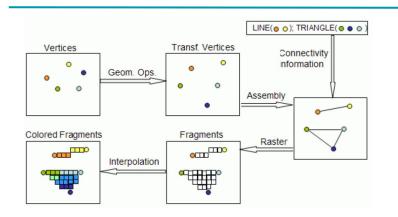
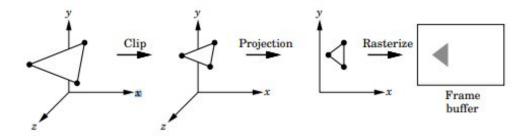

Computer Graphics Jorg Peters

Discretization = Rendering to a Grid


Knowing the renderer details can

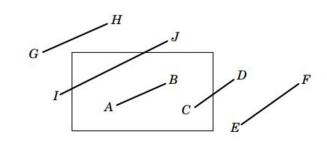
- Increase efficiency (better heuristics)
- Allow fine tuning and effects.

Computer Graphics Jorg Peters



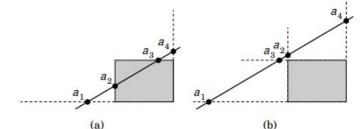
Computer Graphics Jorg Peters

Geometry processing: 3D, floating point: normalization, clipping, hidden surface removal, shading.


Rasterization, scan conversion: 2D, integer: pixel manipulation, quantization

Computer Graphics Jorg Peters

Cohen-Sutherland 2D Clipping


1001	1000	1010	$\alpha = \alpha$
0001	0000	0010	$-y = y_{\text{max}}$
0101	0100	0110	$-y = y_{\min}$
$x = x_{\min} x = x_{\max}$			

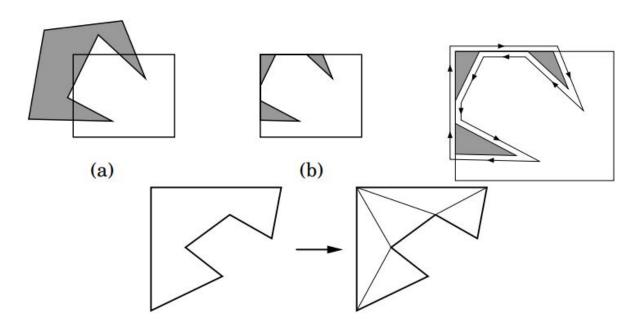
outcode o = (beyond ymax, ymin, xmax, xmin):

$$o1 = o2 = 0$$
 take entire segment AB
 $o1 \neq 0, o2 = 0$ intersect, possibly twice CD
 $o1\&o2 \neq 0$ discard EF
 $o1\&o2 = 0$ intersect and test GH, IJ

Liang-Barsky 2D Clipping

 $t_3(Q_y - P_y) = y_{\text{max}} - P_y$.

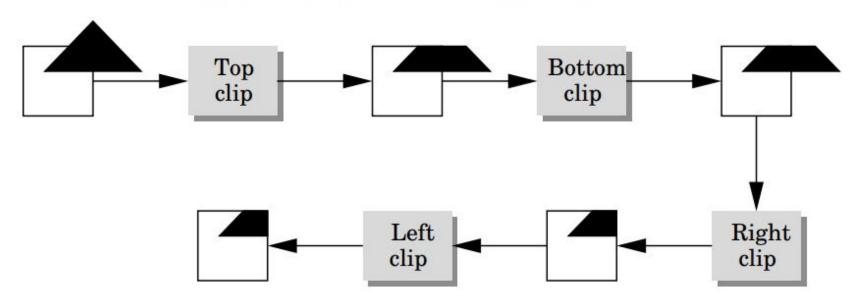
Jorg Peters


line segment
$$\begin{bmatrix} P_x \\ P_y \end{bmatrix} (1-t) + \begin{bmatrix} Q_x \\ Q_y \end{bmatrix} t$$
 intersects line $y = y_{\text{max}}$ at t_3 :

Can order intersection ts without floating point division:

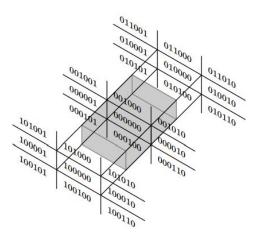
$$t_3(Q_x - P_x)(Q_y - P_y) = (Q_x - P_x)(y_{\text{max}} - P_y),$$

