Undirected ST-Connectivity in Log-Space

Omer Reingold

Presented by: Thang N. Dinh CISE, University of Florida, Fall, 2010

Undirected s-t connectivity(USTCON)

 Is t reachable from s in a undirected graph G?

- BFS, DFS take
 O(n) space
- USTCON ∈ NL (nondeterministic logspace Turing machine)

SL Complexity class

- SL = problems log-space reducible to USTCON
- Defined by Papadimitriou in 1982 via Symmetric Turing machine
- $L \subseteq SL \subseteq NL \subseteq L^2$ ($SPACE(log^2 n)$)
- Problems in SL:
 - Vertex-disjoint paths: are there k vertex-disjoint paths between s and t?
 - Is a graph a bipartite?
 - Is there a cycle containing a given edge?
 - Exclusive or 2-satisfiability
 - **-** ...

Sequential of Works

Savitch's Theorem

USTCON
$$\in L^2$$

- Nisan, Szemeredi and Wigderson 1989
 USTCON ∈ L^{3/2}
- Armoni, Ta-Shma, Wigderson, and S. Zhou 2000 USTCON $\in L^{4/3}$
- Trifonov 2005

USTCON \in SPACE(O(log n log log n))

Important Results

- Omer Reingold paper L = SL ⊆ NL
- All problems in SL are now in L.
- Showing that a problems are not in L, by showing that such no log-space reduction from it to USTCON exist
- Best paper award STOC 2005 Godel's prize 2009
- Trifonov got Best student paper award in STOC 2005

Outline

I. Introduction

- Space Complexity
- Connectivity is NL-complete
- Savitch's Theorem (NL \subset L²)
- Immerman's theorem (NL=coNL)

II. Transforming to (N,D, λ) -graph

- Expander Graph
- Transforming into an expander

Space Complexity

Motivation

Complexity classes correspond to bounds on resources

One such resource is space: the number of tape cells a TM uses when solving a problem

Space Complexity Classes

For any function $f: \mathbb{N} \to \mathbb{N}$, we define:

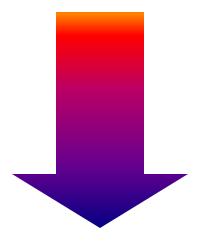
```
SPACE(f(n))={ L : L is decidable by a
          deterministic O(f(n)) space TM}
```

NSPACE(f(n))={ L : L is decidable by a non-deterministic O(f(n)) space TM}

Low Space Classes

Definitions (logarithmic space classes):

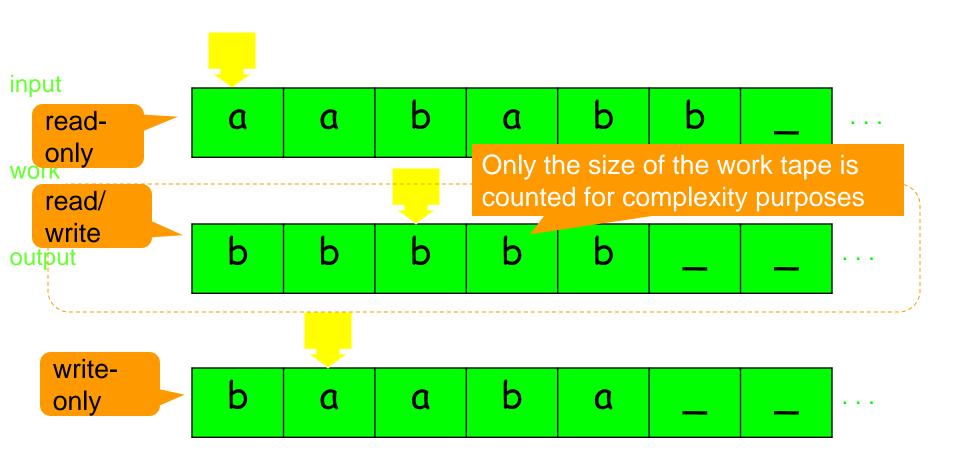
- L = SPACE(logn)
- NL = NSPACE(logn)



Problem!

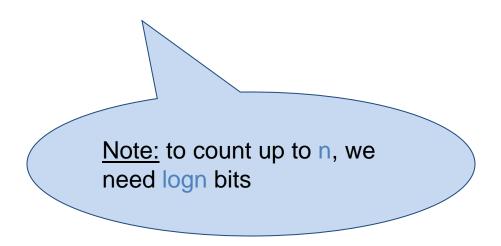
How can a TM use only logn space if the input itself takes n cells?!

