PTAS for Euclidean Traveling Salesman and Other Geometric Problems

Sanjeev Arora

PTAS

→ same as LTAS, with "Linear" replaced by "Polynomial"

Def Given a problem P and a cost function $|.|$, a PTAS of P is a one-parameter family of PT algorithms, $\{A_\varepsilon\}_{\varepsilon > 0}$, such that, for all $\varepsilon > 0$ and all instance I of P, $|A_\varepsilon(I)| \leq (1 + \varepsilon) |\text{OPT}(I)|$.
PTAS

→ same as LTAS, with ”Linear” replaced by ”Polynomial”

Def Given a problem P and a cost function $|.|$, a PTAS of P is a one-parameter family of PT algorithms, $\{A_\varepsilon\}_{\varepsilon > 0}$, such that, for all $\varepsilon > 0$ and all instance I of P, $|A_\varepsilon(I)| \leq (1 + O(\varepsilon)) |\text{OPT}(I)|$.

- PT means time complexity $n^{O(1)}$, where the constant may depend on $1/\varepsilon$ and on the dimension d (when pb in \mathbb{R}^d)
- As far as we get $n^{O(1)}$, we do not care about the constant
- the constant in $(1 + O(\varepsilon))$ must not depend on I nor on ε
Given a complete graph $G = (V, E)$ with non-negative weights, find the Hamiltonian tour of minimum total cost.
TSP

Given a complete graph $G = (V, E)$ with non-negative weights, find the Hamiltonian tour of minimum total cost.
TSP

Given a complete graph $G = (V, E)$ with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless $P = NP$.
TSP

Given a complete graph \(G = (V, E) \) with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \(\Rightarrow \) no PT algorithm, unless \(P = NP \).

Thm For all PT computable function \(\alpha(n) \), TSP cannot be approximated in PT within a factor of \((1 + \alpha(n)) \), unless \(P = NP \).
TSP

Given a complete graph $G = (V, E)$ with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless $P = NP$.

Thm For all PT computable function $\alpha(n)$, TSP cannot be approximated in PT within a factor of $(1 + \alpha(n))$, unless $P = NP$.

Proof Reduction of Hamiltonian Cycle:
Let $G = (V, E)$ unweighted, incomplete $\rightarrow G' = (V', E')$ where:
- $V' = V$
- $\forall e \in E$, add $(e, 1)$ to E'
- $\forall e \notin E$, add $(e, (1 + \alpha(n))n)$ to E'
Given a complete graph $G = (V, E)$ with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless $P = NP$.

Thm For all PT computable function $\alpha(n)$, TSP cannot be approximated in PT within a factor of $(1 + \alpha(n))$, unless $P = NP$.

Proof Reduction of Hamiltonian Cycle:
Let $G = (V, E)$ unweighted, incomplete $\rightarrow G' = (V', E')$ where:
- $V' = V$
- $\forall e \in E$, add $(e, 1)$ to E'
- $\forall e \notin E$, add $(e, (1 + \alpha(n))n)$ to E'
Metric TSP

The weights of $G(V, E)$ now satisfy the triangle inequality
Metric TSP

2-approximation algorithm:

(1) build MST M of G (Kruskal)
Metric TSP

2-approximation algorithm:

(1) build MST M of G (Kruskal)

(2) double edges $\rightarrow M^+$ Eulerian
Metric TSP

2-approximation algorithm:

(1) build MST M of G (Kruskal)

(2) double edges $\rightarrow M^+$ Eulerian

(3) build greedily a Eulerian tour T^+ on M^+
Metric TSP

2-approximation algorithm:

(1) build MST M of G (Kruskal)
(2) double edges $\rightarrow M^+$ Eulerian
(3) build greedily a Eulerian tour T^+ on M^+
(4) Trim edges of $T^+ \rightarrow T$
Metric TSP

2-approximation algorithm:

1. build MST M of G (Kruskal)
2. double edges $\rightarrow M^+$ Eulerian
3. build greedily a Eulerian tour T^+ on M^+
4. Trim edges of $T^+ \rightarrow T$

Thm $|T| \leq 2|\text{OPT}|$

proof $|T| \leq |T^+|$

tri. ineq.
Metric TSP

2-approximation algorithm:

(1) build MST M of G (Kruskal)
(2) double edges $\rightarrow M^+$ Eulerian
(3) build greedily a Eulerian tour T^+ on M^+
(4) Trim edges of $T^+ \rightarrow T$

\textbf{Thm} \quad |T| \leq 2|\text{OPT}|

\textbf{proof} \quad |T| \leq |T^+| = |M^+|

tri. ineq.
Metric TSP

2-approximation algorithm:

(1) build MST M of G (Kruskal)

(2) double edges $\rightarrow M^+$ Eulerian

(3) build greedily a Eulerian tour T^+ on M^+

(4) Trim edges of $T^+ \rightarrow T$

Thm $|T| \leq 2|\text{OPT}|$

proof $|T| \leq |T^+| = |M^+| = 2|M|$

tri. ineq.
Metric TSP

2-approximation algorithm:

1. build MST M of G (Kruskal)
2. double edges $\rightarrow M^+$ Eulerian
3. build greedily a Eulerian tour T^+ on M^+
4. Trim edges of $T^+ \rightarrow T$

Thm $|T| \leq 2|OPT|$

proof $|T| \leq |T^+| = |M^+| = 2|M|\leq 2|OPT|$

tri. ineq. \hspace{2cm} OPT="tree+edge"
Metric TSP

2-approximation algorithm:

1. build MST M of G (Kruskal)
2. double edges $\rightarrow M^+$ Eulerian
3. build greedily a Eulerian tour T^+ on M^+
4. Trim edges of $T^+ \rightarrow T$

Replace (2) by adding to M a min cost perfect matching of its odd-valenced vertices $\rightarrow \frac{3}{2}$-approximation [Christofides76]

Q Can we do better?
Metric TSP

2-approximation algorithm:

1. build MST M of G (Kruskal)
2. double edges $\rightarrow M^+$ Eulerian
3. build greedily a Eulerian tour T^+ on M^+
4. Trim edges of $T^+ \rightarrow T$

Replace (2) by adding to M a min cost perfect matching of its odd-valenced vertices $\rightarrow \frac{3}{2}$-approximation [Christofides76]

Q Can we do better?

Thm [ALMSS92] There is no PTAS for Metric TSP, unless $P = NP$

Conjecture best approximation factor: $\frac{4}{3}$
Euclidean TSP

\(V \subset \mathbb{R}^d, \ E \) is the set of all pairs weighted by Euclidean distances
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|$
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|$

(1) rescale/snap V
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|

1. rescale/snap V

2. subdivide the grid with a quadtree

\[n^2 \sqrt{2} \]
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|

1. rescale/snap V
2. subdivide the grid with a quadtree
3. place *portals* on grid lines
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|

1. rescale/snap V
2. subdivide the grid with a quadtree
3. place *portals* on grid lines
4. compute the smallest *portal-respecting* tour OPT_p
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|$

1. rescale/snap V
2. subdivide the grid with a quadtree
3. place *portals* on grid lines
4. compute the smallest *portal-respecting* tour OPT_p
5. Trim the edges of OPT_p and output the result T
(1) rescale V

Let V_s be V scaled by a factor of s.

$$\forall T, |T|_s = s |T|$$

\Rightarrow OPT for V_s is the same as OPT for V

\Rightarrow solving the pb for V_s is the same as solving the pb for V
(1) rescale V

Let V_s be V scaled by a factor of s.

\[\forall T, |T|_s = s |T| \]

\Rightarrow OPT for V_s is the same as OPT for V

\Rightarrow solving the pb for V_s is the same as solving the pb for V

\rightarrow wlog, we assume that the smallest square containing V has sidelength $n^2 \sqrt{2}$
(1) snap V

$g : v \in V \mapsto v_g \in \text{grid closest to } v$
(1) snap V

$g : v \in V \mapsto v_g \in \text{grid closest to } v$

$\forall T = (v_1, v_2, \cdots, v_n), g(T) := (g(v_1), g(v_2), \cdots, g(v_n))$

Through g, a vertex is moved by at most $\sqrt{2}/2$

\Rightarrow an edge is elongated/shortened by at most $\sqrt{2}$

$\Rightarrow \forall T, ||g(T)| - |T|| \leq n\sqrt{2}$

$\Rightarrow |OPT_g| \leq |g(OPT)| \leq |OPT| + n\sqrt{2}$
(1) snap V

$g: v \in V \mapsto v_g \in \text{grid closest to } v$

Q How to construct a path for V from OPT_g?

