Computational Geometry

Lecture 11: Arrangements and Duality
Question: In a set of n points, are there 3 points on a line?
Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in $O(n^3)$ time
Three Points on a Line

Question: In a set of \(n \) points, are there 3 points on a line?

Naive algorithm: tests all triples in \(O(n^3) \) time

Faster algorithm: uses duality and arrangements
Question: In a set of \(n \) points, are there 3 points on a line?

Naive algorithm: tests all triples in \(O(n^3) \) time

Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book
Duality

\[\ell : y = mx + b \]

\[p = (px, py) \]

Note:
Duality

\begin{align*}
\text{primal plane} & \quad \ell : y = mx + b \\
\text{dual plane} & \quad p^* : y = p_x x - p_y
\end{align*}

- \(p = (p_x, p_y) \)
- \(\ell^* = (m, -b) \)

point \(p = (p_x, p_y) \mapsto \) line \(p^* : y = p_x x - p_y \)
line \(\ell : y = mx + b \mapsto \) point \(\ell^* = (mx, -b) \)

Note:
Duality

primal plane

\[\ell : y = mx + b \]

\[p = (p_x, p_y) \]

\[\text{point } p = (p_x, p_y) \mapsto \text{line } p^* : y = p_x x - p_y \]

line \[\ell : y = mx + b \mapsto \text{point } \ell^* = (mx, -b) \]

\[\text{Note: self inverse } (p^*)^* = p, \quad (\ell^*)^* = \ell \]
Duality

Primal Plane
\[\ell : y = mx + b \]

Dual Plane
\[p^* : y = p_x x - p_y \]

- **Point** \(p = (p_x, p_y) \) maps to **Line** \(\ell^* = (m, -b) \)

Line \(\ell : y = mx + b \) maps to **Point** \(p^* = (mx, -b) \)

Note: does not handle vertical lines
Duality preserves vertical distances
Duality preserves vertical distances
⇒ incidence preserving: \(p \in \ell \) if and only if \(\ell^* \in p^* \)
Duality preserves vertical distances
⇒ incidence preserving: \(p \in \ell \) if and only if \(\ell^* \in p^* \)
⇒ order preserving: \(p \) lies above \(\ell \) if and only if \(\ell^* \) lies above \(p^* \)
It can be applied to other objects, like segments.

primal plane

The dual of a segment is a double wedge.

Question: What line would dualize to a point in the right part of the double wedge?
It can be applied to other objects, like segments

The dual of a segment is a double wedge

Question: What line would dualize to a point in the right part of the double wedge?
A geometric interpretation:

- parabola $\mathcal{U} : y = x^2 / 2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., p^* has same slope as the tangent line
- the tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\Rightarrow p^*$ is the tangent line at p
A geometric interpretation:

- parabola $\mathcal{U} : y = \frac{x^2}{2}$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., p^* has same slope as the tangent line
- the tangent line intersects y-axis at $(0, -\frac{p_x^2}{2})$
- $\Rightarrow p^*$ is the tangent line at p
A geometric interpretation:

- parabola $\mathcal{U} : y = \frac{x^2}{2}$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., q^* has same slope as the tangent line
- the tangent line intersects y-axis at $(0, -\frac{p_x^2}{2})$
- $\Rightarrow q^*$ is the tangent line at p
A geometric interpretation:

- parabola \(\mathcal{U} : y = \frac{x^2}{2} \)
- point \(p = (p_x, p_y) \) on \(\mathcal{U} \)
- derivative of \(\mathcal{U} \) at \(p \) is \(p_x \), i.e., \(p^* \) has same slope as the tangent line
- the tangent line intersects \(y \)-axis at \((0, -\frac{p_x^2}{2}) \)
- \(\Rightarrow p^* \) is the tangent line at \(p \)
A geometric interpretation:

- parabola \(\mathcal{U} : y = x^2 / 2 \)
- point \(p = (p_x, p_y) \) on \(\mathcal{U} \)
- derivative of \(\mathcal{U} \) at \(p \) is \(p_x \), i.e., \(p^* \) has same slope as the tangent line
- the tangent line intersects \(y \)-axis at \((0, -p^2_x / 2) \)
- \(\Rightarrow \) \(p^* \) is the tangent line at \(p \)
Usefulness of Duality

Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a point
Usefulness of Duality

Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a point

Next we use arrangements
Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L

- consists of *faces*, *edges* and *vertices* (some unbounded)
- arrangements exist of other geometric objects too, like line segments, circles, higher-dimensional objects
Arrangements of Lines

Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L

- consists of *faces*, *edges* and *vertices* (some unbounded)
- arrangements exist of other geometric objects too, like line segments, circles, higher-dimensional objects
Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n - 1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces:
 add lines incrementally
 \[1 + \sum_{i=1}^{n} i = n(n + 1)/2 + 1 \]

