

The Bernstein basis functions of degree n on the interval $[0,1]$ are

$$
b_{n-i, i}: \mathbb{R} \rightarrow \mathbb{R}, u \mapsto\binom{n}{i}(1-u)^{n-i} u^{i}
$$

Note 1: When the degree n is understood, we drop the subscript $n-i$.
Note 2: Sometime we use t as the parameter (to remind of 'time'), sometimes u (in anticipation of using two parameters). It makes no difference.
A polynomial of degree n in Bernstein-Bézier form (BB-form) has the representation

$$
\begin{equation*}
\mathbf{p}_{n}(u):=\sum_{i=0}^{n} \mathbf{c}_{n-i, i} b_{n-i, i}(u) \quad \sim_{\text {short }} \mathbf{p}_{n}(u):=\sum_{i=0}^{n} \mathbf{c}_{i} b_{i}(u) . \tag{.1}
\end{equation*}
$$

The BB-coefficients $\mathbf{c}_{n-i, i} \in \mathbb{R}^{d}$ can have d coordinates and are often called control points, because of their nice geometric properties (see below). We reserve the term control point for another, equivalent representation, called B-spline representation. ${ }^{1}$ We are interested in the polynomial piece traced out when

$$
u \in[0 . .1] .
$$

(Otherwise see reparametrization below).

b Symmetry

The symmetry with respect to $u=1 / 2$ is nicely captured by introducing the abbreviation $v:=1-u$. This yields the equivalent representation

$$
b_{j, i}(u, v):=\frac{n!}{i!j!} u^{i} v^{j}, \quad \text { where } u+v=1, i+j=n
$$

with the obvious symmetry $b_{n-i, i}(u)=b_{i, n-i}(1-u)$.

[^0]
c Partition of unity and positivity

You will check below that the BB-basis functions add to 1 and are nonnegative:

$$
\begin{align*}
\sum_{i=0}^{n} b_{n-i, i} & =1 \tag{.2}\\
1 \geq b_{n-i, i}(u) & \geq 0 \text { for } u \in[0 . .1] . \tag{.3}
\end{align*}
$$

If you fix $u \in[0 . .1]$, say $u=1 / 2$, each $b_{n-i, i}(u)$ is a number between 0 and 1 and (.1) tells us to form a convex average of the control points $\mathbf{c}_{n-i, i}$. Therefore the polynomial (curve) is in the convex hull of the coefficients when $u \in[0,1]$.
(.3) also implies that the BB-form is affinely invariant. To see what this means let $A \in \mathbb{R}^{d \times d}$ be a $d \times d$ matrix (for example a 2×2 rotation matrix) and $\mathbf{a} \in \mathbb{R}^{d}$ be a vector with d coordinates. Then

$$
\begin{equation*}
\mathbf{a}+A \sum_{i=0}^{n} \mathbf{c}_{n-i, i} b_{n-i, i}(u)=\sum_{i=0}^{n}\left(\mathbf{a}+A \mathbf{c}_{n-i, i}\right) b_{n-i, i}(u) . \tag{.4}
\end{equation*}
$$

That is, we obtain the same result whether we transform (by applying A and translating by a) the curve $\sum_{i=0}^{n} \mathbf{c}_{n-i, i} b_{n-i, i}(u)$ or whether we transform the control points $\mathbf{c}_{n-i, i}$ and then form the curve.
..1-Exercise [3]: Prove that $\sum_{i=0}^{n} b_{n-i, i}(u)=1$, and $1 \geq b_{n-i, i}(u) \geq 0$.
..2- Exercise [5]: Prove that $b_{n-i, i}$ has its maximum over [0..1] at the Greville abscissa $u_{i}:=i / n$. (Hint: where is the derivative zero?)
..3- Exercise [5]: Draw the basis functions when $n=3 b_{n-i, i}$ for $i=0 . .3$ on the interval [0..1].

d Evaluation

The corresponding nested multiplication for evaluating the polynomial

$$
\begin{equation*}
\mathbf{p}_{n}(u):=\sum_{i=0}^{n} \mathbf{c}_{n-i, i} b_{n-i, i}(u) \tag{.5}
\end{equation*}
$$

