Approximation Algorithms And Hardness For Domination With Propagation

Yilin Shen

March 1, 2011

Yilin Shen

(ロ) (四) (E) (E) (E)

Motivation

2 Problem Definitions

- Power Dominating Set (PDS)
- ℓ -round PDS

<ロ> (四) (四) (三) (三) (三)

Motivation

- Problem Definitions
 - Power Dominating Set (PDS)
 - ℓ -round PDS

③ Approximation Hardness of PDS and ℓ -round PDS

Motivation

- Problem Definitions
 - Power Dominating Set (PDS)
 - ℓ -round PDS
- $\textcircled{O} Approximation Hardness of PDS and ℓ-round PDS$
- \sqrt{n} -Approximation Algorithm of PDS on Planar Graphs

Motivation

- Problem Definitions
 - Power Dominating Set (PDS)
 - ℓ -round PDS
- **③** Approximation Hardness of PDS and ℓ -round PDS
- \sqrt{n} -Approximation Algorithm of PDS on Planar Graphs
- **③** PTAS for ℓ -round PDS on Planar Graphs

(ロ) (同) (E) (E) (E)

Motivation

- Problem Definitions
 - Power Dominating Set (PDS)
 - ℓ -round PDS
- **③** Approximation Hardness of PDS and ℓ -round PDS
- \sqrt{n} -Approximation Algorithm of PDS on Planar Graphs
- **③** PTAS for ℓ -round PDS on Planar Graphs
- **O** PDS in Directed Graphs

(ロ) (同) (E) (E) (E)

• Monitoring Electric Power Networks

(ロ) (四) (E) (E) (E)

- Monitoring Electric Power Networks
- In order to monitor a power network we need to measure all the state variables of the network by placing measurement devices

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Monitoring Electric Power Networks
- In order to monitor a power network we need to measure all the state variables of the network by placing measurement devices
- A Phasor Measurement Unit (PMU) is a measurement device placed on a node that has the ability to measure the voltage of the node and the current phase of the edges connected to the node

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Monitoring Electric Power Networks
- In order to monitor a power network we need to measure all the state variables of the network by placing measurement devices
- A Phasor Measurement Unit (PMU) is a measurement device placed on a node that has the ability to measure the voltage of the node and the current phase of the edges connected to the node
- These units have the capability of monitoring remote elements via propagation (Rule 2)

Power Dominating Set (PDS)

Power Dominating Set

The Power Dominating Set problem (PDS) is a covering problem in which the goal is to power dominate (cover) all the nodes of a given undirected graph G by picking as few nodes as possible. Given a set of nodes S, the set of nodes that are power dominated by S, denoted P(S). There are two rules as follows:

(日) (同) (E) (E) (E)

Power Dominating Set (PDS)

Power Dominating Set

The Power Dominating Set problem (PDS) is a covering problem in which the goal is to power dominate (cover) all the nodes of a given undirected graph G by picking as few nodes as possible. Given a set of nodes S, the set of nodes that are power dominated by S, denoted P(S). There are two rules as follows: 'Local' Effect if node v is in S, then v and all of its neighbors are

in P(S);

(日) (同) (E) (E) (E)

Power Dominating Set (PDS)

Power Dominating Set

The Power Dominating Set problem (PDS) is a covering problem in which the goal is to power dominate (cover) all the nodes of a given undirected graph G by picking as few nodes as possible. Given a set of nodes S, the set of nodes that are power dominated by S, denoted P(S). There are two rules as follows:

- 'Local' Effect if node v is in S, then v and all of its neighbors are in P(S);
- Propagation if node v is in P(S), one of its neighbors w is not in P(S), and all other neighbors of v are in P(S), then w is inserted into P(S).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

ℓ -round PDS

Parallel Propagation Rule

Given a graph G = (V, E) and a subset of nodes $S \subseteq V$, the set of nodes that can be power dominated by applying at most k rounds of parallel propagation, denoted by $P^k(S)$, is defined recursively as follows:

$$P^{k}(S) = \begin{cases} \cup_{v \in S} \mathcal{N}[v], & k = 1\\ P^{k-1}(S) \cup \{v : (u, v) \in E, \mathcal{N}[u] \setminus \{v\} \subseteq P^{k-1}(S), & k \ge 2 \end{cases}$$

