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Problems

@ What is the size of largest cliques on power-law random
graph?

@ Does there exist an efficient algorithm which find nearly
optimal maximum cliques with high probability (whp)?
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Poissonian Model

Poissonian Model

@ Each node i is assigned weight W; randomly with power-law
tail distribution

P(W > x) = ax™%, x > xg
o Largest weight Wi,.x = max; W;
P(Wpmax > tn'/®) < nP(W > tnt/®) = O(t~?)

@ Number of edges between each pair {/,j} of vertices is

Poisson distributed random number with expectation:

E(Ej) = Ny = b=

@ Delete duplicate edges to get simple graph, vertices i and j are

joined by an edge with probability

pij = 1—e i



Greedy Algorithms

Greedy algorithms

@ Greedy 1: Check the vertices in order of decreasing weights
and select every vertex that is adjacent to every selected
vertex. Denote the output is greedy clique Kg.

@ Greedy 2: Check the vertices in order of decreasing weights
and select every vertex that is adjacent to every vertex with
higher weight. Denote the output is quasi top clique Kg;.

@ Greedy 3: Stop with first failure. Denote the output is full top
clique Kg.

’Kft| < |th’ < |Kgr| < ’KmaX|

where K.x is the largest clique



Main Results
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Size of largest cliques

@ Denote the size of largest cliques is w(G(n, @)).

Theorem (1)
(i) If0 < a < 2, then

w(G(n, ) = (¢ + op(1))n'=/2(logn)=*/2,

where ¢ = ab®/?(1 — a/2)2

(i) If « = 2, then w(G(n,a)) = Op(1); that is, for every e > 0
there exists a constant C. such that P(w(G(n,«)) > C.) < € for
every n. However, there is no fixed finite bound C such that
w(G(n,a)) < C whp

(iii) If o« > 2, then w(G(n, o)) € {2,3} whp. Moreover, the
probabilities of each of the events w(G(n,a)) = 2 and
w(G(n,a)) = 3 tend to positive limits.
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Ratio of greedy algorithms

Theorem (2)

If0 < a <2, then Kgr and Kyt both have size
(14 0p(1))w(G(n, cv)); in other words

|Kgr|/ | Kmax| 2 1 and |Kge|/|Kmax| 2> 1.
e q
On the other hand,

|Kft|/Kmax’ 2 20/2,

Corollary (3)

For every o > 0 there exists an algorithm which whp finds in
G(n, o) a clique of size (1 + o(1))w(G(n, ) in polynomial time.

v
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Case a < 2

@ Partition the vertex set to "dense set” and "sparse set”

Vo ={i: W; < sy/nlogn} and V;* = {i : W; > s\/nlogn}
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Case a < 2

@ Partition the vertex set to "dense set” and "sparse set”
Vo ={i: W; < sy/nlogn} and V;* = {i : W; > s\/nlogn}
e |V | is large but the size of its maximum clique is "small”.
e |V M| is small but the size of its maximum clique is "large”.
pj <1—nb ifije V-
" 1— —bs? ifije Vvt
pij > n y 1T, e Vg
@ Which s is sutable?
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Case a < 2

o |V = (14 o(1))as~*n'~/2logn=*/2 whp
o w(G[V{]) < 2nb% logn whp
° w(G(n,@)) <w(G[Vs]) + [ V| whp
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Case a < 2

Ve = (1 + O(l))as_anl_a/zjogn—a/Z whp

W(GIVL]) < 20 logn whp

w(G(n,a)) < w(GIVS]) + |Vi"| whp

Choose s to match the exponent of n in two components of
the right side

s=(1- )b 12(1 — a/2)1/2 whp

w(G(n,a)) < (1+ 0(1))(1 — )~ *cn'~*/2jogn=/2 whp
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Case a < 2

@ Use Ky as a lower bound

e V" is dense, almost vertices in V' belong to Kg:. Choose
s=(1+e)b™1/2(1 - a/2)/2
Vi \Kge| < Cn==e/2)| VMK g
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Case a < 2

@ Use Ky as a lower bound
e V" is dense, almost vertices in V' belong to Kg:. Choose
s=(1+e)b 21 -a/2)/%
Vi \Kge| < Cn==e/2)| VMK g
° w(G(n,a)) > [Kgr| = |Kge| > |VST| — |Vi"\Kee
= (14 o(1))(1 + )~ “cn'=*/2logn—*/2



Main Results
00000

Case aa =2

o If w(G(n,)) > m then number of cliques of size 4 is greater
than (7")
@ Estimate the number of cliques of size 4

e Calculate the number of 4-vertex cliques on two condition:
Winax < An/2 and other.
E(Xa{Wi}]) < bO(n=3/2 50, W2)*
E(n=3/2 3. W3; Wipax < An'/2) = O(nAn'/?)
P(n32 57 W2 > 1) <t E(nm32 30 W2 W <
Ant/2) £ P(Wipax > An'/?) < CAt™! + CA2
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Case aa =2

If w(G(n,)) > m then number of cliques of size 4 is greater
than (7")

Estimate the number of cliques of size 4

Calculate the number of 4-vertex cliques on two condition:
Wnax < An'/2 and other.
E(Xa{Wi}]) < bO(n=3/2 50, W2)*
E(n=3/2 3. W3; Wipax < An'/2) = O(nAn'/?)
P(n=32 57 W2 > 1) < t7TE(n732 30 WEG Winax <

Ant/2) £ P(Wipax > An'/?) < CAt™! + CA2
Choose A = /3 :1n73/23" W3 = 0,(1)
w(G(n,a)) = Op(1)
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Approximation algorithm

@ Test all group of 4 vertices

@ Number of 4-vertex cliques is less than loglogn with high
probability

o Test all sets of of 4-vertex cliques
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Case a > 2

@ Same method as the case a =2, P(w(G(n,a) > 4) — 0
e w(G(n,a)) <3 whp
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Case a > 2

@ Same method as the case a =2, P(w(G(n,a) > 4) — 0
e w(G(n,a)) <3 whp

o P(w(G(n,a)) =2) — e s(bE(W?)?

o P(w(G(n,a)) =3) — 1 — e s(PE(W))
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@ Weight of each vertex is assign randomly make the model
more flexible

@ Partitioning vertex set can exploit the connectivity property



Conclusion

Conclusion

@ Weight of each vertex is assign randomly make the model
more flexible

@ Partitioning vertex set can exploit the connectivity property

@ Apply partitioning method to problem relating to connectivity
property?

@ There are transition point in size of cliques, size of connected
component => Are exponent factors of real networks
transition points of some property?
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