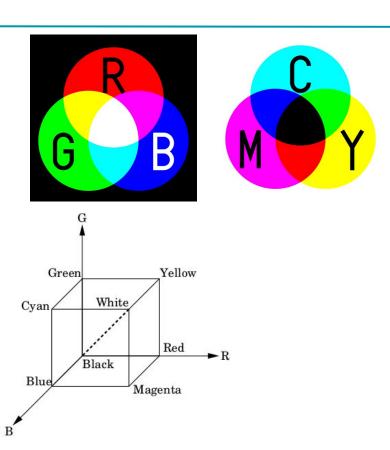
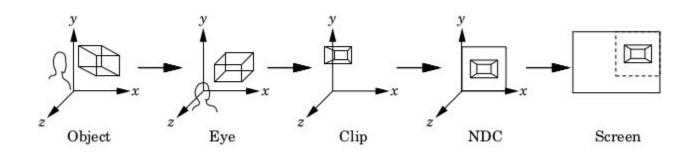
Coordinates: Color

Computer Graphics Jorg Peters



RGB vs Hue, Saturation, Intensity

Coordinates: OpenGL Pipeline



- > model
- scene (world)
- eye (camera) [The Camera always looks down the negative z-axis.]
- > clip (2-unit cube)
- normalized device (3D after perspective division)
- screen (after viewport transformation)

Euclidean Space: Rules

```
Inner product ( · )

Cross product ( × )

angles ( v · w ) normalized

lengths ( v · v )

area ( v × w )

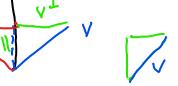
volume ( (u × v) · w ) = det(u,v,w)
```

Euclidean Space

Computer Graphics Jorg Peters

Working with Multiple Vectors

Projection of the vector v onto the vector w:
$$v = (v \cdot w / w \cdot w) w$$



Perpendicular component of v to w:

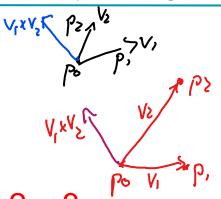
$$\sqrt{\frac{1}{2}}\tilde{v} := v - p(v,w) \perp w$$

Reflection of v across w: $v - 2\tilde{v}$

Euclidean Space Transformations

Computer Graphics Jorg Peters

The linear map $M:=[v_1,v_2,v_1\times v_2],\in\mathbb{R}^{3\times 3}$ $v_i:=p_i-p_0$, $v_i:=p_i-p_0$, maps the



four points p0 ,p1 ,p2 ,p3 to four points p0 ,p1 ,p2 ,p3 : $v3 = MM^{-1} v3 , \in \mathbb{R}^{3\times3}$

Elements: points (location) p and vectors (direction) v.

• $\sum_{i} \lambda_{i} \mathbf{v}_{i}$ is a vector; $\sum_{i} \lambda_{i} \mathbf{p}_{i}$ is an allowable operation only if $\sum_{i} \lambda_{i} = 1$.

 \triangleright The Bernstein-Bézier form is well-defined since $\sum_i b_i(u) = 1$ for $b_i(u) :=$ $\binom{d}{i}(1-u)^{d-i}u^{i}$.

Elements: points (location) p and vectors (direction) v.

 \triangleright Affine coordinates in \mathbb{R}^3 : append a 0 or 1 as 4th coordinate

$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} := \begin{bmatrix} p_1 & p_2 & p_3 & 1 \end{bmatrix}^T; \quad \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} := \begin{bmatrix} \tilde{v}_1 & \tilde{v}_2 & \tilde{v}_3 & 0 \end{bmatrix}^T.$$

Affine Coordinates: Transformations

Computer Graphics Jorg Peters

Translation

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ z + t_z \\ 1 \end{bmatrix}.$$

$$s := \sin(\theta), c := \cos(\theta)$$

Rotation
$$\begin{bmatrix} c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} cx - sy \\ sx + cy \\ z \\ 1 \end{bmatrix}$$

Rigid = translation, rotations, reflection

Planes and Quadrics

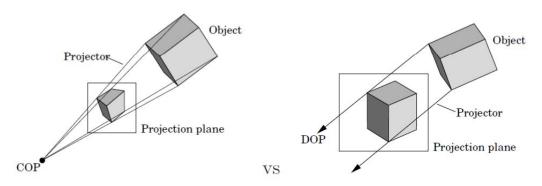
$$\triangleright$$
 Plane with normal \mathbf{n} , all (x, y, z) such that $\begin{bmatrix} \mathbf{n}_x & \mathbf{n}_y & \mathbf{n}_z & \mathbf{n}_c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0$

▷ Conic, all
$$(x, y)$$
 such that $\begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} & L_1 \\ Q_{12} & Q_{22} & L_2 \\ L_1 & L_2 & C_0 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$

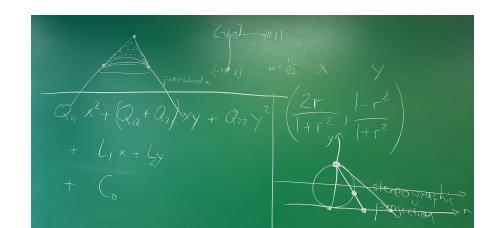
$$\text{Quadric, all } (x,y,z) \text{ s.t. } \begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} & L_1 \\ Q_{12} & Q_{22} & Q_{23} & L_2 \\ Q_{13} & Q_{23} & Q_{23} & L_3 \\ L_1 & L_2 & L_3 & C_0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0$$

