# Large Cliques in a Power-law Random Graph 

Svante Janson Tomasz Luczak and Ilkka Norros

September 24, 2009

Presented by: Dung Nguyen

## Problems

- What is the size of largest cliques on power-law random graph?
- Does there exist an efficient algorithm which find nearly optimal maximum cliques with high probability (whp)?
(1) Poissonian Model
(2) Greedy Algorithms
(3) Main Results
- Theorems
- Proof
(4) Conclusion


## Poissonian Model

- Each node i is assigned weight $W_{i}$ randomly with power-law tail distribution

$$
P(W>x)=a x^{-\alpha}, x \geq x_{0}
$$

- Largest weight $W_{\max }=\max _{i} W_{i}$

$$
P\left(W_{\max }>t n^{1 / \alpha}\right) \leq n P\left(W>t n^{1 / \alpha}\right)=O\left(t^{-\alpha}\right)
$$

- Number of edges between each pair $\{i, j\}$ of vertices is Poisson distributed random number with expectation:

$$
E\left(E_{i j}\right)=\lambda_{i j}=b \frac{W_{i} W_{j}}{n}
$$

- Delete duplicate edges to get simple graph, vertices i and j are joined by an edge with probability

$$
p_{i j}=1-e^{-\lambda_{i j}}
$$

## Greedy algorithms

- Greedy 1: Check the vertices in order of decreasing weights and select every vertex that is adjacent to every selected vertex. Denote the output is greedy clique $K_{g r}$.
- Greedy 2: Check the vertices in order of decreasing weights and select every vertex that is adjacent to every vertex with higher weight. Denote the output is quasi top clique $K_{q t}$.
- Greedy 3: Stop with first failure. Denote the output is full top clique $K_{f t}$.

$$
\left|K_{f t}\right| \leq\left|K_{q t}\right| \leq\left|K_{g r}\right| \leq\left|K_{\max }\right|
$$

where $K_{\max }$ is the largest clique

## Size of largest cliques

- Denote the size of largest cliques is $\omega(G(n, \alpha))$.


## Theorem (1)

(i) If $0<\alpha<2$, then

$$
\omega(G(n, \alpha))=\left(c+o_{p}(1)\right) n^{1-\alpha / 2}(\log n)^{-\alpha / 2}
$$

where $c=a b^{\alpha / 2}(1-\alpha / 2)^{-2}$
(ii) If $\alpha=2$, then $\omega(G(n, \alpha))=O_{p}(1)$; that is, for every $\epsilon>0$ there exists a constant $C_{\epsilon}$ such that $P\left(\omega(G(n, \alpha))>C_{\epsilon}\right)<\epsilon$ for every $n$. However, there is no fixed finite bound $C$ such that $\omega(G(n, \alpha)) \leq C$ whp
(iii) If $\alpha>2$, then $\omega(G(n, \alpha)) \in\{2,3\}$ whp. Moreover, the probabilities of each of the events $\omega(G(n, \alpha))=2$ and $\omega(G(n, \alpha))=3$ tend to positive limits.

## Ratio of greedy algorithms

## Theorem (2)

If $0<\alpha<2$, then $K_{g r}$ and $K_{q t}$ both have size
$\left(1+o_{p}(1)\right) \omega(G(n, \alpha))$; in other words

$$
\left|K_{g r}\right| /\left|K_{\max }\right| \xrightarrow{p} 1 \text { and }\left|K_{q t}\right| /\left|K_{\max }\right| \xrightarrow{p} 1 .
$$

On the other hand,

$$
\left|K_{f t}\right| / K_{\max } \mid \xrightarrow{p} 2^{\alpha / 2} .
$$

## Corollary (3)

For every $\alpha>0$ there exists an algorithm which whp finds in $G(n, \alpha)$ a clique of size $(1+o(1)) \omega(G(n, \alpha))$ in polynomial time.