$g^{-1}(\text{OPT}_g)$ is not defined uniquely

(several nodes of V may be mapped to a same grid point)
(1) snap V

$g : v \in V \mapsto v_g \in \text{grid closest to } v$

Q How to construct a path for V from OPT_g?

$g^{-1}(\text{OPT}_g)$ is not defined uniquely

(several nodes of V may be mapped to a same grid point)

\rightarrow Define $g^{-1}(\text{OPT}_g)$ as follows: for each vertex v_g of OPT_g,

- order the vertices of V mapped to v_g and connect them to v_g twice

$$\leq \frac{2\sqrt{2}}{2}$$
(1) snap \(V \)

\[g : v \in V \mapsto v_g \in \text{grid closest to } v \]

Q How to construct a path for \(V \) from \(\text{OPT}_g \)?

\(g^{-1}(\text{OPT}_g) \) is not defined uniquely
(some nodes of \(V \) may be mapped to a same grid point)

→ Define \(g^{-1}(\text{OPT}_g) \) as follows: for each vertex \(v_g \) of \(\text{OPT}_g \),

- order the vertices of \(V \) mapped to \(v_g \) and connect them to \(v_g \) twice

- trim the resulting path
(1) snap V

$g : v \in V \mapsto v_g \in \text{grid closest to } v$

$|\text{OPT}| \geq 2n^2 \sqrt{2}$

$|g^{-1}(\text{OPT}_g)| \leq |\text{OPT}_g| + n\sqrt{2} \leq |g(\text{OPT})| + n\sqrt{2} \leq |\text{OPT}| + 2n\sqrt{2} \leq |\text{OPT}| \left(1 + \frac{1}{n}\right)$

$
ightarrow g^{-1}(\text{OPT}_g) \ (1 + \varepsilon)$-approximates OPT for $n \geq \frac{1}{\varepsilon}$
(1) snap V

$g : v \in V \mapsto v_g \in \text{grid closest to } v$

$|\text{OPT}| \geq 2n^2\sqrt{2}$

$|g^{-1}(\text{OPT}_g)| \leq |\text{OPT}_g| + n\sqrt{2} \leq |g(\text{OPT})| + n\sqrt{2} \leq |\text{OPT}| + 2n\sqrt{2} \leq |\text{OPT}| \left(1 + \frac{1}{n}\right)$

$\rightarrow \text{wlog, we assume that the points of } V \text{ have integer coordinates}$
Let k s.t. $2^{k-1} \leq n^2 \sqrt{2} \leq 2^k \leq 2n^2 \sqrt{2}$
Let \(k \) s.t. \(2^{k-1} \leq n^2 \sqrt{2} \leq 2^k \leq 2n^2 \sqrt{2} \)
Let k s.t. $2^{k-1} \leq n^2 \sqrt{2} \leq 2^k \leq 2n^2 \sqrt{2}$
(2) Grid subdivision

Let k s.t. $2^{k-1} \leq n^2 \sqrt{2} \leq 2^k \leq 2n^2 \sqrt{2}$

$$O(n^4) \text{ leaves } \Rightarrow \text{ size } = O(n^4)$$
Let $m = \left\lceil \frac{\log n}{\varepsilon} \right\rceil$

On each level i line, place $2^i m$ equally-spaced portals, plus one at each grid point.
Let $m = \left\lfloor \frac{\log n}{\varepsilon} \right\rfloor$

On each level i line, place $2^i m$ equally-spaced portals, plus one at each grid point.

Each level i line is incident to 2^i pairs of level i squares $\Rightarrow m$ portals per pair (w/o corners).