3Tape Machines



Example

Question: How much space would a TM that decides {a^b^ | n>0} require?

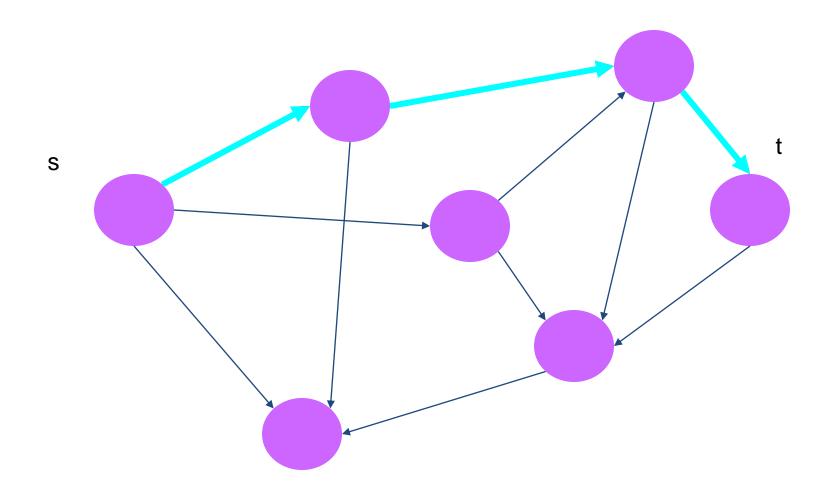


Graph Connectivity

CONN

- Instance: a directed graph G=(V,E) and two vertices s,t∈V
- Problem: To decide if there is a path from s to t in G?

Graph Connectivity



CONN is in NL

- Start at s
- For i = 1, .., |V| {
 - Non-deterministically choose a neighbor and jump to it
 - Accept if you get to t
 }
- If you got here reject!

- Counting up to |V| requires log|V| space
- Storing the current position requires log|V| space

Configurations

Which objects determine the configuration of a TM of the new type?

- The content of the work tape
- The machine's state
- The head position on the input tape
- The head position on the work tape
- The head position on the output tape

If the TM uses logarithmic space, there are polynomially many configurations

Log-Space Reductions

Definition:

A is log-space reducible to B, written A≤_LB, if there exists a log space TM M that, given input w, outputs f(w) s.t.

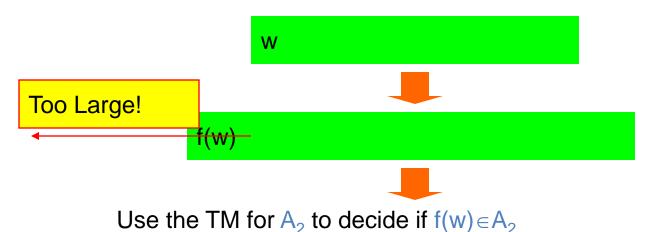
 $w \in A \text{ iff } f(w) \in B$

the reduction

Do Log-Space Reductions Imply what they should?

Suppose $A_1 \le_L A_2$ and $A_2 \in L$; how to construct a log space TM which decides A_1 ?

Wrong Solution:



Log-Space reductions

```
Claim: if
```

- 1. $A_1 \leq_L A_2$ f is the log-space reduction
- 2. $A_2 \in L$ M is a log-space machine for A_2

Then, A_1 is in L

<u>Proof</u>: on input x, in or not-in A_1 :

Simulate M and

whenever M reads the ith symbol of its input tape run f on x and wait for the ith bit to be outputted

NL Completeness

Definition:

A language B is NL-Complete if

- 1. B∈NL
- 2. For every $A \in NL$, $A \leq_{L} B$.