## Case $\alpha<2$

- Partition the vertex set to "dense set" and "sparse set"

$$
V_{s}^{-}=\left\{i: W_{i} \leq s \sqrt{n \log n}\right\} \text { and } V_{s}^{+}=\left\{i: W_{i}>s \sqrt{n \log n}\right\}
$$

## Case $\alpha<2$

- Partition the vertex set to "dense set" and "sparse set"

$$
V_{s}^{-}=\left\{i: W_{i} \leq s \sqrt{n \log n}\right\} \text { and } V_{s}^{+}=\left\{i: W_{i}>s \sqrt{n \log n}\right\}
$$

- $\left|V_{s}^{-}\right|$is large but the size of its maximum clique is "small".
- $\left|V_{s}^{+}\right|$is small but the size of its maximum clique is "large".

$$
\begin{aligned}
& p_{i j} \leq 1-n^{-b s^{2}}, \text { if } i, j \in V_{s}^{-} \\
& p_{i j}>1-n^{-b s^{2}}, \text { if } i, j \in V_{s}^{+}
\end{aligned}
$$

## Case $\alpha<2$

- Partition the vertex set to "dense set" and "sparse set"

$$
V_{s}^{-}=\left\{i: W_{i} \leq s \sqrt{n \log n}\right\} \text { and } V_{s}^{+}=\left\{i: W_{i}>s \sqrt{n \log n}\right\}
$$

- $\left|V_{s}^{-}\right|$is large but the size of its maximum clique is "small".
- $\left|V_{s}^{+}\right|$is small but the size of its maximum clique is "large".

$$
\begin{aligned}
& p_{i j} \leq 1-n^{-b s^{2}}, \text { if } i, j \in V_{s}^{-} \\
& p_{i j}>1-n^{-b s^{2}}, \text { if } i, j \in V_{s}^{+}
\end{aligned}
$$

- Which $s$ is sutable?


## Case $\alpha<2$

- $\left|V_{s}^{+}\right|=(1+o(1)) a s^{-\alpha} n^{1-\alpha / 2} \log n^{-\alpha / 2}$ whp
- $\omega\left(G\left[V_{s}^{-}\right]\right) \leq 2 n^{b s^{2}} \log n$ whp
- $\omega(G(n, \alpha)) \leq \omega\left(G\left[V_{s}^{-}\right]\right)+\left|V_{s}^{+}\right|$whp


## Case $\alpha<2$

- $\left|V_{s}^{+}\right|=(1+o(1)) a s^{-\alpha} n^{1-\alpha / 2} \log n^{-\alpha / 2}$ whp
- $\omega\left(G\left[V_{s}^{-}\right]\right) \leq 2 n^{b s^{2}}$ logn whp
- $\omega(G(n, \alpha)) \leq \omega\left(G\left[V_{s}^{-}\right]\right)+\left|V_{s}^{+}\right|$whp
- Choose $s$ to match the exponent of $n$ in two components of the right side
- $s=(1-\epsilon) b^{-1 / 2}(1-\alpha / 2)^{1 / 2}$ whp
- $\omega(G(n, \alpha)) \leq(1+o(1))(1-\epsilon)^{-\alpha} c n^{1-\alpha / 2} \log n^{-\alpha / 2}$ whp


## Case $\alpha<2$

- Use $K_{q t}$ as a lower bound
- $V_{s}^{+}$is dense, almost vertices in $V_{s}^{+}$belong to $K_{q t}$. Choose $s=(1+\epsilon) b^{-1 / 2}(1-\alpha / 2)^{1 / 2}$ :

$$
\left|V_{s}^{+} \backslash \mathrm{K}_{q t}\right| \leq C n^{-\epsilon(1-\alpha / 2)}\left|V_{s}^{+} \backslash \mathrm{K}_{q t}\right|
$$

## Case $\alpha<2$

- Use $K_{q t}$ as a lower bound
- $V_{s}^{+}$is dense, almost vertices in $V_{s}^{+}$belong to $K_{q t}$. Choose $s=(1+\epsilon) b^{-1 / 2}(1-\alpha / 2)^{1 / 2}$ :

$$
\left|V_{s}^{+} \backslash \mathrm{K}_{q t}\right| \leq C n^{-\epsilon(1-\alpha / 2)}\left|V_{s}^{+} \backslash \mathrm{K}_{q t}\right|
$$