Each level i square has a boundary made of level $j \leq i$ lines \Rightarrow at most $4m + 4$ portals per square.
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is *k-light* if each portal is visited at most k times
(4) Portal-respecting tours

Def A tour is \textit{portal-respecting} if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is \textit{k-light} if each portal is visited at most k times

Prop OPT_p is 2-light
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Prop OPT_p is 2-light
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is *k-light* if each portal is visited at most *k* times

Prop OPT_{*p*} is 2-light
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is *k-light* if each portal is visited at most *k* times

Prop OPT_p is 2-light
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals.

Pb: An exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded.

Def A tour is *k-light* if each portal is visited at most k times.

Prop OPT_p is 2-light.
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is *k-light* if each portal is visited at most *k* times

Prop OPT_p is 2-light
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is *k-light* if each portal is visited at most k times

Prop OPT_p is 2-light

Prop OPT_p does not self-intersect, except at portals
(4) Portal-respecting tours

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is *k-light* if each portal is visited at most *k* times

Prop OPT_p is 2-light

Prop OPT_p does not self-intersect, except at portals
(4) Portal-respecting tours

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)

→ divide-and-conquer approach, using the quadtree
(4) Portal-respecting tours

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)

→ divide-and-conquer approach, using the quadtree

For any square s, interface is defined by:

- a number of passes through each portal of s
- a paring between selected portals

$3^O(m) = n^O(1/\varepsilon)$

$\Omega(m!) = \Omega(n^\log n)$
(4) Portal-respecting tours

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)

→ divide-and-conquer approach, using the quadtree

For any square s, interface is defined by:

- a number of passes through each portal of s
- a paring between selected portals

With the ordering of portals along the boundary, valid pairings are mapped injectively to balanced arrangements of parentheses

$$3^{O(m)} = n^{O(1/\varepsilon)}$$

$$O(C_m) = O(2^{2^m}) = n^{O(1/\varepsilon)}$$
(4) Portal-respecting tours

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)

→ divide-and-conquer approach, using the quadtree

Pb: a simple recursion is not sufficient (optimum for square s is not concatenation of optima of sons of s)

→ dynamic programming
(4) Portal-respecting tours

Lookup table:
(4) Portal-respecting tours

Lookup table:

size: \(O(n^4 n^{O(1/\varepsilon)}) \)
(4) Portal-respecting tours

Lookup table:

Fill the table "in depth"
(4) Portal-respecting tours

Lookup table:

\(\forall (\text{leaf, interface}), \) report total length of pairing w/ straight-line segments (nodes are portals) \(O(1) \)

\(\forall (\text{node, interface}), \) select interface for every son \(n^{O(1/\epsilon)} \) and retrieve best tour for each selected (son, interface) \(O(1) \)
(4) Portal-respecting tours

Lookup table:

Fill the table "in depth"

total running time: $O \left(n^4 \ n^{O(1/\varepsilon)} \right)$

Output is the shortest tour that is portal-respecting (and 2-light and non self-intersecting)
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|

1. rescale/snap V

2. subdivide the grid with a quadtree

3. place *portals* on grid lines

4. compute the smallest *portal-respecting* tour OPT_p

5. Trim the edges of OPT_p and output the result T
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let $n = |V|$

1. rescale/snap V

2. subdivide the grid with a quadtree

3. place *portals* on grid lines

4. compute the smallest *portal-respecting* tour OPT_p

5. Trim the edges of OPT_p and output the result T

Q Do we have $|T| - |\text{OPT}| \leq O(\varepsilon) |\text{OPT}|$?
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview

Let \(n = |V| \)

1. rescale/snap \(V \)
2. subdivide the grid with a quadtree
3. place *portals* on grid lines
4. compute the smallest *portal-respecting* tour \(\text{OPT}_p \)
5. Trim the edges of \(\text{OPT}_p \) and output the result \(T \)

Q Do we have \(|\text{OPT}_p| - |\text{OPT}| \leq O(\varepsilon) |\text{OPT}| \)?
Euclidean TSP

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let \(n = |V| \)

1. rescale/snap \(V \)
2. subdivide the grid with a quadtree
3. place *portals* on grid lines
4. compute the smallest *portal-respecting* tour \(\text{OPT}_p \)
5. Trim the edges of \(\text{OPT}_p \) and output the result \(T \)

