Computational Geometry

Lecture 13: More on Voronoi diagrams
Motion planning for a disc

Can we move a disc from one location to another amidst obstacles?
Since the Voronoi diagram of point sites is locally “furthest away” from those sites, we can move the disc if and only if we can do so on the Voronoi diagram.
Retraction

Global idea for motion planning for a disc:

1. Get center from start to Voronoi diagram
2. Move center along Voronoi diagram
3. Move center from Voronoi diagram to end

This is called retraction
Voronoi diagram of points
For a Voronoi diagram of other objects than point sites, we must decide to which point on each site we measure the distance.

This will be the closest point on the site.
Voronoi diagram of line segments
Voronoi diagram of line segments
Voronoi diagram of line segments

- The points of equal distance to two points lie on a line.
- The points of equal distance to two lines lie on a line (two lines).
- The points of equal distance to a point and a line lie on a parabola.
Two line segment sites have a bisector with up to 7 arcs
If two line segment sites share an endpoint, their bisector can have an area too.
We assume that the line segment sites are fully disjoint, to avoid complications.

We could shorten each line segment from a set of non-crossing line segments a tiny amount.
Empty circles
The Voronoi diagram has vertices at the centers of empty circles:

- touching three different line segment sites (degree 3 vertex)
- touching two line segment sites, one of which it touches in an endpoint of the line segment, and the segment is also part of the tangent line of the circle at that point (degree 2 vertex)

At a degree 2 Voronoi vertex, one incident arc is a straight edge and the other one is a parabolic arc.
Constructing the Voronoi diagram of line segments

The Voronoi diagram of a set of line segments can be constructed using a plane sweep algorithm.

Question: What site defines the leftmost arc on the beach line?
Breakpoints trace arcs of equal distance to two different sites, or they trace segments perpendicular to a line segment starting at one of its endpoints, or they trace site interiors.
The algorithm uses 5 types of breakpoint:

1. If a point \(p \) is closest to **two site endpoints** while being equidistant from them and \(\ell \), then \(p \) is a breakpoint that traces a line segment (as in the point site case)
2. If a point \(p \) is closest to **two site interiors** while being equidistant from them and \(\ell \), then \(p \) is a breakpoint that traces a line segment
3. If a point \(p \) is closest to **a site endpoint and a site interior** of different sites while being equidistant from them and \(\ell \), then \(p \) is a breakpoint that traces a parabolic arc
The algorithm uses 5 types of breakpoint (continued):

4. If a point p is closest to a site endpoint, the shortest distance is realized by a segment that is perpendicular to the line segment site, and p has the same distance from ℓ, then p is a breakpoint that traces a line segment.

5. If a site interior intersects the sweep line, then the intersection is a breakpoint that traces a line segment (the site interior).

These two types of breakpoint do not trace Voronoi diagram edges but they do trace breaks in the beach line.
Events

Voronoi diagrams of line segments
Farthest-point Voronoi diagrams
Motion planning for a disc
Geometry
Plane sweep algorithm

Computational Geometry
Lecture 13: More on Voronoi diagrams
Events

There are site events and circle events, but circle events come in different types.
The types of circle events essentially correspond to the types of breakpoints that meet.

Not all types of breakpoint can meet.
The sweep algorithm

Each event can still be handled in $O(\log n)$ time

There are still only $O(n)$ events

Theorem: The Voronoi diagram of a set of disjoint line segments can be constructed in $O(n \log n)$ time
Retraction
Algorithm \textsc{Retraction}(S, q_{\text{start}}, q_{\text{end}}, r)