- $\omega(G(n, \alpha)) \geq\left|K_{g r}\right| \geq\left|K_{q t}\right| \geq\left|V_{s}^{+}\right|-\left|V_{s}^{+} \backslash K_{q t}\right|$
$=(1+o(1))(1+\epsilon)^{-\alpha} c n^{1-\alpha / 2} \log n^{-\alpha / 2}$


## Case $\alpha=2$

- If $\omega(G(n, \alpha))>m$ then number of cliques of size 4 is greater than $\binom{m}{4}$
- Estimate the number of cliques of size 4
- Calculate the number of 4 -vertex cliques on two condition: $W_{\text {max }}<A n^{1 / 2}$ and other.

$$
\begin{gathered}
E\left(X_{4} \mid\left\{W_{i}\right\}_{i}^{n}\right) \leq b^{6}\left(n^{-3 / 2} \sum_{i} W_{i}^{3}\right)^{4} \\
E\left(n^{-3 / 2} \sum_{i} W_{i}^{3} ; W_{\max } \leq A n^{1 / 2}\right)=O\left(n A n^{1 / 2}\right) \\
P\left(n^{-3 / 2} \sum_{i} W_{i}^{3}>t\right) \leq t^{-1} E\left(n^{-3 / 2} \sum_{i} W_{i}^{3} ; W_{\max } \leq\right. \\
\left.A n^{1 / 2}\right)+P\left(W_{\max }>A n^{1 / 2}\right) \leq C A t^{-1}+C A^{-2}
\end{gathered}
$$

## Case $\alpha=2$

- If $\omega(G(n, \alpha))>m$ then number of cliques of size 4 is greater than $\binom{m}{4}$
- Estimate the number of cliques of size 4
- Calculate the number of 4 -vertex cliques on two condition: $W_{\text {max }}<A n^{1 / 2}$ and other.

$$
\begin{gathered}
E\left(X_{4} \mid\left\{W_{i}\right\}_{i}^{n}\right) \leq b^{6}\left(n^{-3 / 2} \sum_{i} W_{i}^{3}\right)^{4} \\
E\left(n^{-3 / 2} \sum_{i} W_{i}^{3} ; W_{\max } \leq A n^{1 / 2}\right)=O\left(n A n^{1 / 2}\right) \\
P\left(n^{-3 / 2} \sum_{i} W_{i}^{3}>t\right) \leq t^{-1} E\left(n^{-3 / 2} \sum_{i} W_{i}^{3} ; W_{\max } \leq\right. \\
\left.A n^{1 / 2}\right)+P\left(W_{\max }>A n^{1 / 2}\right) \leq C A t^{-1}+C A^{-2}
\end{gathered}
$$

- Choose $\mathrm{A}=\mathrm{t}^{1 / 3}: \mathrm{n}^{-3 / 2} \sum_{i} W_{i}^{3}=O_{p}(1)$
- $\omega(G(n, \alpha))=O_{p}(1)$


## Approximation algorithm

- Test all group of 4 vertices
- Number of 4-vertex cliques is less than loglogn with high probability
- Test all sets of of 4 -vertex cliques


## Case $\alpha>2$

- Same method as the case $\alpha=2, P(\omega(G(n, \alpha) \geq 4) \rightarrow 0$
- $\omega(G(n, \alpha)) \leq 3$ whp


## Case $\alpha>2$

- Same method as the case $\alpha=2, P(\omega(G(n, \alpha) \geq 4) \rightarrow 0$
- $\omega(G(n, \alpha)) \leq 3$ whp
- $P(\omega(G(n, \alpha))=2) \rightarrow e^{-\frac{1}{6}\left(b E\left(W^{2}\right)\right)^{3}}$
- $P(\omega(G(n, \alpha))=3) \rightarrow 1-e^{-\frac{1}{6}\left(b E\left(W^{2}\right)\right)^{3}}$


## Conclusion

- Weight of each vertex is assign randomly make the model more flexible
- Partitioning vertex set can exploit the connectivity property


## Conclusion

- Weight of each vertex is assign randomly make the model more flexible
- Partitioning vertex set can exploit the connectivity property
- Apply partitioning method to problem relating to connectivity property?
- There are transition point in size of cliques, size of connected component $=>$ Are exponent factors of real networks transition points of some property?