Q Do we have \(|p(\text{OPT})| - |\text{OPT}| \leq O(\varepsilon) |\text{OPT}| \)?
Pb: \(|\text{OPT}_p|\) can be made arbitrarily large compared to \(|\text{OPT}|\)

\[|V| = 2n\]
Structure theorem

Pb: $|\text{OPT}_P|$ can be made arbitrarily large compared to $|\text{OPT}|$

$|V| = 2n$

$|\text{OPT}| \leq 2\frac{n}{2}n + 2\frac{n}{2}2\sqrt{2} + 2n^2 \frac{\sqrt{2}}{2} = n^2(1 + \sqrt{2}) + 2n\sqrt{2}$
Structure theorem

Pb: $|\text{OPT}_p|$ can be made arbitrarily large compared to $|\text{OPT}|$

$|V| = 2n$

$|\text{OPT}| \leq 2\frac{n^2}{2} + 2\frac{n}{2}2\sqrt{2} + 2n^2\frac{\sqrt{2}}{2} = n^2(1 + \sqrt{2}) + 2n\sqrt{2}$

At level 2, $4m$ portals \Rightarrow inter-portal distance $\delta = \frac{n^2 + 2n}{8m} \gg n$

One crossing every n \Rightarrow overhead per consecutive portals $\geq 2\frac{\delta}{4} = \frac{\delta}{2}$ \Rightarrow total overhead $\geq 4m\frac{\delta}{2} = \frac{(n^2 + 2n)^2}{4} = \Omega(|\text{OPT}|)$ (indep. of ε)

(same for tours close to OPT)
Structure theorem

Pb: $|\text{OPT}_p|$ can be made arbitrarily large compared to $|\text{OPT}|$

Patch: randomize the algorithm:

Choose random integers $0 \leq x, y \leq 2^k$, then apply (2)-(5) to square of sidelength 2^{k+1} shifted by $(-x, -y)$.
Structure theorem

Thm The expectation (over x, y) of $|\text{OPT}_g| - |\text{OPT}|$ is at most $\frac{k+1}{m} |\text{OPT}|$

For any vertical line l in domain, $P_x(l \text{ is at level } i) = \frac{2^{i-2}}{1+2^k}$

$\begin{cases}
2^{i-1} \text{ level } i \text{ lines, half of which reach } l \\
1 + 2^k \text{ possible values for } x
\end{cases}$
Structure theorem

Thm The expectation (over x, y) of $|\text{OPT}_g| - |\text{OPT}|$ is at most \(\frac{k+1}{m} |\text{OPT}| \)

→ transform OPT into a portal-respecting tour:
Thm The expectation (over x, y) of $|\text{OPT}_g| - |\text{OPT}|$ is at most $\frac{k+1}{m} |\text{OPT}|$

→ transform OPT into a portal-respecting tour:
Structure theorem

\textbf{Thm} The expectation (over }x, y\text{) of } |OPT_g| - |OPT| \text{ is at most } \frac{k+1}{m} |OPT| \]

→ transform OPT into a portal-respecting tour:

For every crossing, overhead ≤ 2 times half the interportal distance $= \frac{2^{k+1}}{m \cdot 2^i}$

$P_x(\text{level } i) = \frac{2^{i-2}}{1 + 2^k}$ (same for y)

Expected overhead:

$\leq \sum_{i=1}^{k+1} \frac{2^{i-2}}{2^k} \cdot \frac{2^{k+1}}{m \cdot 2^i} = \frac{k+1}{2m}$
Structure theorem

Thm The expectation (over x, y) of $|\text{OPT}_g| - |\text{OPT}|$ is at most $\frac{k+1}{m} |\text{OPT}|$

→ transform OPT into a portal-respecting tour:

For every crossing, overhead ≤ 2 times half the interportal distance $= \frac{2^{k+1}}{m \cdot 2^i}$

$P_x(\text{level } i) = \frac{2^{i-2}}{1 + 2^k}$ (same for y)

Expected overhead: $\sum_{i=1}^{k+1} \frac{2^{i-2}}{1 + 2^k} \cdot \frac{2^{k+1}}{m \cdot 2^i}$

$\leq \sum_{i=1}^{k+1} \frac{2^{i-2}}{2^k} \cdot \frac{2^{k+1}}{m \cdot 2^i} = \frac{k+1}{2m}$