If (2) holds, B is NL-hard

Savitch's Theorem

Theorem: $\forall S(n) \ge log(n)$

Proof:

First we'll prove NL_SPACE(log²n) then, show this implies the general case

 $NSPACE(S(n)) \subset SPACE(S(n)^2)$

Savitch's Theorem

Theorem:

 $NSPACE(logn) \subseteq SPACE(log^2n)$

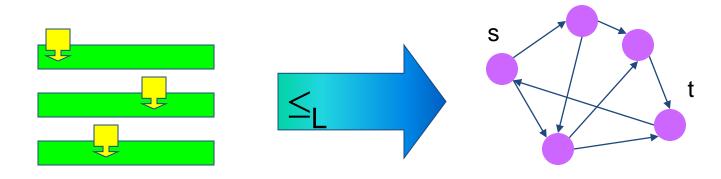
Proof:

- First prove CONN is NL-complete (under logspace reductions)
- 2. Then show an algorithm for CONN that uses log²n space

CONN is NL-Complete

Theorem: CONN is NL-Complete

Proof: by the following reduction:

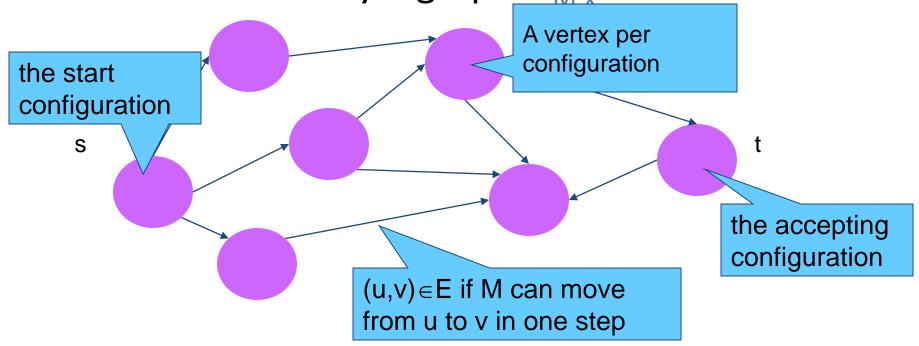


"Does M accept x?"

"Is there a path from s to t?"

Configurations Graph

A Computation of a NTM M on an input x can be described by a graph G_{Mx} :



CONN is NL-Complete

Corollary: CONN is NL-Complete

Proof: We've shown CONN is in NL. We've also presented a reduction from any NL language to CONN which is computable in log space (Why?) ■

A Byproduct

Claim: NL P

Proof:

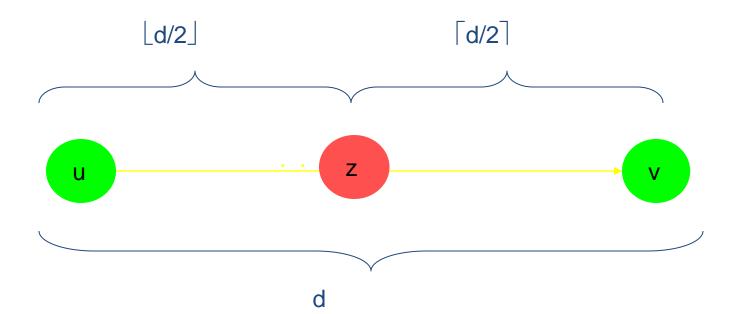
- Any NL language is log-space reducible to CONN
- Thus, any NL language is poly-time reducible to CONN
- CONN is in P
- Thus any NL language is in P.

What Next?

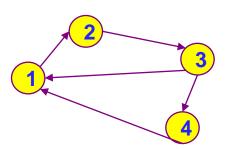
We need to show CONN can be decided by a deterministic TM in O(log²n) space.

The Trick

"Is there a vertex z, so there is a path from u to z of size \[\d/2 \] and one from z to v of size \[\d/2 \]?"



Example of Savitch's algorithm



```
boolean PATH(a,b,d) {
   if there is an edge from a to b then
      return TRUE
   else {
      if (d=1) return FALSE
      for every vertex v (not a,b) {
        if PATH(a,v, [d/2]) and
            PATH(v,b, [d/2]) then
      return TRUE
      }
      return FALSE
   }
}
```

(a,b,c)=Is there a path from a to b, that takes no more than c steps.

```
(1,4,3) TRUE

3Log<sub>2</sub>(d)
```

O(log²n) Space DTM

Claim: There is a deterministic TM which decides CONN in O(log²n) space.

