Computational Geometry

Lecture 15: Windowing queries
Windowing

Zoom in; re-center and zoom in; select by outlining
Given a set of n axis-parallel line segments, preprocess them into a data structure so that the ones that intersect a query rectangle can be reported efficiently.
Given a set of n arbitrary, non-crossing line segments, preprocess them into a data structure so that the ones that intersect a query rectangle can be reported efficiently.
Windowing

Two cases of intersection:

- An endpoint lies inside the query window; solve with range trees
- The segment intersects a side of the query window; solve how?
Using a bounding box?

If the query window intersects the line segment, then it also intersects the bounding box of the line segment (whose sides are axis-parallel segments).

So we could search in the $4n$ bounding box sides.
But: if the query window intersects bounding box sides does not imply that it intersects the corresponding segments.
Current problem of our interest:

Given a set of arbitrarily oriented, non-crossing line segments, preprocess them into a data structure so that the ones intersecting a vertical (horizontal) query segment can be reported efficiently.
Using an interval tree?
Given a set I of n intervals on the real line, preprocess them into a data structure so that the ones containing a query point (value) can be reported efficiently.

We have the interval tree, but we will develop an alternative solution.
Given a set \(S = \{ s_1, s_2, \ldots, s_n \} \) of \(n \) segments on the real line, preprocess them into a data structure so that the ones containing a query point (value) can be reported efficiently.

The new structure is called the \textit{segment tree}
The **locus approach** is the idea to partition the solution space into parts with equal answer sets.

For the set S of segments, we get different answer sets before and after every endpoint.
Let \(p_1, p_2, \ldots, p_m \) be the sorted set of unique endpoints of the intervals; \(m \leq 2n \)

The real line is partitioned into
\((-\infty, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], (p_2, p_3), \ldots, (p_m, +\infty),\)
these are called the elementary intervals
We could make a binary search tree that has a leaf for every elementary interval
\((-\infty, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], (p_2, p_3), \ldots, (p_m, +\infty)\)

Each segment from the set S can be stored with all leaves whose elementary interval it contains: $[p_i, p_j]$ is stored with
$[p_i, p_i], (p_i, p_{i+1}), \ldots, [p_j, p_j]$

A stabbing query with point q is then solved by finding the unique leaf that contains q, and reporting all segments that it stores
Locus approach

Motivation
Segment trees
Windowing again

Definition
Querying
Storage

Computational Geometry
Lecture 15: Windowing queries
Locus approach
Locus approach

Question: What are the storage requirements and what is the query time of this solution?
Towards segment trees

In the tree, the leaves store elementary intervals.

But each internal node corresponds to an interval too: the interval that is the union of the elementary intervals of all leaves below it.
Towards segment trees

Motivation
Segment trees
Windowing again

Definition
Querying
Storage

Computational Geometry
Lecture 15: Windowing queries
Towards segment trees

Let $\text{Int}(\nu)$ denote the interval of node ν

To avoid quadratic storage, we store any segment s_j as high as possible in the tree whose leaves correspond to elementary intervals.

More precisely: s_j is stored with ν if and only if $\text{Int}(\nu) \subseteq s_j$ but $\text{Int}(\text{parent}(\nu)) \not\subseteq s_j$.
Towards segment trees

- Motivation
- Segment trees
- Windowing again

Definition

Querying

Storage

Towards segment trees

(\(p_{i-2}, p_{i+2}\))

(\(p_i, p_{i+2}\))

(\(p_{i-1}, p_{i+1}\))

(\(p_{i+1}, p_{i+2}\))

\([p_{i+1}, p_{i+1}]\)

\([p_{i+2}, p_{i+2}]\)

\(\nu\)

\(s_j\)

\(\text{Int}(\text{parent}(\nu))\)

\(\text{Int}(\nu)\)

\(p_{i-2}\)

\(p_{i-1}\)

\(p_i\)

\(p_{i+1}\)

\(p_{i+2}\)
A segment tree on a set S of segments is a balanced binary search tree on the elementary intervals defined by S, and each node stores its interval, and its canonical subset of S in a list (unsorted)

The canonical subset (of S) of a node v is the subset of segments s_j for which:

$\text{Int}(v) \subseteq s_j$ but $\text{Int}(\text{parent}(v)) \not\subseteq s_j$
Segment trees