(日) (同) (E) (E) (E)

ℓ -round PDS

Parallel Propagation Rule

Given a graph G = (V, E) and a subset of nodes $S \subseteq V$, the set of nodes that can be power dominated by applying at most k rounds of parallel propagation, denoted by $P^k(S)$, is defined recursively as follows:

$$P^{k}(S) = \begin{cases} \cup_{v \in S} N[v], & k = 1\\ P^{k-1}(S) \cup \{v : (u, v) \in E, N[u] \setminus \{v\} \subseteq P^{k-1}(S), & k \ge 2 \end{cases}$$

ℓ-round PDS

Given a parameter ℓ , the ℓ -round PDS problem is the problem in which we are given a graph G = (V, E) and the goal is to find a minimum size subset of nodes $S \subseteq V$, such that $P^{\ell}(S) = V$.

Example

Fig. 1. Example for PDS

Fig. 2. Example for ℓ -round PDS

・ロ・・ (日・・ (日・・ (日・)

Э

Approximation Hardness of PDS and ℓ -round PDS

Theorem

The PDS (and ℓ -round PDS for $\ell \ge 4$) problem cannot be approximated within ratio $2^{\log^{1-\epsilon} n}$, for any $\epsilon > 0$, unless $NP \subseteq DTIME(n^{poly \log n})$.

Proof.

The idea is to show the gap-preserving from MinRep Problem to PDS.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Detail Proof

MinRep Problem:

In the MINREP problem we are given a bipartite graph G = (A, B, E) with a partitioning of A and B into (equal size) subsets, say $A = \bigcup_{i=1}^{q_A} A_i$ and $B = \bigcup_{i=1}^{q_B} B_i$, where $|A_i| = m_A = \frac{|A|}{q_A}$ and $|B_i| = m_B = \frac{|B|}{q_B}$. This partitioning naturally defines a super bipartite graph $\mathcal{H} = (\mathcal{A}, \mathcal{B}, \mathcal{E})$. The super nodes of H are $\mathcal{A} = \{A_1, A_2, \cdots, A_{q_A}\}$ and $\mathcal{B} = \{B_1, B_2, \cdots, B_{q_B}\}$, and the super edges are $\mathcal{E} = \{A_i B_j | \exists a \in A_i, b \in B_j : ab \in E(G)\}$. We say that super edge $A_i B_j$ is covered by $ab \in E(G)$ if $a \in A_i$ and $b \in B_j$. The goal in MINREP is to pick the minimum number of nodes, $A' \cup B' \subseteq V(G)$, from G such that all the super edges in \mathcal{H} are covered. The following theorem states the hardness of the MINREP problem [20].

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Detail Proof

MinRep Problem:

In the MINREP problem we are given a bipartite graph G = (A, B, E) with a partitioning of A and B into (equal size) subsets, say $A = \bigcup_{i=1}^{q_A} A_i$ and $B = \bigcup_{i=1}^{q_B} B_i$, where $|A_i| = m_A = \frac{|A|}{q_A}$ and $|B_i| = m_B = \frac{|B|}{q_B}$. This partitioning naturally defines a super bipartite graph $\mathcal{H} = (\mathcal{A}, \mathcal{B}, \mathcal{E})$. The super nodes of H are $\mathcal{A} = \{A_1, A_2, \cdots, A_{q_A}\}$ and $\mathcal{B} = \{B_1, B_2, \cdots, B_{q_B}\}$, and the super edges are $\mathcal{E} = \{A_i B_j | \exists a \in A_i, b \in B_j : ab \in E(G)\}$. We say that super edge $A_i B_j$ is covered by $ab \in E(G)$ if $a \in A_i$ and $b \in B_j$. The goal in MINREP is to pick the minimum number of nodes, $A' \cup B' \subseteq V(G)$, from G such that all the super edges in \mathcal{H} are covered. The following theorem states the hardness of the MINREP problem [20].

