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e Monitoring Electric Power Networks

e In order to monitor a power network we need to measure all
the state variables of the network by placing measurement
devices

e A Phasor Measurement Unit (PMU) is a measurement device
placed on a node that has the ability to measure the voltage
of the node and the current phase of the edges connected to
the node

e These units have the capability of monitoring remote elements
via propagation (Rule 2)
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Power Dominating Set (PDS)

Power Dominating Set

The Power Dominating Set problem (PDS) is a covering problem
in which the goal is to power dominate (cover) all the nodes of a
given undirected graph G by picking as few nodes as possible.
Given a set of nodes S, the set of nodes that are power dominated
by S, denoted P(S). There are two rules as follows:
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Power Dominating Set (PDS)

Power Dominating Set

The Power Dominating Set problem (PDS) is a covering problem
in which the goal is to power dominate (cover) all the nodes of a
given undirected graph G by picking as few nodes as possible.
Given a set of nodes S, the set of nodes that are power dominated
by S, denoted P(S). There are two rules as follows:

‘Local’ Effect if node v is in S, then v and all of its neighbors are
in P(S);
Propagation if node v is in P(S), one of its neighbors w is not in

P(S), and all other neighbors of v are in P(S), then
w is inserted into P(S).
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/-round PDS

Parallel Propagation Rule

Given a graph G = (V, E) and a subset of nodes S C V, the set of
nodes that can be power dominated by applying at most k rounds
of parallel propagation, denoted by PX(S), is defined recursively as
follows:

UyesN[v], 3.
PA(S) = { PICI(S) U v (u,v) € E,Nu]\ {v} € PE1(S), k32

v
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/-round PDS

Parallel Propagation Rule

Given a graph G = (V, E) and a subset of nodes S C V/, the set of
nodes that can be power dominated by applying at most k rounds
of parallel propagation, denoted by PX(S), is defined recursively as
follows:

_ f UyesNIvl, “31
P = { B0 (v (wov) € BN\ (v} € Pi(s), K2

v

f-round PDS

Given a parameter /¢, the /-round PDS problem is the problem in
which we are given a graph G = (V/, E) and the goal is to find a
minimum size subset of nodes S C V, such that P*(S) = V.
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Example
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Fig. 1. Example for PDS Fig. 2. Example for ¢-round PDS
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Approximation Hardness of PDS and /-round PDS

The PDS (and (-round PDS for ¢ > 4) problem cannot be
approximated within ratio 2'°8"" " for any € > 0, unless
NP C DTIME (npelogn).

The idea is to show the gap-preserving from MinRep Problem to
PDS. Ol

4
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Detail Proof

MinRep Problem:

In the MINREP problem we are given a bipartite graph G = (A, B, E) with a
partitioning of A and B into (equal size) subsets, say A = J/2; 4; and B =

15 B; , where |4;] = ma = %‘ and |B;| = mp = %. This partitioning
naturally defines a super bipartite graph H = (A, B, ). The super nodes of H
are A = {Ay, A, A, } and B = {B1,Bs, -+, By, }, and the super edges
are & = {A;Bj|3a € A;,b € Bj :ab € E(G)}. We say that super edge A;B; is
covered by ab € E(G) if a € A; and b € B;. The goal in MINREP is to pick
the minimum number of nodes, A’ U B’ C V(G), from G such that all the
super edges in H are covered. The following theorem states the hardness of the

MINREP problem [20].
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Detail Proof

MinRep Problem:

In the MINREP problem we are given a bipartite graph G = (A, B, E) with a
partitioning of A and B into (equal size) subsets, say A = Ugil A; and B =

15 B; , where |4;] = ma = %‘ and |B;| = mp = %. This partitioning
naturally defines a super bipartite graph H = (A, B, ). The super nodes of H
are A = {Ay, A, A, } and B = {B1,Bs, -+, By, }, and the super edges
are & = {A;Bj|3a € A;,b € Bj :ab € E(G)}. We say that super edge A;B; is
covered by ab € E(G) if a € A; and b € B;. The goal in MINREP is to pick
the minimum number of nodes, A’ U B’ C V(G), from G such that all the
super edges in H are covered. The following theorem states the hardness of the
MINREP problem [20].

MinRep cannot be approximated within ratio Dlog' " for any
€ >0, unless NP C DTIME (nP°Y'°€") “where n = |V(G))|.
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Detail Proof (Cont.)

The Reduction:
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Detail Proof (Cont.)

The Reduction:

1. Add a new node w* (master node) to the graph G, and add an edge between
w™* and all the nodes in G. Also add new nodes wi, w3, w3 and connect them
by an edge to w*.

2. Vie{l,...,qa},j €{1,...,qp} do the following:

(a) Let Ejj={e1,ea,...,ex} be the set of edges between A; = {ail N }

and B; = {bjl, N } in G, where k is the number of edges between
Ai and B]'.

(b) Remove E;; from G.

