Illumination & Lighting

Computer Graphics Jorg Peters

Ray Tracing: not supported by openGL Path from light source to object to observer

Illumination & Lighting

Computer Graphics Jorg Peters

Interreflection: soft shadows, color bleeding, umbra, penumbra, shadows

Global Illumination

Computer Graphics Jorg Peters

OpenGL's approximation of global illumination and ray tracing

Computer Graphics Jorg Peters

Spectrum→ RGB (no refraction, incadescence) Radiosity in→ sum over light sources (no soft shadows,color bleed) BRDF→ ambient,diffuse,specular - counded on buffer Radience→ intensity

OpenGL's approximation of global illumination and ray tracing

Computer Graphics Jorg Peters

Ambient (global energy) background glow, equal scattering

Specular (Phong) laser beam, mirror

Diffuse (Lambertian) nature, equal scattering (but still directional light source)

Formula applies separately to RGB

Lights are objects affected by model-view transformations.

OpenGL Lighting

Computer Graphics Jorg Peters

Given a unit sphere, where is the highlight (= point of highest intensity)?

Compute this for some choice of e and p. (Reduce to plane through 0, e, p since n lies in that plane.)

screenshot?

Translucency

Computer Graphics Jorg Peters

If vertex
$$v_j$$
 has
opaqueness value α_j and intensity i_j
is drawn before v_{j+1} then the intensity is
$$\alpha_0 \mathbf{i}_0 + (1 - \alpha_0)(\alpha_1 \mathbf{i}_1 + (1 - \alpha_1)(\dots))$$

Given a unit sphere, where is the highlight (= point of highest intensity)?

Compute this for some choice of e and p. (Reduce to plane through 0, e, p since n lies in that plane.)

Computing Normals

Polygon Shading

Computer Graphics Jorg Peters

Flat

Gouraud : averaged vertex color using barycentric weights. **Phong:** averaged vertex normal (and other lighting factors)

Dithering, fog, blur