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Motivation

• Monitoring Electric Power Networks

• In order to monitor a power network we need to measure all
the state variables of the network by placing measurement
devices

• A Phasor Measurement Unit (PMU) is a measurement device
placed on a node that has the ability to measure the voltage
of the node and the current phase of the edges connected to
the node

• These units have the capability of monitoring remote elements
via propagation (Rule 2)
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Power Dominating Set (PDS)

Power Dominating Set

The Power Dominating Set problem (PDS) is a covering problem
in which the goal is to power dominate (cover) all the nodes of a
given undirected graph G by picking as few nodes as possible.
Given a set of nodes S , the set of nodes that are power dominated
by S , denoted P(S). There are two rules as follows:

‘Local’ Effect if node v is in S , then v and all of its neighbors are
in P(S);

Propagation if node v is in P(S), one of its neighbors w is not in
P(S), and all other neighbors of v are in P(S), then
w is inserted into P(S).
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`-round PDS

Parallel Propagation Rule

Given a graph G = (V ,E ) and a subset of nodes S ⊆ V , the set of
nodes that can be power dominated by applying at most k rounds
of parallel propagation, denoted by Pk(S), is defined recursively as
follows:

Pk(S) =

{
∪v∈SN[v ], k = 1
Pk−1(S) ∪ {v : (u, v) ∈ E ,N[u] \ {v} ⊆ Pk−1(S), k ≥ 2

`-round PDS

Given a parameter `, the `-round PDS problem is the problem in
which we are given a graph G = (V ,E ) and the goal is to find a
minimum size subset of nodes S ⊆ V , such that P`(S) = V .

Yilin Shen Approximation Algorithms And Hardness For Domination With Propagation



Outlines Motivation Problem Definitions Approximation Hardness of PDS and `-round PDS
√
n-Approximation Algorithm of PDS on Planar Graphs PTAS for `-round PDS on Planar Graphs PDS in Directed Graphs

`-round PDS

Parallel Propagation Rule

Given a graph G = (V ,E ) and a subset of nodes S ⊆ V , the set of
nodes that can be power dominated by applying at most k rounds
of parallel propagation, denoted by Pk(S), is defined recursively as
follows:

Pk(S) =

{
∪v∈SN[v ], k = 1
Pk−1(S) ∪ {v : (u, v) ∈ E ,N[u] \ {v} ⊆ Pk−1(S), k ≥ 2

`-round PDS

Given a parameter `, the `-round PDS problem is the problem in
which we are given a graph G = (V ,E ) and the goal is to find a
minimum size subset of nodes S ⊆ V , such that P`(S) = V .

Yilin Shen Approximation Algorithms And Hardness For Domination With Propagation



Outlines Motivation Problem Definitions Approximation Hardness of PDS and `-round PDS
√
n-Approximation Algorithm of PDS on Planar Graphs PTAS for `-round PDS on Planar Graphs PDS in Directed Graphs

Example

v

Fig. 1. Example for PDS

P2

P1

Pm

X1 X2 X3 Xk

v

Fig. 2. Example for �-round PDS
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Approximation Hardness of PDS and `-round PDS

Theorem

The PDS (and `-round PDS for ` ≥ 4) problem cannot be

approximated within ratio 2log
1−ε n, for any ε > 0, unless

NP ⊆ DTIME
(
npoly log n

)
.

Proof.

The idea is to show the gap-preserving from MinRep Problem to
PDS.
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Detail Proof

MinRep Problem:

In the MinRep problem we are given a bipartite graph G = (A,B,E) with a
partitioning of A and B into (equal size) subsets, say A =

⋃qA
i=1 Ai and B =⋃qB

i=1 Bi , where |Ai| = mA = |A|
qA

and |Bi| = mB = |B|
qB

. This partitioning

naturally defines a super bipartite graph H = (A,B, E). The super nodes of H
are A = {A1, A2, · · · , AqA} and B = {B1, B2, · · · , BqB}, and the super edges
are E = {AiBj |∃a ∈ Ai, b ∈ Bj : ab ∈ E(G)}. We say that super edge AiBj is
covered by ab ∈ E(G) if a ∈ Ai and b ∈ Bj . The goal in MinRep is to pick
the minimum number of nodes, A′ ∪ B′ ⊆ V (G), from G such that all the
super edges in H are covered. The following theorem states the hardness of the
MinRep problem [20].

Theorem

MinRep cannot be approximated within ratio 2log
1−ε n, for any

ε > 0, unless NP ⊆ DTIME
(
npoly log n

)
, where n = |V (G )|.
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Detail Proof (Cont.)

