1. Let \mathcal{X} be an infinite set. For $p, q \in \mathcal{X}$, define

$$d(p, q) = \begin{cases} 1, & \text{if } p \neq q, \\ 0, & \text{if } p = q. \end{cases}$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?

2. Show that the function $f(x) = x^n$ is uniformly continuous on $[-1, 1]$ for all $n \in \mathbb{Z}_+$. You can use the fact that,

$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^k y^{n-1-k}, \quad \forall n \in \mathbb{Z}_+. \quad (1)$$

3. Let \mathcal{U} and \mathcal{W} represent subspaces of a linear space \mathcal{V}. Show that if every matrix in \mathcal{V} belongs to \mathcal{U} or \mathcal{W}, then $\mathcal{U} = \mathcal{V}$ or $\mathcal{W} = \mathcal{V}$.

4. Let V be a Vector space, S a Set, and $s \in S$. Let $U = \{f|f:S \to V\}$ and $W = \{f \in U|f(s) = 0\}$. Is W a subspace of U?

5. Let V be a vector space and let $S = \{v_1, v_2, \ldots, v_n\}$ be a subset of V. Suppose that S is linearly independent. For an element v of V, show that v is not in the span of S if and only if $\{v_1, v_2, \ldots, v_n, v\}$ is linearly independent.

6. Consider $X = [0, 2] \setminus \{1\}$ as a subspace of the real line \mathbb{R}. Show that the subset $[0, 1) \subset X$ is both open and closed in X.

7. (a) Is the set of rational numbers countable? Prove your answer statement.
(b) Repeat the above for irrational numbers and prove your answer statement.

8. Let $I = [0, 1]$ be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that $f(x) = x$ for at least one $x \in I$.

9.

If \(Z \) is the field of complex numbers, which vectors in \(Z^3 \) are linear combinations of \((1, 0, -1)\), \((0, 1, 1)\) and \((1, 1, 1)\)?