- equality holds in *simple* arrangements
Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n - 1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally

$$1 + \sum_{i=1}^{n} i = n(n + 1)/2 + 1$$

equality holds in simple arrangements
Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n - 1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces:

 add lines incrementally

$$1 + \sum_{i=1}^{n} i = n(n + 1)/2 + 1$$

- equality holds in *simple* arrangements

Overall $O(n^2)$ complexity
Arrangements of Lines

Combinatorial Complexity:

- \(\leq n(n - 1)/2 \) vertices
- \(\leq n^2 \) edges
- \(\leq n^2/2 + n/2 + 1 \) faces:
 - add lines incrementally

\[
1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1
\]

- equality holds in *simple* arrangements
Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces: add lines incrementally

$$1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1$$

- equality holds in simple arrangements

Overall $O(n^2)$ complexity
Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 $O((n + k) \log n) = O(n^2 \log n)$
- faster: incremental construction
Goal: Compute $A(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 \[O((n + k) \log n) = O(n^2 \log n) \]
- faster: incremental construction
Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 \[O((n + k) \log n) = O(n^2 \log n) \]
- faster: incremental construction
Algorithm \textsc{ConstructArrangement}(L)

\textit{Input.} Set \(L \) of \(n \) lines
\textit{Output.} DCEL for \(\mathcal{A}(L) \) in \(\mathcal{B}(L) \)
1. Compute bounding box \(\mathcal{B}(L) \)
2. Construct DCEL for subdivision induced by \(\mathcal{B}(L) \)
3. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \)
4. \textbf{do} insert \(\ell_i \)
Incremental Construction

Algorithm `CONSTRUCTARRANGEMENT(L)`

Input. A set L of n lines in the plane

Output. DCEL for subdivision induced by $B(L)$ and the part of $A(L)$ inside $B(L)$, where $B(L)$ is a suitable bounding box

1. Compute a bounding box $B(L)$ that contains all vertices of $A(L)$ in its interior
2. Construct DCEL for the subdivision induced by $B(L)$
3. for $i \leftarrow 1$ to n
 4. do Find the edge e on $B(L)$ that contains the leftmost intersection point of ℓ_i and A_i
 5. $f \leftarrow$ the bounded face incident to e
 6. while f is not the unbounded face, that is, the face outside $B(L)$
 7. do Split f, and set f to be the next face intersected by ℓ_i
Face split:

\[\ell_i \Rightarrow f \]

\[f \]

\[\ell_i \]

\[\Rightarrow \]
Runtime analysis:

Algorithm `CONSTRUCT ARRANGEMENT(L)`

Input. Set L of n lines

Output. DCEL for $A(L)$ in $B(L)$

1. Compute bounding box $B(L)$
2. Construct DCEL for subdivision induced by $B(L)$
3. for $i \leftarrow 1$ to n
4. do insert ℓ_i
Incremental Construction

Runtime analysis:

1. $O(n^2)$

Algorithm ConstructArrangement(L)

Input. Set L of n lines
Output. DCEL for $A(L)$ in $B(L)$

1. Compute bounding box $B(L)$
2. Construct DCEL for subdivision induced by $B(L)$
3. for $i \leftarrow 1$ to n
4. do insert l_i
Runtime analysis:

1. $O(n^2)$
2. constant

Algorithm **CONSTRUCT ARRANGEMENT**(L)

Input. Set L of n lines

Output. DCEL for $A(L)$ in $B(L)$

1. Compute bounding box $B(L)$
2. Construct DCEL for subdivision induced by $B(L)$
3. for $i \leftarrow 1$ to n
4. do insert ℓ_i
Runtime analysis:

1. \(O(n^2) \)
2. constant
3. & 4. ?

Algorithm **ConstructArrangement**\((L) \)

Input. Set \(L \) of \(n \) lines

Output. DCEL for \(A(L) \) in \(B(L) \)

1. Compute bounding box \(B(L) \)
2. Construct DCEL for subdivision induced by \(B(L) \)
3. for \(i \leftarrow 1 \) to \(n \)
4. do insert \(l_i \)
The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ.

Zone Theorem:

The complexity of the zone of a line in an arrangement of m lines is $O(m)$.
The zone of a line ℓ in an arrangement $A(L)$ is the set of faces of $A(L)$ whose closure intersects ℓ.