1. Compute the Voronoi diagram \text{Vor}(S) of \(S\) in a bounding box.
2. Locate the cells of \text{Vor}(P) that contain \(q_{\text{start}}\) and \(q_{\text{end}}\).
3. Determine the point \(p_{\text{start}}\) on \text{Vor}(S) by moving \(q_{\text{start}}\) away from the nearest line segment in \(S\). Similarly, determine the point \(p_{\text{end}}\). Add \(p_{\text{start}}\) and \(p_{\text{end}}\) as vertices to \text{Vor}(S), splitting the arcs on which they lie into two.
4. Let \(G\) be the graph corresponding to the vertices and edges of the Voronoi diagram. Remove all edges from \(G\) for which the smallest distance to the nearest sites is \(\leq r\).
5. Determine with depth-first search whether a path exists from \(p_{\text{start}}\) to \(p_{\text{end}}\) in \(G\). If so, report the line segment from \(q_{\text{start}}\) to \(p_{\text{start}}\), the path in \(G\) from \(p_{\text{start}}\) to \(p_{\text{end}}\), and the line segment from \(p_{\text{end}}\) to \(q_{\text{end}}\) as the path. Otherwise, report that no path exists.
Voronoi diagrams of line segments
Farthest-point Voronoi diagrams
Motion planning for a disc
Geometry
Plane sweep algorithm
Theorem: Given n disjoint line segment obstacles and a disc-shaped robot, the existence of a collision-free path between two positions of the robot can be determined in $O(n \log n)$ time using $O(n)$ storage.
Testing the roundness

Suppose we construct a perfectly round object, and now wish to test how round it really is.

Measuring an object is done with coordinate measuring machines, it is a scanner that determines many points on the surface of the object.

round

not so round
Coordinate measuring machine
The **roundness** of a set of points is the width of the smallest annulus that contains the points.

An annulus is the region between two co-centric circles.

Its width is the difference in radius.
The smallest-width annulus must have at least one point on C_{outer}, or else we can decrease its size and decrease the width.

The smallest-width annulus must have at least one point on C_{inner}, or else we can increase its size and decrease the width.
Smallest-width annulus

- \(C_{\text{outer}} \) contains at least three points of \(P \), and \(C_{\text{inner}} \) contains at least one point of \(P \)

- \(C_{\text{outer}} \) contains at least one point of \(P \), and \(C_{\text{inner}} \) contains at least three points of \(P \)

- \(C_{\text{outer}} \) and \(C_{\text{inner}} \) both contain two points of \(P \)
Smallest-width annulus

The smallest-width annulus can not be determined with randomized incremental construction
Smallest-width annulus

If we know the center of the smallest-width annulus (the center of the two circles), then we can determine the smallest-width annulus itself (and its width) in $O(n)$ additional time.
Consider **case 2:** C_{inner} contains (at least) three points of P and C_{outer} only one.

Then the three points on C_{inner} define an empty circle, and the center of C_{inner} is a Voronoi vertex!
Consider **case 1**: C_{outer} contains (at least) three points of P and C_{inner} only one.

Then the three points on C_{outer} define a “full” circle ...
Intermezzo: Higher-order Voronoi diagrams
More closest points

Suppose we are interested in the two closest points, not only the one closest point, and want a diagram that captures that
First order Voronoi diagram
Second order Voronoi diagram
Third order Voronoi diagram
First and second order Voronoi diagram
Tenth order, or farthest-point Voronoi diagram
The **farthest-point Voronoi diagram** is the partition of the plane into regions where the same point is farthest.

It is also the \((n - 1)\)-th order Voronoi diagram.

The region of a site \(p_i\) is the common intersection of \(n - 1\) half-planes, so regions are convex, and boundaries are parts of bisectors.
Farthest-point Voronoi diagrams
Observe: Only points of the convex hull of P can have cells in the farthest-point Voronoi diagram.

Suppose otherwise ...
Observe: Only points of the convex hull of P can have cells in the farthest-point Voronoi diagram.

Suppose otherwise ...
Farthest-point Voronoi diagrams

Also observe: All points of the convex hull have a cell in the farthest-point Voronoi diagram.

All cells of the farthest-point Voronoi diagram are unbounded.
Farthest-point Voronoi diagrams

Also observe: All points of the convex hull have a cell in the farthest-point Voronoi diagram.

All cells of the farthest-point Voronoi diagram are unbounded.
If all cells are unbounded, then the edges of the farthest-point Voronoi diagram form a tree of which some edges are unbounded.