Proof:

To solve CONN, we invoke PATH(s,t,|V|)

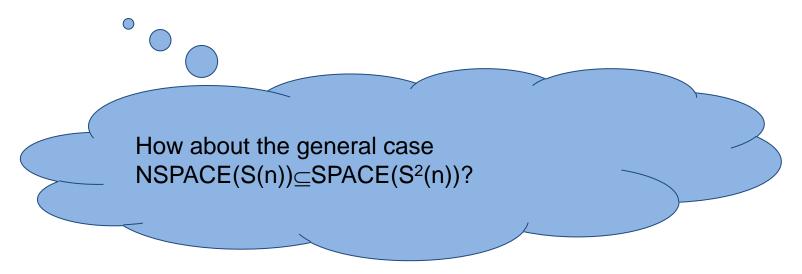
The space complexity:

$$S(n)=S(n/2)+O(log n)=O(log^2 n)$$

Conclusion

Theorem:

 $NSPACE(logn) \subseteq SPACE(log^2n)$



Formally

 $s_i(n)$ can be computed with space $s_i(n)$

Claim: For any two space constructible functions

$$s_1(n), s_2(n) \ge logn, f(n) \ge n$$
:

simulation overhead

$$NSPACE(s_1(n)) \subseteq SPACE(s_2(n))$$

$$NSPACE(s_1(f(n))) \subseteq SPACE(s_2(f(n)))$$

E.g NSPACE(n) \subseteq SPACE(n²) \Rightarrow NSPACE(n²) \subseteq SPACE(n⁴)

Savitch: Generalized Version

Theorem (Savitch):

```
\forall S(n) \ge \log(n)

\mathsf{NSPACE}(S(n)) \subseteq \mathsf{SPACE}(S(n)^2)
```

Corollary

Corollary: PSPACE = NPSPACE

Proof:

Clearly, PSPACE NPSPACE.

By Savitch's theorem, NPSPACE⊂PSPACE. ■

NON-CONN

Clearly, NON-CONN is coNL-Complete.
 (Because CONN is NL-Complete. See coNP)

• If we'll show it is also in NL, then NL=coNL.

(Again, see the coNP)

An Algorithm for NON-CONN

We'll see a log space algorithm for counting reachability

- 1. Count how many vertices are reachable from s.
- Take out t and count again.
- 3. Accept if the two numbers are the same.

Immerman's Theorem

```
Theorem [Immerman/Szelepcsenyi]: NL=coNL Proof:
```

- (1) NON-CONN is NL-Complete
- (2) NON-CONN∈NL
- Hence, NL=coNL. ■

Corollary

Corollary:

 $\forall s(n) \ge log(n)$, NSPACE(s(n))=coNSPACE(s(n))

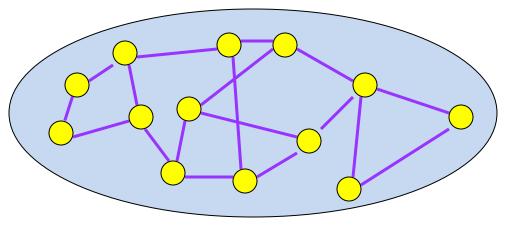
Summary

- Connectivity is NL-complete
- Savitch's Theorem (USTCONN \in NL \subseteq L²)
- Immerman's theorem (NL=coNL)

USTCONN is in log-space

- Low diameter property of Expander
- Connectivity Amplification
 - Powering
 - Zig-Zag product
- Log-space algorithm for USTCONN

Expander



- Combinatorial: no small cuts, high connectivity
- Probabilistic: rapid convergence of random walk
- Algebraic: small second eigenvalue

Theorem. [Cheeger, Buser, Tanner, Alon-Milman, Alon, Jerrum-Sinclair,...]: All properties are equivalent!

Expander Graph

- D-regular graphs: Every vertex has degree D
- A (N, D, λ) is a D-regular graph of N vertices where $\lambda(G) \le \lambda$
- G = (N, D, λ) is an expander iff the spectral gap
 1-λ > 0
- G = (N, D, λ) is an expander if there exists ε >0 such that for any set S, |S| < ½ N, at least (1+ ε)|S| vertices of G are connected to some vertex in S

Normalized Adjacency Matrix Mⁿ

• G: D-regular undirected graph $M^{n}(v_{i,}v_{j})=M(v_{i},v_{j})/D$

$$M (D=3)$$

	V_1	V ₂	V ₃	V_4
V_1	1	0	2	0
V ₂	0	1	1	1
V ₃	2	1	0	0
V ₄	0	1	0	2

Mn

	v ₁	V ₂	v ₃	V ₄
v_1	1/3	0	2/3	0
V ₂	0	1/3	1/3	1/3
V ₃	2/3	1/3	0	0
V ₄	0	1/3	0	2/3

(N,D,λ) -graph

- $1_N=(1,...,1)$ is an eigenvector of M^n with eigenvalue 1 since $M^n*1_N=1*1_N$
- $|\lambda| <= 1$ for any other eigenvalue λ of Mⁿ
 - $\lambda(G)$: the second largest eigenvalue of M^n
 - (N,D, λ)-graph: a D-regular graph G on N vertices such that $\lambda(G) <= \lambda$.

