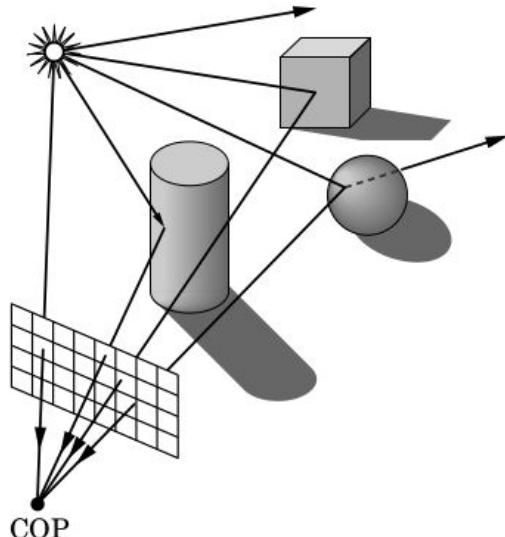


Illumination & Lighting

Computer Graphics Jorg Peters

Ray Tracing: not supported by OpenGL
Path from light source to object to observer



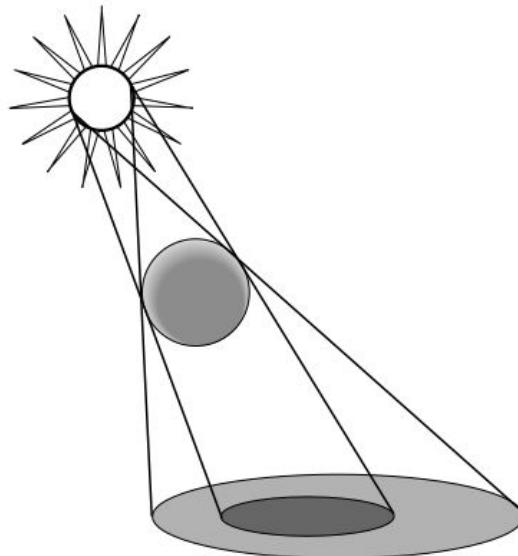
Ray-object intersection reduces to
root finding

A handwritten derivation on a chalkboard showing the intersection of a ray with a cylinder. The ray is defined by the equation $\frac{x}{P_x} = \frac{y}{P_y} = \frac{z}{P_z} + \lambda$. The cylinder is defined by the implicit equation $x^2 + y^2 + z^2 - 1 = 0$. The intersection is found by solving the parametric equation $x^2 + y^2 + (P_z + \lambda)^2 - 1 = 0$ for λ . The derivation shows the parametric form of the cylinder's equation and the resulting quadratic equation for λ .

Illumination & Lighting

Computer Graphics Jorg Peters

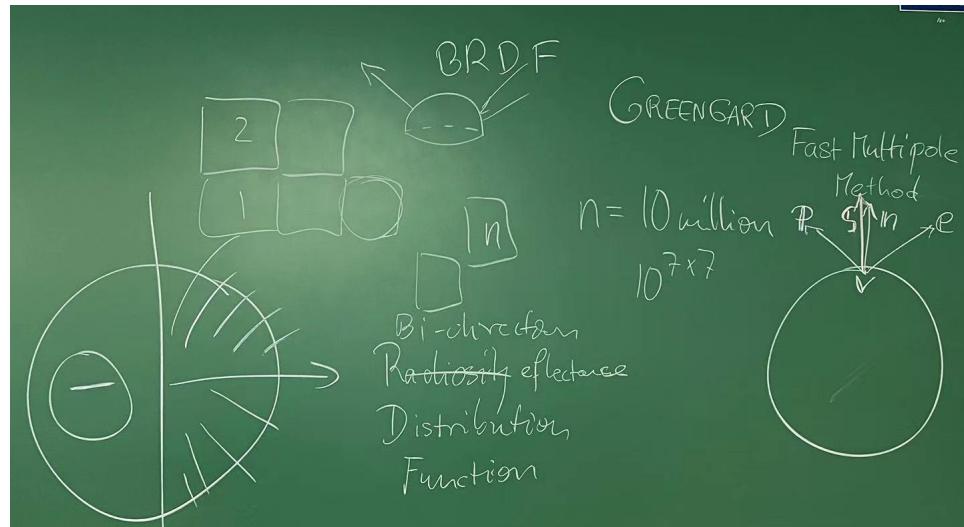
Interreflection: soft shadows, color bleeding, umbra, penumbra, shadows



Global Illumination

Computer Graphics Jorg Peters

energy preservation



OpenGL's approximation of global illumination and ray tracing

Computer Graphics Jorg Peters

Spectrum → RGB (no refraction, incandescence)

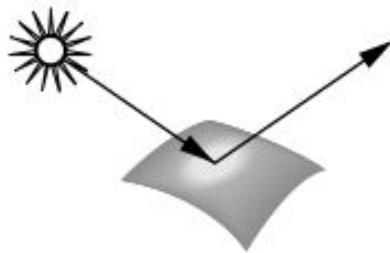
Radiosity in → sum over light sources
(no soft shadows, color bleed)