Evaluation = iterated linear interpolation

$$
\begin{aligned}
& \text { for } i=0: n, p(n-i, i) \leftarrow \mathbf{c}_{n-i, i} \quad \ldots \text { fill array } \\
& \text { for } l=1: n, \quad . . \text { for each level } \\
& \text { for } i=0: n-l, \quad \ldots \text { from left to right } \\
& \\
& \qquad p(n-l-i, i)=\begin{array}{l}
(1-x) p(n-l+1-i, i) \\
\\
+x p(n-l-i, i+1)
\end{array}
\end{aligned}
$$

end
end

$$
p_{n}(x) \leftarrow \underline{p(0,0)} .
$$

e Subdivision

De Casteljau's algorithm does more than generate the value. The identity

$$
b_{n-i, i}(x u)=\sum_{k \geq i}^{n} b_{k-i, i}(x) b_{n-k, k}(u)
$$

implies that the restriction of \mathbf{p}_{n} to the interval $[0, x]$ is given by

$$
\begin{aligned}
\underline{\mathbf{p}_{[0, x]}(u)} & : \neq \sum_{i=0}^{n} a(i) b_{n-i, i}(x u) \\
& =\sum_{i=0}^{n}\left(\sum_{k=i}^{n} a(i) b_{k-i, i}(x)\right) b_{n-k, k}(u) \\
& =\sum_{k=0}^{n}\left(\sum_{i=0}^{k} a(i) b_{k-i, i}(x)\right) b_{n-k, k}(u) \\
& =\sum_{k=0}^{n} p(\underbrace{}_{n-k, k}(u) .
\end{aligned}
$$

f Differentiation

The derivative $\partial \mathbf{p}_{n}$ of a polynomial \mathbf{p}_{n} in Bernstein form must be writable as a

Differentiation $=$ Differencing coefficients
polynomial of one degree less in Bernstein form:

$$
\partial\left(\sum_{i=0}^{n} \mathbf{c}_{n-i, i} b_{n-i, i}\right)=\sum_{i=0}^{n-1} \mathbf{d}_{n-1-i, i} b_{n-1-i, i}
$$

..4- Exercise [5]: Show that the coefficients of the derivative are

$$
\underbrace{\mathbf{d}_{n-i, i}:=n\left(\mathbf{c}_{n-i-1, i+1}-\mathbf{c}_{n-i, i}\right)} .
$$

..5- Exercise [5]: Show that under the change variables $u \rightarrow \frac{x-a}{b-a}$, the coefficients become

$$
\mathbf{d}_{n-i, i}:=\frac{n}{b-a}\left(\mathbf{c}_{n-i-1, i+1}-\mathbf{c}_{n-i, i}\right) .
$$

..6- Example: The second derivative of the quadratic polynomial

$$
\mathbf{p}_{2}=3 b_{0,2}+5 b_{1,1}+8 b_{2,0}
$$

is

$$
\begin{aligned}
\mathbf{p}_{2}(u) & =3(1-u)^{2}+5 * 2(1-u) u+8 u^{2} \\
\partial \mathbf{p}_{2}(u) & =2(5-3) b_{0,1}+2(8-5) b_{1,0} \\
& =4(1-u)+6 u \\
\partial^{2} \mathbf{p}_{2}(u) & =1 *(6-4) b_{0,0} \\
& =2
\end{aligned}
$$

Indeed, applying the generic rules of differentiation to \mathbf{p}_{2}, we get

$$
\partial^{2} \mathbf{p}_{2}=3 * 2+5 *(-4)+8 * 2=2
$$

..7- Exercise [5]: Give a formula for coefficients $\mathbf{e}_{n-i, i}$ such that

$$
\partial^{2}\left(\sum_{i=0}^{n} \mathbf{c}_{n-i, i} b_{n-i, i}\right)=\sum_{j=0}^{n-2} \mathbf{e}_{n-2-j, j} b_{n-2-j, j} .
$$

g Integration

..8-Exercise [10]: Show that

Integration $=$
Summing coefficients

[^0]: ${ }^{1}$ If $\mathbf{c}_{n-i, i}=f(i / n)$ for some continuous function f then the polynomial is called Bernstein polynomial of f. This special type of polynomial in Bernstein form popular in analysis will only be a footnote.