Diameter of a (N,D,λ) -graph

Lemma: Diameter of a (N,D,λ) is bounded by $O(\log N)$

Proof:

- Pick any vertex s, let l=O(logN). Then at least
 (1+ε)^l>=N/2 vertices are at distance at most l to s.
- Pick any two vertices s and t, then at least one vertex is of distance at most I from both s and t
 →a path of length at most 2 I between any two vertices.

ST-Connectivity for (N,D, λ)-graph

- Can be determined in space O(Log D*logN)
- Enumerate all paths from s of length O(log N)
- Memory: log D for remembering an edge in the path, and at most O(log N) edges for a path.

Rotation Map

For D-regular undirected graph G,

$$Rot_G: [N]x[D] \rightarrow [N]x[D]$$

	V ₁	V ₂	V ₃	V_4
V_1	1	0	1	1
V_2	0	0	1	0
V ₃	1	1	0	1
V_4	1	0	1	1

$$Rot_{G}(v1,2)=(v3,1)$$

$$Rot_{G}(v2,1)=(v3,2)$$

Sketch of the algorithm

- Transform input graph into a D-regular nonbipartite graph (How?)
- Amplify the connectivity without increasing too much the degree

Transforming G to an (N,D, λ)-graph

- Idea: increase the connectivity of G by powering G
- Challenge: keeping degree be constant by using zig-zag expander.

Powering

G: an (N,D, λ)-graph G by rotation map Rot_G.
 The t'th power G^t of G is:

$$Rot_G(v_0,(a_1,...,a_t))=(v_t,(b_1,...b_t)).$$

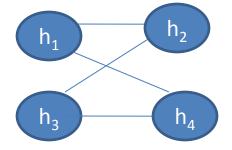
i.e., there is path $v_0-a_1-b_1-v_1-a_2...v_{t-1}-a_t-b_t-v_t$.

G: an (N,D, λ) -graph \longrightarrow G^t :an (N,D^t, λ^t) -graph

In rotation map notation, this means that

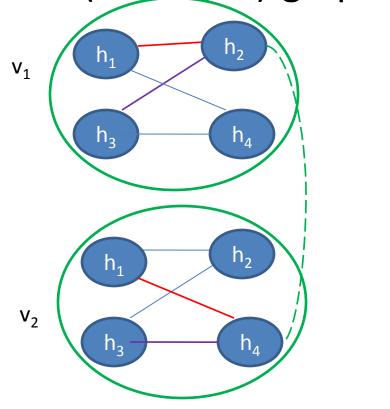
Zig-zag Graph Product

H: an (D, d, α)-graph

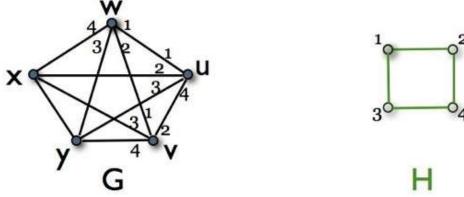


G: an (N,D, λ) -graph

a (ND, d^2 , λ')-graph



Zig-Zag Graph Product



G an (n,m,α) -graph. H an (m,d,β) -graph.

Theorem. G(z)H is an $(nm, d^2, \alpha+\beta)$ -graph.

zig-zag u vertex (u,3) edge

Main Transformation

Input: H: a (D¹⁶,D,1/2)-graph and
 G: a (N,D¹⁶,λ)-graph where λ≤1-1/(DN²)

- Processing: for i=1 to l=O(logN) do $G_i=(G_{i-1} \bigcirc H)^8$
- Output: G_I=: a (N^{poly}, D¹⁶, 1/2)-graph

USTCONN is in log-space

• Theorem 1. USTCONN \in L

• Theorem 2. SL = L

Questions

Thanks you for listening!