(c) Let the edge e, € E; ; be incident to a;, and b;, (in G). In this labeling
for simplicity the same node might get different labels. Let D;; be the
graph in Figure 3 (A dashed line shows an edge between the master node
w* and that node). Make k = 4 new copies of the graph D;; and then
identify nodes a;,’s, b;,’s with the corresponding nodes in A; and B; (in
G). Note that the k copies are sharing the same set of nodes, A; and Bj,
but other nodes are disjoint.

3. Let G = (V,E) be the obtained graph.
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Detail Proof (Cont.)

Fig.3. D;; graph
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Detail Proof (Cont.)

(A*, B*) is an optimal solution to the instance G = (A, B, E) of
the MinRep problem if and only if M* = A* U B* U {w*} C V(G)
is an optimal solution to the instance G of PDS (and (-round PDS
for all ¢ > 4).

The proof follows in two ways.

|
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\/n-Approximation Algorithm of PDS on Planar Graphs

e The idea is to use the tree decomposition since the tree-width
of a planar graph G with n nodes is O(v/n) which can be
found in O(n3/?) time.
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\/n-Approximation Algorithm of PDS on Planar Graphs

e The idea is to use the tree decomposition since the tree-width
of a planar graph G with n nodes is O(y/n) which can be
found in O(n3/?) time.

e The key point is to show that Opt(G) > m, where m is the
number of nodes of T where we updated [1.
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Some Definitions

Definition 1. A tree decomposition of a graph G = (V,E) is a pair
{X; CV |iel},T), where T = (I, F) is a tree, satisfying the following three
properties: (1) U,c; Xs = V5 (2) For all edges {u,v} € E there is an i € I

such that {u,v} C X;; (3) For alli,j,k € I, if j is on the unique path from i
tok in T, then we have: X; N Xy, C X;. The width of ({X; | i € I}, T) is the
max;er| X;| — 1. The tree-width of G is defined as the minimum width over all
tree decompositions. The nodes of the tree T are called T-nodes and each X; is
called a bag.
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Some Definitions

Definition 1. A tree decomposition of a graph G = (V,E) is a pair
{X; CV |iel},T), where T = (I, F) is a tree, satisfying the following three
properties: (1) U,c; Xs = V5 (2) For all edges {u,v} € E there is an i € I

such that {u,v} C X;; (3) For alli,j,k € I, if j is on the unique path from i
tok in T, then we have: X; N Xy, C X;. The width of ({X; | i € I}, T) is the
max;er| X;| — 1. The tree-width of G is defined as the minimum width over all
tree decompositions. The nodes of the tree T are called T-nodes and each X; is
called a bag.

Definition 2. Given a graph G = (V,E) and a set II C V, the subset R C'V is
called II-strong region if R € P(II Unbr(R)), otherwise the set R is called II-
weak region. The region R is called minimal II-strong if it is a II-strong region
and ¥Vr € R, R —r is a II-weak region.
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Approximation Algorithm

Algorithm 1. (k 4 1)-approximation Algorithm
1: Given a tree decomposition ({Xj|i € I'},T), take an arbitrary node, 7, as a root of
T.

2: Let I; be the set of T-nodes of distance ¢ from the root, and let d be the maximum
distance from 7.

3 I+ 0, a+0

4: for i =d to 0 do

5. Let I; = {r1,...,71} and let T; be the subtree in T rooted at r;.

6:  Let Yj be the set of nodes in G corresponding to the T-nodes in 7}.

7:  for all induced subgraph G; = G[Y;] do

8: if Gy is II-strong then

9: II <~ ITU Xy, a a+l, ST, < Y \ UZ} STs; where ST, is the a-th
strong region found.

10: end if

11:  end for

12: end for

13: Output Ilp = 11
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PTAS for /-round PDS on Planar Graphs

The idea is to use dynamic programming based on the following
proposition.
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PTAS for /-round PDS on Planar Graphs

The idea is to use dynamic programming based on the following
proposition.

Proposition 1. Given a pair (G, V') where G = (V, E) is a planar graph with
tree-width k and V' C V', a minimum size set S CV such that V' C P*(S) can
be obtained in time O(cF°8¢ . |V|), for a constant c.
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PTAS Algorithm

Algorithm 2. PTAS for ¢-round PDS

1: Given a planar embedding of GG, and the parameter 0 < e < 1.
2: Let k=4-[%].

3: for i =1 to k do

4 for all j > 0 do

5: Solve “generalized” ¢-round PDS on (G[B;,;], Ci ;)
6: Let O;,; be an optimal solution for (G[B;,;], Ci ;)
7:  end for

8: I = Uj>00;,;

9: end for

0: 7+ argmin{|Il;|:i=1,--- ,k}

1: Output Ilp = II,.

— =
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PDS in Directed Graphs

The directed PDS problem even when restricted to directed acyclic
graph cannot be approximated within ratio Dlog' ~* " for any € > 0,
unless NP C DTIME (np"’y log ").
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