (\alpha)
$$

Quaternions: Definition and rules

$$
\hat{\mathbf{q}}:=q_{0}+i q_{1}+j q_{2}+k q_{3}=\left(q_{0}, q_{1}, q_{2}, q_{3}\right)=:\left(q_{0}, \mathbf{q}\right)
$$

where $\mathbf{q}:=\left(q_{1}, q_{2}, q_{3}\right)$ is a vector in R^{3}. Quaternions have the multiplication table

\odot	i	j	k
i	-1	k	$-j$
j	$-k$	-1	i
k	j	$-i$	-1

This multiplication table is used to compute the product of two quaternions $\hat{\mathbf{p}}$ and $\hat{\mathbf{q}}$ which is again a quaternion:

$$
\hat{\mathbf{p}} \odot \hat{\mathbf{q}}=\left(p_{0} q_{0}-\left(p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right), p_{0} \mathbf{q}+q_{0} \mathbf{p}+\mathbf{p} \times \mathbf{q}\right) .
$$

We define $\|\hat{\mathbf{q}}\|^{2}:=q_{0}^{2}+\mathbf{q} \cdot \mathbf{q}$. This implies (check that $\hat{\mathbf{q}}^{-1} \odot \hat{\mathbf{q}}$ is real)

$$
\hat{\mathbf{q}}^{-1}=\left(q_{0},-\mathbf{q}\right) /\|\hat{\mathbf{q}}\|^{2}
$$

Quaternions: Construction and Use

Quaternion for rotation about $\mathbf{h} \in R^{3}$ by α :

$$
\hat{\mathbf{q}}:=\left(\cos (\alpha / 2), \sin (\alpha / 2) \frac{\mathbf{h}}{\|\mathbf{h}\|}\right)
$$

To rotate the point $\mathbf{v}:=\left(v_{1}, v_{2}, v_{3}\right)$, we multiply the quaternions as

$$
\begin{equation*}
\hat{\mathbf{q}}^{-1} \odot(0, \mathbf{v}) \odot \hat{\mathbf{q}} . \tag{1}
\end{equation*}
$$

Note: $\hat{\mathbf{q}}$ and $-\hat{\mathbf{q}}$ represent the same rotation and rotation by 0 and 360 degrees coincide.

Quaternions: Example

Example: Let $\mathbf{h}:=(1,1,1), \alpha:=2 \pi / 3, \mathbf{v}:=(1,0,0)$. That is, we look along the diagonal axis \mathbf{h} and see the three coordinate axes equallv distributed with an angle of $2 \pi / 3$ between each pair. We therefore assume that the rotation will map the x -axis \mathbf{v} to one of the other two axes. Since $\cos (\alpha / 2)=1 / 2$ and $\sin (\alpha / 2)=\sqrt{3} / 2$

$$
\begin{aligned}
\frac{\mathbf{h}}{\|\mathbf{h}\|} & =(1,1,1) / \sqrt{3}, \\
\hat{\mathbf{q}} & =\left(\frac{1}{2}, \frac{\sqrt{ } 3}{2} \frac{(1,1,1)}{\sqrt{3}}\right)=\frac{1}{2}(1,1,1,1), \\
\|\hat{\mathbf{q}}\|^{2} & =\left(\frac{1}{2}^{2}+\frac{1}{2}(1,1,1) \cdot \frac{1}{2}(1,1,1)\right)=1, \\
\hat{\mathbf{q}}^{-1} & =\frac{1}{2}(1,-1,-1,-1),
\end{aligned}
$$

Quaternions: Example

Computer Graphics Jorg Peters
Example: Let $\mathbf{h}:=(1,1,1), \alpha:=2 \pi / 3, \mathbf{v}:=(1,0,0)$.

$$
\begin{aligned}
\hat{\mathbf{q}}^{-1} & =\frac{1}{2}(1,-1,-1,-1), \\
\hat{\mathbf{q}}^{-1} \odot(0, \mathbf{v}) & =\left(0-\left(-\frac{1}{2}\right), \frac{1}{2}(1,0,0)+\frac{1}{2}(-1,-1,-1) \times(1,0,0)\right) \\
& =\left(\frac{1}{2},\left(\frac{1}{2}, 0,0\right)-\frac{1}{2}(0,1,-1)\right) \\
& =\frac{1}{2}(1,1,-1,1)
\end{aligned}
$$

Quaternions: Example

Example: Let $\mathbf{h}:=(1,1,1), \alpha:=2 \pi / 3, \mathbf{v}:=(1,0,0)$.

$$
\begin{aligned}
& \hat{\mathbf{q}}^{-1} \odot(0, \mathbf{v})=\frac{1}{2}(1,1,-1,1) \quad \hat{\mathbf{q}}=\frac{1}{2}(1,1,1,1), \\
& \hat{\mathbf{q}}^{-1} \odot(0, \mathbf{v}) \odot \hat{\mathbf{q}}=\frac{1}{2} \frac{1}{2}(1-1,(2,0,2)+(-2,0,2)) \\
&=(0,0,0,1) .
\end{aligned}
$$

That is, we rotate the point on the x -axis onto the z -axis. (note that we look from the origin and rotate ccw; when looked at from $(1,1,1))$ the angle is clockwise)

Note: one can convert from Euler to Quaternion and from Quaternion to Euler
Relative rotation: roll, pitch yaw
angle-based: azimuth, elevation

Quaternions