BRDF → ambient, diffuse, specular

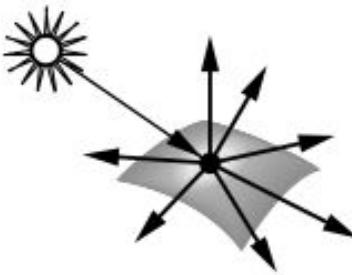
Radiance → intensity

OpenGL's approximation of global illumination and ray tracing

Computer Graphics Jorg Peters



Specular (Phong)
laser beam, mirror



Diffuse (Lambertian)
nature, equal scattering
(but still directional light
source)

Ambient (global energy)
background glow,
equal scattering

OpenGL lighting model

Computer Graphics Jorg Peters

$$\text{intensity} := \text{emission}_m + \text{ambient}_l \cdot \text{ambient}_m + \sum_{\text{lights}} \frac{1}{k_0 + k_1 d + k_2 d^2} \cdot \text{spot}_\ell \cdot \dots$$

$$\left(\text{ambient}_\ell \cdot \text{ambient}_m + \max\left\{ \frac{\mathbf{p} - \mathbf{v}}{d} \bullet \mathbf{n}, 0 \right\} \text{diffuse}_\ell \cdot \text{diffuse}_m \dots \right. \\ \left. + \max\{\mathbf{s} \bullet \mathbf{n}, 0\}^{\text{shininess}} \text{specular}_\ell \cdot \text{specular}_m \right)$$

	m	=material	ℓ	=light source	l	=lighting model
where	\mathbf{v}	=vertex	\mathbf{n}	=normal	\mathbf{p}	=light position
	\mathbf{e}	=eye position	d	$:= \ \mathbf{p} - \mathbf{v}\ $ Distance to light	$\mathbf{s} := \frac{\mathbf{s}'}{\ \mathbf{s}'\ }$	$\mathbf{s}' := \frac{\mathbf{p}-\mathbf{v}}{\ \mathbf{p}-\mathbf{v}\ } + \frac{\mathbf{e}-\mathbf{v}}{\ \mathbf{e}-\mathbf{v}\ }$

Here specular_ℓ , specular_m etc. are scalars.

Formula applies separately to RGB

Lights are objects affected by model-view transformations.

OpenGL Lighting

Computer Graphics Jorg Peters

<http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/>

Given a unit sphere, where is the highlight (= point of highest intensity)?

Compute this for some choice of e and p . (Reduce to plane through $0, e, p$ since n lies in that plane.)

screenshot?

Translucency

If vertex v_j has
opaqueness value α_j and intensity i_j
is drawn before v_{j+1} then the intensity is

$$\alpha_0 \mathbf{i}_0 + (1 - \alpha_0)(\alpha_1 \mathbf{i}_1 + (1 - \alpha_1)(\dots))$$

Given a unit sphere, where is the highlight (= point of highest intensity)?

Compute this for some choice of e and p . (Reduce to plane through $0, e, p$ since n lies in that plane.)

Computing Normals

Surface in *implicit* representation $p(\mathbf{x}) = p(x, y, z) = 0$.

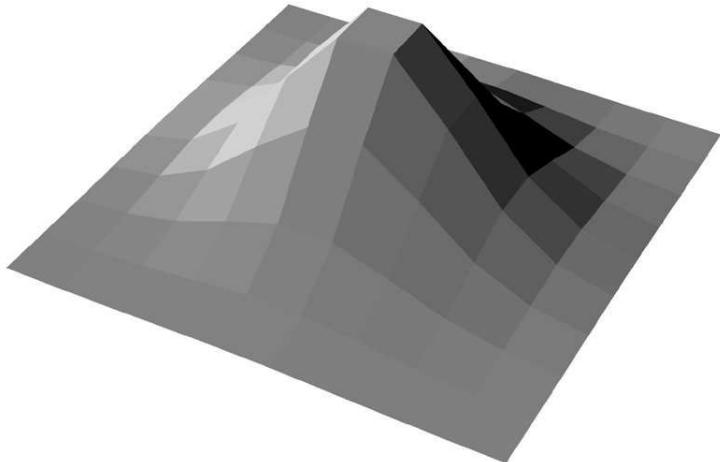
The normal direction is the (normalized) gradient $\nabla p = \begin{bmatrix} \frac{\partial}{\partial x} p \\ \frac{\partial}{\partial y} p \\ \frac{\partial}{\partial z} p \end{bmatrix}$

Surface in *parametric* representation $\mathbf{x}(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix}$.

The normal direction is $\frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v}$. To obtain the normal, normalize the normal direction to length 1.

Blackboard Examples: $p(\mathbf{x}) = x^2 + y^2 + z^2 - 1$, $\mathbf{x}(u, v) = \begin{bmatrix} \cos(u) \cos(v) \\ \cos(u) \sin(v) \\ \sin(u) \end{bmatrix}$

Polygon Shading



Flat

Gouraud : averaged vertex color using barycentric weights.

Phong: averaged vertex normal (and other lighting factors)

[Dithering](#), fog, blur