OPT crosses the grid at most $2|\text{OPT}|$ times \Rightarrow total expected overhead: $\frac{k+1}{m} |\text{OPT}|$
Structure theorem

Thm The expectation (over x, y) of $|OPT_g| − |OPT|$ is at most

$$\frac{k+1}{m} |OPT| \leq \frac{2 \log n + 3/2 + 1}{\log n/2\varepsilon} |OPT| \leq (4 + \frac{5}{\log n}) \varepsilon |OPT| \leq 9\varepsilon |OPT|.$$

$(n \geq 2)$

\[2^k \leq 2n^2 \sqrt{2} \]

\[m = \left\lfloor \frac{\log n}{\varepsilon} \right\rfloor \geq \frac{\log n}{2\varepsilon} \]
Structure theorem

Thm The expectation (over x, y) of $|\text{OPT}_g| - |\text{OPT}|$ is at most

$$\frac{k+1}{m} |\text{OPT}| \leq \frac{2 \log n + 3/2 + 1}{\log n / 2 \varepsilon} |\text{OPT}| \leq (4 + 5/\log n) \varepsilon |\text{OPT}| \leq 9\varepsilon |\text{OPT}|.$$

Corollary $P_{x,y} (|\text{OPT}_g| - |\text{OPT}| \leq 18\varepsilon |\text{OPT}|) \geq 1/2$

→ Monte-Carlo procedure given a constant $0 < c < 1$, repeat $\lceil \log(1/c) \rceil$ times the process ”randomization + (2)-(5)” and keep the best computed tour T. Then, $P (|\text{OPT}_g| - |\text{OPT}| \leq 18\varepsilon |\text{OPT}|) \geq 1 - c$

→ Derandomization try all possible choices of (x, y) (there are $O(n^4)$ of those), and keep best tour.
Higher dimensions

The analysis extends to higher dimensions, except for the valid pairing argument.

For any square s, interface is defined by:
- a number of passes through each portal of s
- a paring between selected portals

$$3^{O(m)} = n^{O(1/\epsilon)}$$

$$O(C_m) = O(2^{2m}) = n^{O(1/\epsilon)}$$
The analysis extends to higher dimensions, except for the valid pairing argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most \(l \) times.

Goal: find shortest tour that is:
- portal-respecting
- non self-intersecting (except at portals)
→ divide-and-conquer approach, using the quadtree
Higher dimensions

The analysis extends to higher dimensions, except for the valid pairing argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most \(l \) times.

\[
\textbf{Thm} \quad \mathbb{E}_{x,y} [|\text{OPT}_p(l)| - |\text{OPT}|] \leq \left(\frac{\log(n) + 1}{m} + \frac{12}{l-5} \right) |\text{OPT}|
\]

→ for \(l = \Theta \left(\frac{1}{\varepsilon} \right) \) and \(m = \left\lfloor \frac{\log n}{\varepsilon} \right\rfloor \):

- \(\mathbb{E}_{x,y} [|\text{OPT}_p(l)| - |\text{OPT}|] \leq O(\varepsilon) |\text{OPT}| \)
- \(\forall \) square, \(\# \{\text{interfaces}\} \leq m^{O(l)} l! \leq (\log n)^{O(1/\varepsilon)} \)
 \(\Rightarrow \) space complexity \(\leq O \left(n^4 (\log n)^{O(1/\varepsilon)} \right) \)
 \(\Rightarrow \) time complexity \(\leq O \left(n^4 (\log n)^{O(1/\varepsilon)} \right) \)
Higher dimensions

The analysis extends to higher dimensions, except for the valid pairing argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most \(l \) times.

\[
\textbf{Thm} \quad \mathbb{E}_{x,y} [|OPT_p(l)| - |OPT|] \leq O \left(\frac{\log(n) \sqrt{d}}{m^{\frac{1}{d-1}}} + \frac{(l+1)^{1-\frac{1}{d-1}}}{l+1-2^{d+1}} \right) |OPT|
\]