The Reduction:

1. Add a new node w∗ (master node) to the graph G, and add an edge between
w∗ and all the nodes in G. Also add new nodes w∗

1 , w
∗
2 , w

∗
3 and connect them

by an edge to w∗.
2. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} do the following:

(a) Let Eij={e1, e2, . . . , eκ} be the set of edges between Ai=
{
ai1 , . . . , aimA

}

and Bj =
{
bj1 , . . . , bjmB

}
in G, where κ is the number of edges between

Ai and Bj .
(b) Remove Eij from G.
(c) Let the edge eq ∈ Ei,j be incident to aiq and bjq (in G). In this labeling

for simplicity the same node might get different labels. Let Dij be the
graph in Figure 3 (A dashed line shows an edge between the master node
w∗ and that node). Make k = 4 new copies of the graph Dij and then
identify nodes aiq ’s, bjq ’s with the corresponding nodes in Ai and Bj (in
G). Note that the k copies are sharing the same set of nodes, Ai and Bj ,
but other nodes are disjoint.

3. Let G = (V ,E) be the obtained graph.
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Fig. 3. Dij graph
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Detail Proof (Cont.)

Lemma

(A∗,B∗) is an optimal solution to the instance G = (A,B,E ) of
the MinRep problem if and only if Π∗ = A∗ ∪ B∗ ∪ {w∗} ⊆ V (Ḡ )
is an optimal solution to the instance Ḡ of PDS (and `-round PDS
for all ` ≥ 4).

Proof.

The proof follows in two ways.
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√
n-Approximation Algorithm of PDS on Planar Graphs

Idea

• The idea is to use the tree decomposition since the tree-width
of a planar graph G with n nodes is O(

√
n) which can be

found in O(n3/2) time.

• The key point is to show that Opt(G ) ≥ m, where m is the
number of nodes of T where we updated Π.
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Some Definitions

Definition 1. A tree decomposition of a graph G = (V,E) is a pair
〈{Xi ⊆ V | i ∈ I} , T 〉, where T = (I, F ) is a tree, satisfying the following three
properties: (1)

⋃
i∈I Xi = V ; (2) For all edges {u, v} ∈ E there is an i ∈ I

such that {u, v} ⊆ Xi; (3) For all i, j, k ∈ I, if j is on the unique path from i
to k in T , then we have: Xi ∩Xk ⊆ Xj . The width of 〈{Xi | i ∈ I} , T 〉 is the
maxi∈I |Xi| − 1. The tree-width of G is defined as the minimum width over all
tree decompositions. The nodes of the tree T are called T -nodes and each Xi is
called a bag.

Definition 2. Given a graph G = (V,E) and a set Π ⊆ V , the subset R ⊆ V is
called Π-strong region if R �⊆ P(Π ∪ nbr(R)), otherwise the set R is called Π-
weak region. The region R is called minimal Π-strong if it is a Π-strong region
and ∀r ∈ R, R− r is a Π-weak region.
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Approximation Algorithm

Algorithm 1. (k + 1)-approximation Algorithm

1: Given a tree decomposition 〈{Xi|i ∈ I} , T 〉, take an arbitrary node, r, as a root of
T .

2: Let I� be the set of T -nodes of distance � from the root, and let d be the maximum
distance from r.

3: Π ← ∅, a ← 0
4: for i = d to 0 do
5: Let Ii = {r1, . . . , rk} and let Tj be the subtree in T rooted at rj .
6: Let Yj be the set of nodes in G corresponding to the T -nodes in Tj .
7: for all induced subgraph Gj = G[Yj ] do
8: if Gj is Π-strong then
9: Π ← Π ∪ Xrj , a ← a + 1, STa ← Yj \ ⋃a−1

s=1 STs; where STa is the a-th
strong region found.

10: end if
11: end for
12: end for
13: Output ΠO = Π
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PTAS for `-round PDS on Planar Graphs

The idea is to use dynamic programming based on the following
proposition.

Proposition 1. Given a pair 〈G, V ′〉 where G = (V,E) is a planar graph with
tree-width k and V ′ ⊆ V , a minimum size set S ⊆ V such that V ′ ⊆ P�(S) can
be obtained in time O(ck log � · |V |), for a constant c.
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PTAS Algorithm

Algorithm 2. PTAS for �-round PDS

1: Given a planar embedding of G, and the parameter 0 < ε ≤ 1.
2: Let k = 4 · � �

ε
�.

3: for i = 1 to k do
4: for all j ≥ 0 do
5: Solve “generalized” �-round PDS on 〈G[Bi,j ], Ci,j〉
6: Let Oi,j be an optimal solution for 〈G[Bi,j ], Ci,j〉
7: end for
8: Πi = ∪j≥0Oi,j

9: end for
10: r ← argmin{|Πi| : i = 1, · · · , k}
11: Output ΠO = Πr.
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PDS in Directed Graphs

Theorem

The directed PDS problem even when restricted to directed acyclic
graph cannot be approximated within ratio 2log

1−ε n, for any ε > 0,
unless NP ⊆ DTIME

(
npoly log n

)
.
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