Question: For the normal Voronoi diagram, there was one case where its edges are not connected. Does such a case occur for the farthest-point Voronoi diagram?
Farthest-point Voronoi diagrams
Farthest-point Voronoi diagrams
Lower bound

\(\Omega(n \log n) \) time is a lower bound for computing the farthest-point Voronoi diagram.

We could use it for sorting by transforming a set of reals \(x_1, x_2, \ldots \) to a set of points \((x_1, x_1^2), (x_2, x_2^2), \ldots \).
So we may as well start by computing the convex hull of \(P \) in \(O(n \log n) \) time.

Let \(p_1, \ldots, p_m \) be the points on the convex hull, forget the rest.
So we may as well start by computing the convex hull of \(P \) in \(O(n \log n) \) time.

Let \(p_1, \ldots, p_m \) be the points on the convex hull, forget the rest.
Construction

The simplest algorithm to construct the farthest-point Voronoi diagram is \textit{randomized incremental construction} on the convex hull vertices.

Let p_1, \ldots, p_m be the points in \textit{random order}.

From the convex hull, we also know the \textit{convex hull order}.
Construction: phase 1

Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

Remove p_i from the convex hull; remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)
Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

Remove p_i from the convex hull; remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)
Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

- Remove p_i from the convex hull;
- remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)
Phase 1: Remove and Remember

For \(i \leftarrow m \) downto 4 do

Remove \(p_i \) from the convex hull; remember its 2 neighbors \(\text{cw}(p_i) \) and \(\text{ccw}(p_i) \) (at removal!)
Construction: phase 1

Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

Remove p_i from the convex hull; remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)
Construction: phase 1

Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

Remove p_i from the convex hull; remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)
Construction: phase 1

Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

Remove p_i from the convex hull; remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)
Construction: phase 1

Phase 1: Remove and Remember

For $i \leftarrow m$ downto 4 do

Remove p_i from the convex hull;
remember its 2 neighbors $cw(p_i)$ and $ccw(p_i)$ (at removal!)

$p_8, cw(p_8), ccw(p_8)$
$p_7, cw(p_7), ccw(p_7)$
$p_6, cw(p_6), ccw(p_6)$
$p_5, cw(p_5), ccw(p_5)$
$p_4, cw(p_4), ccw(p_4)$
p_3, p_2, p_1
Phase 2: Put back and Construct

Construct the farthest-point Voronoi diagram F_3 of p_3, p_2, p_1

For $i \leftarrow 4$ to m do

Add p_i to the farthest-point Voronoi diagram F_{i-1} to make F_i

We simply determine the cell of p_i by traversing F_{i-1} and update F_{i-1}
Construction: phase 2

\[F_{i-1} \]
Construction: phase 2

\[\text{ccw}(p_i), \ \text{cw}(p_i), \ p_i, \ F_{i-1} \]
Construction: phase 2

- Voronoi diagrams of line segments
- Farthest-point Voronoi diagrams
- Roundness
- Higher-order Voronoi diagrams
- Computing the farthest-point Voronoi diagram
- Roundness

Construction: phase 2

- \(p_i \)
- \(ccw(p_i) \)
- \(cw(p_i) \)
- \(F_{i-1} \)
- Bisector of \(p_i \) and \(ccw(p_i) \)
- Cell of \(ccw(p_i) \)
Construction: phase 2

\[p_i \]

\[cw(p_i) \]

\[ccw(p_i) \]

\[cell \text{ of } ccw(p_i) \]

\[F_{i-1} \]
Construction: phase 2

\[p_i \]

\(ccw(p_i) \)

\(cw(p_i) \)

\(F_{i-1} \)

Cell of \(ccw(p_i) \)
Construction: phase 2

$\pi \in \text{cw}(\pi)\text{ccw}(\pi)\text{ccw}(\pi)\text{cell of } \mathcal{F}_i\triangleq_1$
Construction: phase 2

\[F_{i-1} \]

Cell of \(\text{cw}(p_i) \)

Cell of \(\text{ccw}(p_i) \)

\[p_i \]

\[\text{cw}(p_i) \]

\[\text{ccw}(p_i) \]
Construction: phase 2

\[
\text{cell of } \ccw(p_i) \quad \text{cell of } \cw(p_i) \\
\text{cell of } F_i
\]
Construction: phase 2

The implementation of phase 2 requires a representation of the farthest-point Voronoi diagram.