\(\Rightarrow \) for \(l = \Theta \left(\left(\frac{\sqrt{d}/\varepsilon}{d-1} \right)^{d-1} \right) \) and \(m = \Theta \left(\left(\frac{\log(n) \sqrt{d}/\varepsilon}{d-1} \right)^{d-1} \right) \):

- \(\mathbb{E}_{x,y} [|OPT_p(l)| - |OPT|] \leq O(\varepsilon) |OPT| \)
- \(\forall \) square, \(\# \{ \text{interfaces} \} \leq m^{O(2dl)} l! \leq O \left((\log n)^{O\left(\left(\frac{\sqrt{d}/\varepsilon}{d-1} \right)^{d-1} \right)} \right) \)

\(\Rightarrow \) space complexity \(\leq O \left(n^{2d} (\log n)^{O\left(\left(\frac{\sqrt{d}/\varepsilon}{d-1} \right)^{d-1} \right)} \right) \)

\(\Rightarrow \) time complexity \(\leq O \left(n^{2d} (\log n)^{O\left(\left(\frac{\sqrt{d}/\varepsilon}{d-1} \right)^{d-1} \right)} \right) \)
Higher dimensions

The analysis extends to higher dimensions, except for the valid pairing argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most \(l \) times.

Thm \[E_{x,y} [|\text{OPT}_p(l)| - |\text{OPT}|] \leq \left(\frac{\log(n) + 1}{m} + \frac{12}{l-5} \right) |\text{OPT}| \]

Proof → key ingredient: patching lemma.

- reduce the # of crossings by dealing w/ several portals at once
- if line of crossings has length \(s \), then path length increased by at most \(3s \)
Higher dimensions

The analysis extends to higher dimensions, except for the valid pairing argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most l times.

Thm \[E_{x,y} \left[|OPT_p(l)| - |OPT| \right] \leq \left(\frac{\log(n) + 1}{m} + \frac{12}{l-5} \right) |OPT| \]

Proof → key ingredient: patching lemma.

→ use patching lemma repeatedly, to reduce the total # of crossings of OPT when made portal-respecting, while amortizing the cost overhead due to patching.
Other norms

• Cannot reduce pb to Euclidean TSP:

\[
\begin{align*}
C_1 \cdot |E| & \leq |\cdot| \leq C_2 \cdot |E| \\
\Rightarrow \text{get } T \text{ s.t. } |T|_E & \leq (1 + \varepsilon)|\text{OPT}|_E \\
|T| & \leq C_2 |T|_E \leq C_2 (1 + \varepsilon)|\text{OPT}|_E \leq \frac{C_2}{C_1} (1 + \varepsilon)|\text{OPT}|_E
\end{align*}
\]

Euclidean
Other norms

• Cannot reduce pb to Euclidean TSP:

\[
C_1 \cdot |E| \leq |.| \leq C_2 \cdot |E|
\]

\[
\rightarrow \text{get } T \text{ s.t. } |T|_E \leq (1 + \varepsilon)|OPT|_E
\]

\[
|T| \leq C_2 |T|_E \leq C_2 (1 + \varepsilon)|OPT|_E \leq \frac{C_2}{C_1} (1 + \varepsilon)|OPT|
\]

• Algorithm and its analysis hold for any other geometric norm (modulo some constants factors in the optimal values of \(m\) and \(l\)).

- norm (\(\neq\) metric) is important for scaling phase
- embedding in \(\mathbb{R}^d\) is also important
Recap

• Euclidean TSP admits a PTAS. *Idem* for TSP in \((\mathbb{R}^d, ||.||)\).

• In \(\mathbb{R}^d\), the PTAS given has space and time complexities of
\[O\left(n^{2d}(\log n)^O\left((\sqrt{d/\varepsilon})^{d-1}\right)\right) \]

• Complexity is reduced to
\[O\left(n(\log n)^O\left((\sqrt{d/\varepsilon})^{d-1}\right)\right) \]
if a reduced quadtree is used.

• By using a \((1 + \varepsilon)\)-spanner of the input nodes to give better ”hints” of what portals to use, one reduces the complexity to
\[O\left(n\left(\log (n) + 2^{\text{poly}(1/\varepsilon)}\right)\right) \] in \(\mathbb{R}^2\) [RaoSmith]