Theorem

MinRep cannot be approximated within ratio $2^{\log^{1-\epsilon} n}$, for any $\epsilon > 0$, unless $NP \subseteq DTIME(n^{poly \log n})$, where n = |V(G)|.

The Reduction:

(ロ) (四) (E) (E) (E)

The Reduction:

- 1. Add a new node w^* (master node) to the graph G, and add an edge between w^* and all the nodes in G. Also add new nodes w_1^*, w_2^*, w_3^* and connect them by an edge to w^* .
- 2. $\forall i \in \{1, \dots, q_A\}, j \in \{1, \dots, q_B\}$ do the following:
 - (a) Let $E_{ij} = \{e_1, e_2, \dots, e_\kappa\}$ be the set of edges between $A_i = \{a_{i_1}, \dots, a_{i_{m_A}}\}$ and $B_j = \{b_{j_1}, \dots, b_{j_{m_B}}\}$ in G, where κ is the number of edges between A_i and B_j .
 - (b) Remove E_{ij} from G.
 - (c) Let the edge $e_q \in E_{i,j}$ be incident to a_{i_q} and b_{j_q} (in G). In this labeling for simplicity the same node might get different labels. Let D_{ij} be the graph in Figure 3 (A dashed line shows an edge between the master node w^* and that node). Make k = 4 new copies of the graph D_{ij} and then identify nodes a_{i_q} 's, b_{j_q} 's with the corresponding nodes in A_i and B_j (in G). Note that the k copies are sharing the same set of nodes, A_i and B_j , but other nodes are disjoint.

3. Let $\overline{G} = (\overline{V}, \overline{E})$ be the obtained graph.

Fig. 3. D_{ij} graph

イロン イロン イヨン イヨン 三日

Lemma

 (A^*, B^*) is an optimal solution to the instance G = (A, B, E) of the MinRep problem if and only if $\Pi^* = A^* \cup B^* \cup \{w^*\} \subseteq V(\overline{G})$ is an optimal solution to the instance \overline{G} of PDS (and ℓ -round PDS for all $\ell \ge 4$).

Proof.

The proof follows in two ways.

Yilin Shen

(日) (同) (E) (E) (E)

\sqrt{n} -Approximation Algorithm of PDS on Planar Graphs

Idea

• The idea is to use the tree decomposition since the tree-width of a planar graph G with n nodes is $O(\sqrt{n})$ which can be found in $O(n^{3/2})$ time.

\sqrt{n} -Approximation Algorithm of PDS on Planar Graphs

Idea

- The idea is to use the tree decomposition since the tree-width of a planar graph G with n nodes is $O(\sqrt{n})$ which can be found in $O(n^{3/2})$ time.
- The key point is to show that Opt(G) ≥ m, where m is the number of nodes of T where we updated Π.

Some Definitions

Definition 1. A tree decomposition of a graph G = (V, E) is a pair $\langle \{X_i \subseteq V \mid i \in I\}, T \rangle$, where T = (I, F) is a tree, satisfying the following three properties: (1) $\bigcup_{i \in I} X_i = V$; (2) For all edges $\{u, v\} \in E$ there is an $i \in I$ such that $\{u, v\} \subseteq X_i$; (3) For all $i, j, k \in I$, if j is on the unique path from i to k in T, then we have: $X_i \cap X_k \subseteq X_j$. The width of $\langle \{X_i \mid i \in I\}, T \rangle$ is the max_{i \in I} $|X_i| - 1$. The tree-width of G is defined as the minimum width over all tree decompositions. The nodes of the tree T are called T-nodes and each X_i is called a bag.