$$t_2(Q_x - P_x)(Q_y - P_y) = (Q_y - P_y)(x_{\text{min}} - P_x),$$


Computer Graphics Jorg Peters

Polygon Clipping

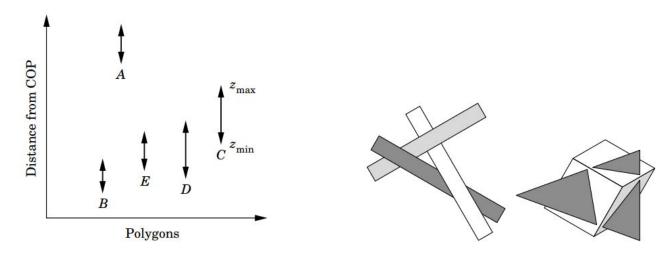
Computer Graphics Jorg Peters


Sutherland-Hodgson pipeline clipping

Computer Graphics Jorg Peters

3D Clipping

Cohen-Sutherland, outcode

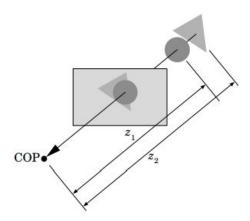


Liang-Barsky tests against a plane with normal N:

$$(P(1-t) + Qt - V) \cdot N = 0$$

Computer Graphics Jorg Peters

Depth Sort (painter's algorithm) If z of polygon is larger than all others', paint; if zs overlap but x or y do not, paint; else (cycle or piercing, see below) divide (and conquer).



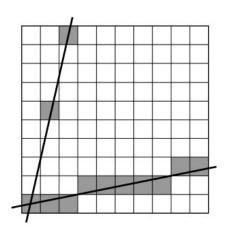
Computer Graphics Jorg Peters

Hidden-surface removal

z-buffer contains closest object so far:

If z-buffer value is less than new vertex z-value do not render new

Computer Graphics Jorg Peters

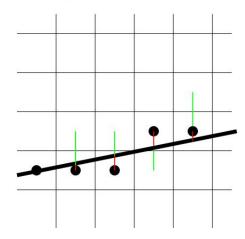

Digital Differential Analyzer

```
Assumption: 0 < \text{slope} = \frac{\Delta y}{\Delta x} < 1 \text{ (get other 7 cases by symmetry)}

for (ix = x_start; ix < x_end; ix = ix+1)

y = y + slope;

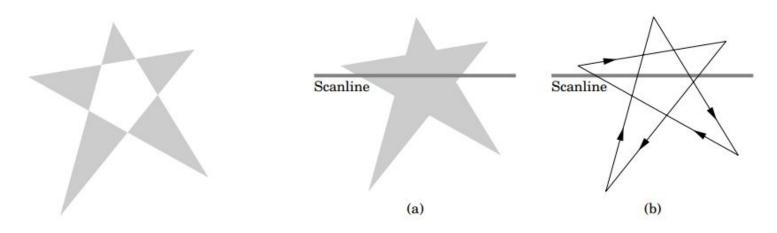
write_pix(x, round(y), color);
```



Computer Graphics Jorg Peters

Bresenham's Algorithm

Slope expressed as quotient of integers: $\Delta y/\Delta x$ $d_k := (dist\ to\ upper\ candidate\ pixel)$ - $(dist\ to\ lower\ candidate\ pixel)$

$$d_{k+1} = d_k - 2 \begin{cases} \Delta y & \text{if } d_k > 0 \text{ prev right} \\ \Delta y - \Delta x & \text{if } d_k \le 0 \text{ prev right and up} \end{cases}$$


(if we move Δx to the right we gain Δy ; if we move up we subtract pixel width).

Computer Graphics Jorg Peters

Scan Conversion — Polygons

In/Out test: How do we decide what to fill in?

Computer Graphics Jorg Peters

Efficient scan line increment:

on y-scan-line $\Delta_x y = y_1 - y_2 = 0$ and for a plane $\mathbf{n} \cdot \mathbf{x} = d$ with normal $\mathbf{n} := (n_x, n_y, n_z)$

$$0 = \Delta_x(n_x x + n_y y + n_z z - d) = n_x \Delta x + n_z \Delta z$$

Hence $\Delta z = -\frac{n_x}{n_z} \Delta x$. (right hand side is known).

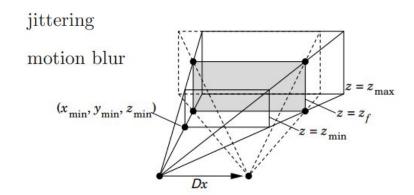
Computer Graphics Jorg Peters

Aliasing

digital filtering, averaging
$$\begin{bmatrix} . & 1 & . \\ 1 & 1 & 1 \\ . & 1 & . \end{bmatrix}$$
 or differencing
$$\begin{bmatrix} . & -1 & . \\ -1 & 4 & -1 \\ . & -1 & . \end{bmatrix}$$

Computer Graphics Jorg Peters

Buffers:


color (rgba)
depth (z)
accumulation
Stencil
feedback

Buffer exchange (ingenious)

 $S = S \times M$

 $M = S \times M$

 $S = S \times M$