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.
Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \)

Proof:
- We can assume \(\ell \) horizontal and no other line is horizontal.
- We count number of *left-bounding* edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true.
 - \(m > 1 \): only at most 3 new edges if \(\ell \) is unique.
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$

Proof:
- We can assume ℓ horizontal and no other line is horizontal
- We count number of *left-bounding* edges
- We show by induction on m that this at most $5m$:
 - $m = 1$: trivially true
 - $m > 1$: only at most 3 new edges if ℓ_1 is unique,
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \)

Proof:
- We can assume \(\ell \) horizontal and no other line is horizontal.
- We count number of *left-bounding* edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true
 - \(m > 1 \): only at most 3 new edges if \(\ell_1 \) is unique.
Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \)

Proof:
- We can assume \(\ell \) horizontal and no other line is horizontal.
- We count number of left-bounding edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true
 - \(m > 1 \): only at most 3 new edges if \(\ell_1 \) is unique,
Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$

Proof:

- We can assume ℓ horizontal and no other line is horizontal.
- We count number of *left-bounding* edges.
- We show by induction on m that this at most $5m$:
 - $m = 1$: trivially true
 - $m > 1$: only at most 3 new edges if ℓ_1 is unique,
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \)

Proof:

- We can assume \(\ell \) horizontal and no other line is horizontal.
- We count number of *left-bounding* edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true
 - \(m > 1 \): only at most 3 new edges if \(\ell_1 \) is unique, at most 5 if \(\ell_1 \) is not unique

 \[5(m - 1) + 5 = 5m \]
Run time analysis:

Algorithm `CONSTRUCT_ARRANGEMENT(L)`

Input. Set L of n lines.

Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_i.

Computational Geometry

Lecture 11: Arrangements and Duality
Incremental Construction

Run time analysis:

1. $O(n^2)$

Algorithm $\text{CONSTRUCT.ARRANGEMENT}(L)$

Input. Set L of n lines.

Output. DCEL for $A(L)$ in $B(L)$.

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. for $i \leftarrow 1$ to n
4. do insert l_i.
Run time analysis:

1. $O(n^2)$
2. constant

Algorithm \text{CONSTRUCTARRANGEMENT}(L)

Input. Set L of n lines.

Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i ← 1$ to n
4. do insert ℓ_i.
Incremental Construction

Run time analysis:

1. $O(n^2)$
2. constant
3. & 4.
 \[\sum_{i=1}^{n} O(i) = O(n^2) \]

Algorithm $\text{constructArrangement}(L)$

Input. Set L of n lines.
Output. DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.
1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. for $i \leftarrow 1$ to n
4. do insert ℓ_i.
Run time analysis:

1. $O(n^2)$
2. constant

3. & 4.
$\sum_{i=1}^{n} O(i) = O(n^2)$

In total $O(n^2)$

Algorithm \textbf{CONSTRUCT\textsc{Arrangement}}(L)

\textit{Input.} Set \textit{L} of \textit{n} lines.

\textit{Output.} DCEL for \textit{A}(L) in \textit{B}(L).

1. Compute bounding box \textit{B}(L).
2. Construct DCEL for subdivision induced by \textit{B}(L).
3. \textbf{for} \textit{i} \leftarrow 1 \textbf{ to } \textit{n}
4. \textbf{do} insert l_i.
3 Points on a Line

Algorithm:
run incremental construction algorithm for dual problem
stop when 3 lines pass through a point

Run time: $O(n^2)$
3 Points on a Line

Algorithm:
- run incremental construction algorithm for dual problem
- stop when 3 lines pass through a point

Run time: \(O(n^2)\)
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a **reference point**: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of **semi-free placements**
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a **reference point**: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of **semi-free placements**
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments
k-levels in Arrangements

The level of a point in an arrangement of lines is the number of lines strictly above it.
k-levels in Arrangements

The **level** of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?
The **level** of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the number of k-sets in a point set?
The level of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the number of k-sets in a point set?

Known bounds:
- Erdös et al. '73: $\Omega(n \log k)$ and $O(n k^{1/2})$
- Dey '97: $O(n k^{1/3})$
The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of k-levels?

Dual problem: What is the number of k-sets in a point set?

Known bounds:
- Erdős et al. ’73: $\Omega(n \log k)$ and $O(nk^{1/2})$
- Dey ’97: $O(nk^{1/3})$
In 3D, we have point-plane duality; lines dualize to other lines.

An arrangement induced by n planes in 3D has complexity $O(n^3)$.

Deciding whether a set of points in 3D has four or more co-planar points can be done in $O(n^3)$ time (dualize and construct the arrangement).
Duality is a useful tool to reformulate certain problems on points in the plane to lines in the plane, and vice versa.

Dualization of line segments is especially useful.

Arrangements, zones of lines in arrangements, and levels in arrangements are useful concepts in computational geometry.

All of this exists in three and higher dimensional spaces too.