Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 00000000	Conclusion

Large Cliques in a Power-law Random Graph

Svante Janson Tomasz Luczak and Ilkka Norros

September 24, 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Presented by: Dung Nguyen

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 0000000	Conclusion
Problem	าร				

- What is the size of largest cliques on power-law random graph?
- Does there exist an efficient algorithm which find nearly optimal maximum cliques with high probability (whp)?

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 00000000	Conclusion

1 Poissonian Model

2 Greedy Algorithms

- Theorems
- Proof

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 00000000	Conclusion
Poissor	nian Mo	del			

• Each node i is assigned weight *W_i* randomly with power-law tail distribution

$$P(W > x) = ax^{-\alpha}, \, x \ge x_0$$

• Largest weight $W_{max} = max_i W_i$ $P(W_i > tr^{1/\alpha}) < rP(W_i > tr^{1/\alpha})$

$$\mathsf{P}(\mathsf{W}_{\mathsf{max}} > tn^{1/lpha}) \leq n\mathsf{P}(\mathsf{W} > tn^{1/lpha}) = O(t^{-lpha})$$

• Number of edges between each pair {*i*, *j*} of vertices is Poisson distributed random number with expectation:

$$E(E_{ij}) = \lambda_{ij} = b \frac{W_i W_j}{n}$$

• Delete duplicate edges to get simple graph, vertices i and j are joined by an edge with probability

$$p_{ij} = 1 - e^{-\lambda_{ij}}$$

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 00000000	Conclusion
Greedy	algorith	ims			

- Greedy 1: Check the vertices in order of decreasing weights and select every vertex that is adjacent to every selected vertex. Denote the output is greedy clique K_{gr}.
- Greedy 2: Check the vertices in order of decreasing weights and select every vertex that is adjacent to every vertex with higher weight. Denote the output is quasi top clique K_{qt} .
- Greedy 3: Stop with first failure. Denote the output is full top clique K_{ft} .

$$|K_{ft}| \leq |K_{qt}| \leq |K_{gr}| \leq |K_{max}|$$

where K_{max} is the largest clique

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ●0000000	Conclusion
Size of	largest	cliques			

• Denote the size of largest cliques is $\omega(G(n, \alpha))$.

Theorem (1)

(i) If $0 < \alpha < 2$, then

$$\omega(G(n, \alpha)) = (c + o_p(1))n^{1-\alpha/2}(logn)^{-\alpha/2}$$
,

where $c = ab^{\alpha/2}(1 - \alpha/2)^{-2}$ (ii) If $\alpha = 2$, then $\omega(G(n, \alpha)) = O_p(1)$; that is, for every $\epsilon > 0$ there exists a constant C_{ϵ} such that $P(\omega(G(n, \alpha)) > C_{\epsilon}) < \epsilon$ for every n. However, there is no fixed finite bound C such that $\omega(G(n, \alpha)) \leq C$ whp (iii) If $\alpha > 2$, then $\omega(G(n, \alpha)) \in \{2, 3\}$ whp. Moreover, the probabilities of each of the events $\omega(G(n, \alpha)) = 2$ and $\omega(G(n, \alpha)) = 3$ tend to positive limits.

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results o●oooooo	Conclusion
Ratio o	f greedy	/ algorithms			

Theorem (2)

If $0 < \alpha < 2$, then K_{gr} and K_{qt} both have size $(1 + o_p(1))\omega(G(n, \alpha))$; in other words

$$|K_{gr}|/|K_{max}| \xrightarrow{p} 1$$
 and $|K_{qt}|/|K_{max}| \xrightarrow{p} 1$.

On the other hand,

$$|K_{ft}|/K_{max}| \xrightarrow{p} 2^{\alpha/2}.$$

Corollary (3)

For every $\alpha > 0$ there exists an algorithm which whp finds in $G(n, \alpha)$ a clique of size $(1 + o(1))\omega(G(n, \alpha))$ in polynomial time.

• Partition the vertex set to "dense set" and "sparse set" $V_s^- = \{i : W_i \le s\sqrt{nlogn}\}$ and $V_s^+ = \{i : W_i > s\sqrt{nlogn}\}$

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results	Conclusion
Case α	< 2				

Partition the vertex set to "dense set" and "sparse set" V_s⁻ = {i : W_i ≤ s√nlogn} and V_s⁺ = {i : W_i > s√nlogn}
|V_s⁻| is large but the size of its maximum clique is "small".
|V_s⁺| is small but the size of its maximum clique is "large". p_{ij} ≤ 1 - n^{-bs²}, if i, j ∈ V_s⁻ p_{ii} > 1 - n^{-bs²}, if i, j ∈ V_s⁺

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results	Conclusion
Case α	< 2				

Partition the vertex set to "dense set" and "sparse set" V_s⁻ = {i : W_i ≤ s√nlogn} and V_s⁺ = {i : W_i > s√nlogn}
|V_s⁻| is large but the size of its maximum clique is "small".
|V_s⁺| is small but the size of its maximum clique is "large". p_{ij} ≤ 1 - n^{-bs²}, if i, j ∈ V_s⁻ p_{ij} > 1 - n^{-bs²}, if i, j ∈ V_s⁺

Which s is sutable?