Shortcomings of Affine Space

- While vectors can be added to vectors and points, points can only be added under extra constraints. Therefore there are two disjoint copies of Euclidean space.
- The rational Bernstein-Bézier form $\frac{\sum_{i} w_{i} \mathbf{p}_{i} b_{i}(u)}{\sum_{i} w_{i} b_{i}(u)} \simeq \sum_{i} \begin{bmatrix} w_{i} \mathbf{p}_{i} \\ w_{i} \end{bmatrix} b_{i}(u)$ cannot be represented because generally $w_{i} \notin \{0, 1\}$.
- Perspective projection cannot be represented



Circle



Projections

Computer Graphics Jorg Peters

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(dimetric: two of the three axes of space appear equally foreshortened)



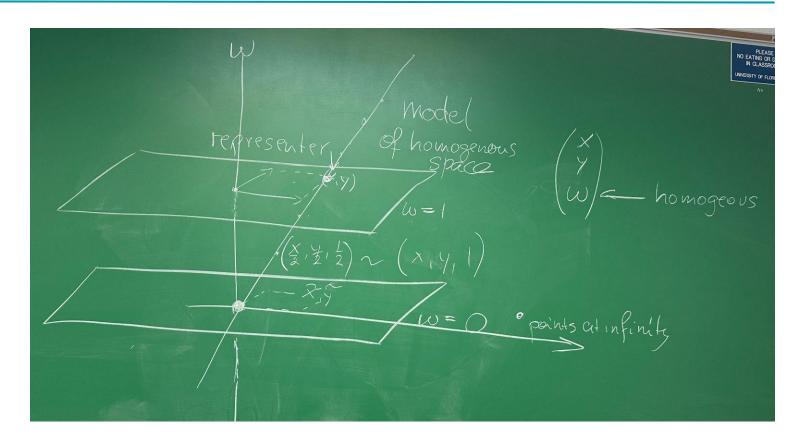
3-,2-, and 1-point perspective (=number of vanishing points). http://www.termespheres.com/perspective.html

Isometric

```
\triangleright an affine point \begin{bmatrix} x_1 & x_2 & \dots & x_n & x_{n+1} \end{bmatrix}^T if x_{n+1} \neq 0;
```

- \triangleright a point at infinity when $\begin{bmatrix} x_1 & x_2 & \dots & x_n & 0 \end{bmatrix}^T$.
- The homogeneous representation 'completes the geometry': A pair of lines always intersects in a point, possibly at infinity. (advanced) More generally, Bezout's Theorem holds in complex projective space: for polynomials p(x,y) and q(x,y) that have no common factor and are of degree m and n repectively, the curves p(x,y) = 0 and q(x,y) = 0 have mn intersections.

Projective Space, Homogeneous Coord's



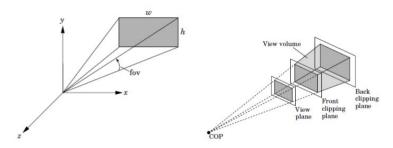
Projective Space: Perspective

Computer Graphics Jorg Peters

 \triangleright Perspective Scaling

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1/k \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kz \\ 1 \end{bmatrix}.$$

 \triangleright glPerspective(fovy,aspect,near,far) Modelview \rightarrow Projection \rightarrow Perspective Division



Projective Space: Frustum

Computer Graphics Jorg Peters

 \triangleright Frustum, Clipping (Projection into 3D double unit box) with $\Delta x :=$ $\bar{x} - x = (\text{xmax-xmin}) \text{ etc.}$

$$glFrustum(xmin,xmax,ymin,ymax,near,far)$$

$$\begin{bmatrix} \frac{2}{\Delta x} & 0 & 0 & -\frac{\bar{x}+\underline{x}}{\Delta x} \\ 0 & \frac{2}{\Delta y} & 0 & -\frac{\bar{y}+\underline{y}}{\Delta y} \\ 0 & 0 & \frac{2}{\Delta z} & -\frac{\bar{z}+\underline{z}}{\Delta z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Maps a viewing frustum (rectangular box) to $[-1,1]^3$.

Example: (A point between \underline{x} and \bar{x} is mapped to the interval [-1,1])

$$\underline{x} = -4, \ \bar{x} = 0, \qquad \Delta x = 4, \qquad -\frac{\bar{x} + \underline{x}}{\Delta x} = 1, \qquad \frac{2}{\Delta x} = 1/2.$$
 Then $\begin{bmatrix} -3 \\ * \\ * \end{bmatrix}$ is mapped to $\begin{bmatrix} -1/2 \\ * \\ * \end{bmatrix}$.

Then
$$\begin{bmatrix} -3 \\ * \\ * \end{bmatrix}$$
 is mapped to $\begin{bmatrix} -1/2 \\ * \\ * \end{bmatrix}$

Projective Space: not a vector space

- A point on a projective line does not split the line into two parts: a person looking in one unobstructed direction sees his on back.

 Construction of curves is unintuitive.
- There is no notion of length.
- It is not a vector space. Addition of homogeneous coordinates (here n=2) does not work:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}, \quad \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}, \quad \text{but} \quad \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} \neq \begin{bmatrix} 11 \\ 10 \\ 9 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + \begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}.$$