Some Definitions

Definition 1. A tree decomposition of a graph G = (V, E) is a pair $\langle \{X_i \subseteq V \mid i \in I\}, T \rangle$, where T = (I, F) is a tree, satisfying the following three properties: (1) $\bigcup_{i \in I} X_i = V$; (2) For all edges $\{u, v\} \in E$ there is an $i \in I$ such that $\{u, v\} \subseteq X_i$; (3) For all $i, j, k \in I$, if j is on the unique path from i to k in T, then we have: $X_i \cap X_k \subseteq X_j$. The width of $\langle \{X_i \mid i \in I\}, T \rangle$ is the max $_{i \in I}|X_i| - 1$. The tree-width of G is defined as the minimum width over all tree decompositions. The nodes of the tree T are called T-nodes and each X_i is called a bag.

Definition 2. Given a graph G = (V, E) and a set $\Pi \subseteq V$, the subset $R \subseteq V$ is called Π -strong region if $R \not\subseteq \mathcal{P}(\Pi \cup nbr(R))$, otherwise the set R is called Π -weak region. The region R is called minimal Π -strong if it is a Π -strong region and $\forall r \in R, R-r$ is a Π -weak region.

Approximation Algorithm

Algorithm 1. (k + 1)-approximation Algorithm

- 1: Given a tree decomposition $\langle \{X_i | i \in I\}, T \rangle$, take an arbitrary node, r, as a root of T.
- 2: Let I_{ℓ} be the set of *T*-nodes of distance ℓ from the root, and let *d* be the maximum distance from *r*.
- $3:\ \Pi \leftarrow \emptyset, \quad a \leftarrow 0$
- 4: for i = d to 0 do
- 5: Let $I_i = \{r_1, \ldots, r_k\}$ and let T_j be the subtree in T rooted at r_j .
- 6: Let Y_j be the set of nodes in G corresponding to the T-nodes in T_j .
- 7: for all induced subgraph $G_j = G[Y_j]$ do
- 8: **if** G_j is Π -strong **then**
- 9: $\Pi \leftarrow \Pi \cup X_{r_j}, a \leftarrow a + 1, ST_a \leftarrow Y_j \setminus \bigcup_{s=1}^{a-1} ST_s$; where ST_a is the *a*-th strong region found.
- 10: end if
- 11: end for
- 12: end for
- 13: Output $\Pi_O = \Pi$

PTAS for ℓ -round PDS on Planar Graphs

The idea is to use dynamic programming based on the following proposition.

PTAS for ℓ -round PDS on Planar Graphs

The idea is to use dynamic programming based on the following proposition.

Proposition 1. Given a pair $\langle G, V' \rangle$ where G = (V, E) is a planar graph with tree-width k and $V' \subseteq V$, a minimum size set $S \subseteq V$ such that $V' \subseteq \mathcal{P}^{\ell}(S)$ can be obtained in time $O(c^{k \log \ell} \cdot |V|)$, for a constant c.

PTAS Algorithm

Algorithm 2. PTAS for *l*-round PDS

- 1: Given a planar embedding of G, and the parameter $0 < \epsilon \leq 1$.
- 2: Let $k = 4 \cdot \left\lceil \frac{\ell}{\epsilon} \right\rceil$.
- 3: for i = 1 to k do
- 4: for all $j \ge 0$ do
- 5: Solve "generalized" ℓ -round PDS on $\langle G[B_{i,j}], C_{i,j} \rangle$
- 6: Let $\mathcal{O}_{i,j}$ be an optimal solution for $\langle G[B_{i,j}], C_{i,j} \rangle$
- 7: end for

8:
$$\Pi_i = \bigcup_{j \ge 0} \mathcal{O}_{i,j}$$

9: end for

10:
$$r \leftarrow argmin\{|\Pi_i|: i = 1, \cdots, k\}$$

11: Output $\Pi_O = \Pi_r$.

< □ > < @ > < 注 > < 注 > ... 注

PDS in Directed Graphs

Theorem

The directed PDS problem even when restricted to directed acyclic graph cannot be approximated within ratio $2^{\log^{1-\epsilon} n}$, for any $\epsilon > 0$, unless $NP \subseteq DTIME(n^{poly \log n})$.

(ロ) (同) (E) (E) (E)