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ○○○●○○○○	Conclusion
Case a	<i>u</i> < 2				

•
$$|V_s^+| = (1 + o(1))as^{-lpha}n^{1-lpha/2}logn^{-lpha/2}$$
 whp

•
$$\omega(G[V_s^-]) \leq 2n^{bs^2} \log n$$
 whp

•
$$\omega(G(n, \alpha)) \leq \omega(G[V_s^-]) + |V_s^+|$$
 whp

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ○○○●○○○○	Conclusion
Case α	<i>c</i> < 2				

• $|V_{s}^{+}| = (1 + o(1))as^{-lpha}n^{1-lpha/2}logn^{-lpha/2}$ whp

•
$$\omega(G[V_s^-]) \leq 2n^{bs^2} \log n$$
 whp

- $\omega(G(n, \alpha)) \leq \omega(G[V_s^-]) + |V_s^+|$ whp
- Choose s to match the exponent of n in two components of the right side

•
$$s = (1-\epsilon)b^{-1/2}(1-lpha/2)^{1/2}$$
 whp

• $\omega(G(n, \alpha)) \leq (1 + o(1))(1 - \epsilon)^{-\alpha} cn^{1 - \alpha/2} logn^{-\alpha/2}$ whp

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results	Conclusion
Case α	e < 2				

- Use K_{qt} as a lower bound
- V_s^+ is dense, almost vertices in V_s^+ belong to K_{qt} . Choose $s = (1 + \epsilon)b^{-1/2}(1 - \alpha/2)^{1/2}$: $|V_s^+ \setminus K_{qt}| \le Cn^{-\epsilon(1-\alpha/2)}|V_s^+ \setminus K_{qt}|$

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results	Conclusion
Case α	< 2				

• Use K_{qt} as a lower bound

•
$$V_s^+$$
 is dense, almost vertices in V_s^+ belong to K_{qt} . Choose
 $s = (1+\epsilon)b^{-1/2}(1-\alpha/2)^{1/2}$:
 $|V_s^+ \setminus K_{qt}| \le Cn^{-\epsilon(1-\alpha/2)}|V_s^+ \setminus K_{qt}|$
• $\omega(G(n,\alpha)) \ge |K_{gr}| \ge |K_{qt}| \ge |V_s^+| - |V_s^+ \setminus K_{qt}|$
 $= (1+o(1))(1+\epsilon)^{-\alpha}cn^{1-\alpha/2}logn^{-\alpha/2}$

(ロ)、(型)、(E)、(E)、 E) の(の)

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ○○○○○●○○	Conclusion
Case α :	= 2				

- If ω(G(n, α)) > m then number of cliques of size 4 is greater than (^m₄)
- Estimate the number of cliques of size 4
- Calculate the number of 4-vertex cliques on two condition: $W_{max} < An^{1/2}$ and other.

$$E(X_4|\{W_i\}_i^n) \le b^6(n^{-3/2}\sum_i W_i^3)^4$$

$$E(n^{-3/2}\sum_i W_i^3; W_{max} \le An^{1/2}) = O(nAn^{1/2})$$

$$P(n^{-3/2}\sum_i W_i^3 > t) \le t^{-1}E(n^{-3/2}\sum_i W_i^3; W_{max} \le An^{1/2}) + P(W_{max} > An^{1/2}) \le CAt^{-1} + CA^{-2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ○○○○○●○○	Conclusion
Case α	= 2				

- If ω(G(n, α)) > m then number of cliques of size 4 is greater than (^m₄)
- Estimate the number of cliques of size 4
- Calculate the number of 4-vertex cliques on two condition: $W_{max} < An^{1/2}$ and other.

$$\begin{split} & E(X_4|\{W_i\}_i^n) \leq b^6(n^{-3/2}\sum_i W_i^3)^4 \\ & E(n^{-3/2}\sum_i W_i^3; W_{max} \leq An^{1/2}) = O(nAn^{1/2}) \\ & P(n^{-3/2}\sum_i W_i^3 > t) \leq t^{-1}E(n^{-3/2}\sum_i W_i^3; W_{max} \leq An^{1/2}) + P(W_{max} > An^{1/2}) \leq CAt^{-1} + CA^{-2} \end{split}$$

- Choose $A = t^{1/3} : n^{-3/2} \sum_{i} W_{i}^{3} = O_{p}(1)$
- $\omega(G(n,\alpha)) = O_p(1)$

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ○○○○○○●○	Conclusion
Approx	kimation	algorithm			

- Test all group of 4 vertices
- Number of 4-vertex cliques is less than loglogn with high probability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Test all sets of of 4-vertex cliques

• Same method as the case $\alpha = 2$, $P(\omega(G(n, \alpha) \ge 4) \rightarrow 0$ • $\omega(G(n, \alpha)) \le 3$ whp

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results ○○○○○○●	Conclusion
Case α	> 2				

• Same method as the case lpha= 2, $P(\omega(G(n, lpha)\geq$ 4) ightarrow 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\omega(G(n, \alpha)) \leq 3 \text{ whp}$
- $P(\omega(G(n,\alpha))=2) \rightarrow e^{-\frac{1}{6}(bE(W^2))^3}$
- $P(\omega(G(n,\alpha)) = 3) \to 1 e^{-\frac{1}{6}(bE(W^2))^3}$

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 00000000	Conclusion
Conclu	sion				

- Weight of each vertex is assign randomly make the model more flexible
- Partitioning vertex set can exploit the connectivity property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problems	Outline	Poissonian Model	Greedy Algorithms	Main Results 00000000	Conclusion
Conclu	sion				

- Weight of each vertex is assign randomly make the model more flexible
- Partitioning vertex set can exploit the connectivity property
- Apply partitioning method to problem relating to connectivity property?
- There are transition point in size of cliques, size of connected component => Are exponent factors of real networks transition points of some property?