Motivation

Segment trees

Windowing again

Definition

Querying

Storage

Computational Geometry

Lecture 15: Windowing queries
Segment trees

Motivation

Segment trees

Windowing again

Definition

Querying

Storage

Computational Geometry
Lecture 15: Windowing queries
Question: Why are no segments stored with nodes on the leftmost and rightmost paths of the segment tree?
The query algorithm is trivial:

For a query point q, follow the path down the tree to the elementary interval that contains q, and report all segments stored in the lists with the nodes on that path.
Example query

Motivation

Segment trees

Definition

Querying

Storage

Computational Geometry

Lecture 15: Windowing queries
Example query
The query time is $O(\log n + k)$, where k is the number of segments reported.
A segment can be stored in several lists of nodes. How bad can the storage requirements get?
Lemma: Any segment can be stored at up to two nodes of the same depth

Proof: Suppose a segment s_i is stored at three nodes $v_1, v_2,$ and v_3 at the same depth from the root.

![Diagram showing segments stored at multiple nodes](image-url)
If a segment tree has depth $O(\log n)$, then any segment is stored in at most $O(\log n)$ lists \Rightarrow the total size of all lists is $O(n\log n)$

The main tree uses $O(n)$ storage

The storage requirements of a segment tree on n segments is $O(n\log n)$
Segments and range queries

Note the correspondence with 2-dimensional range trees
Theorem: A segment tree storing n segments (intervals) on the real line uses $O(n \log n)$ storage, can be built in $O(n \log n)$ time, and stabbing queries can be answered in $O(\log n + k)$ time, where k is the number of segments reported.

Property: For any query, all segments containing the query point are stored in the lists of $O(\log n)$ nodes.
Question: Do you see how to adapt the segment tree so that stabbing counting queries can be answered efficiently?
Problem arising from windowing:

Given a set of arbitrarily oriented, non-crossing line segments, preprocess them into a data structure so that the ones intersecting a vertical (horizontal) query segment can be reported efficiently.
Idea for solution

The main idea is to build a segment tree on the x-projections of the 2D segments, and replace the associated lists with a more suitable data structure.
Motivation
Segment trees
Windowing again

Segment tree variation
Querying
Storage

Computational Geometry Lecture 15: Windowing queries
Observe that nodes now correspond to vertical slabs of the plane (with or without left and right bounding lines), and:

- If a segment s_i is stored with a node v, then it crosses the slab of v completely, but not the slab of the parent of v.
- The segments crossing a slab have a well-defined top-to-bottom order.

\[s_j \] is stored at one or more nodes below v.

\[\text{Int}(v) \]
Computational Geometry

Lecture 15: Windowing queries

- Motivation
- Segment trees
- Windowing again
- Segment tree variation
- Querying
- Storage

Diagram showing segment tree variation with nodes labeled $s_1, s_3, s_4,$ and p_3, p_4, and lines representing segments $s_1, s_3, s_4,$ and s_5.
Motivation
Segment trees
Windowing again

Segment tree variation
Querying
Storage

Computational Geometry
Lecture 15: Windowing queries
Recall that a query is done with a vertical line segment q.

Only segments of S stored with nodes on the path down the tree using the x-coordinate of q can be answers.

At any such node, the query problem is: which of the segments (that cross the slab completely) intersects the vertical query segment q?
We store the canonical subset of a node v in a balanced binary search tree that follows the bottom-to-top order in its leaves.
A query with q follows one path down the main tree, using the x-coordinate of q

At each node, the associated tree is queried using the endpoints of q, as if it is a 1-dimensional range query

The query time is $O(\log^2 n + k)$
The data structure for intersection queries with a vertical query segment in a set of non-crossing line segments is a segment tree where the associated structures are binary search trees on the bottom-to-top order of the segments in the corresponding slab.

Since it is a segment tree with lists replaced by trees, the storage remains $O(n \log n)$.
Theorem: A set of n non-crossing line segments can be stored in a data structure of size $O(n \log n)$ so that intersection queries with a vertical query segment can be answered in $O(\log^2 n + k)$ time, where k is the number of answers reported.

Theorem: A set of n non-crossing line segments can be stored in a data structure of size $O(n \log n)$ so that windowing queries can be answered in $O(\log^2 n + k)$ time, where k is the number of answers reported.