We use the doubly-connected edge list (ignoring issues due to half-infinite edges).

For any point among \(p_1, \ldots, p_{i-1} \), we maintain a pointer to the most counterclockwise bounding half-edge of its cell.
Construction: phase 2

Voronoi diagrams of line segments
Farthest-point Voronoi diagrams
Higher-order Voronoi diagrams
Computing the farthest-point Voronoi diagram
Roundness

\[F_i \]

Construction: phase 2

\[pi \]

\[ccw(pi) \]

\[cw(pi) \]

cell of

\[ccw(pi) \]
Due remembering $ccw(p_i)$, we have $ccw(p_i)$ in $O(1)$ time, and get the first bisector that bounds the cell of p_i.

Due to the pointer to the most counterclockwise half-edge of the cell of $ccw(p_i)$, we can start the traversal in $O(1)$ time.
If the cell of p_i has k_i edges in its boundary, then we visit $O(k_i)$ half-edges and vertices of F_{i-1} to construct the cell of p_i.

Also, we remove $O(k_i)$ vertices and half-edges, change (shorten) $O(k_i)$ half-edges, and create $O(k_i)$ half-edges and vertices.

\Rightarrow adding p_i takes $O(k_i)$ time, where k_i is the complexity of the cell of p_i in F_i.
Analysis

Voronoi diagrams of line segments
Farthest-point Voronoi diagrams
Higher-order Voronoi diagrams
Computing the farthest-point Voronoi diagram
Roundness

$ccw(p_i)$

$cw(p_i)$

F_{i-1}

$ccw(p_i)$

cell of

Computational Geometry
Lecture 13: More on Voronoi diagrams
Backwards analysis:
Assume that p_i has already been added and we have F_i

Each one of the i points had the same probability of having been added last

The expected time for the addition of p_i is linear in the average complexity of the cells of F_i
Backwards analysis

The farthest-point Voronoi diagram of i points has at most $2i - 3$ edges (fewer in degenerate cases), and each edge bounds exactly 2 cells.

So the average complexity of a cell in a farthest-point Voronoi diagram of i points is

$$k_i \leq \frac{2 \cdot (2i - 3)}{i} = \frac{4i - 6}{i} < 4$$

The expected time to construct F_i from F_{i-1} is $O(1)$.
Due to the initial convex hull computation, the whole algorithm requires $O(n \log n)$ time, plus $O(m)$ expected time.

Theorem: The farthest-site Voronoi diagram of n points in the plane can be constructed in $O(n \log n)$ expected time. If all points lie on the convex hull and are given in sorted order, it takes $O(n)$ expected time.
End of intermezzo; back to smallest-width annulus
Smallest-width annulus

- C_{outer} contains at least three points of P, and C_{inner} contains at least one point of P

- C_{outer} contains at least one point of P, and C_{inner} contains at least three points of P

- C_{outer} and C_{inner} both contain two points of P
Smallest-width annulus

If we know the center of the smallest-width annulus (the center of the two circles), then we can determine the smallest-width annulus itself (and its width) in $O(n)$ additional time.
Consider case 2: \(C_{\text{inner}} \) contains (at least) three points of \(P \) and \(C_{\text{outer}} \) only one.

Then the three points on \(C_{\text{inner}} \) define an empty circle, and the center of \(C_{\text{inner}} \) is a Voronoi diagram vertex!
Consider **case 1**: \(C_{\text{outer}} \) contains (at least) three points of \(P \) and \(C_{\text{inner}} \) only one.

Then the three points on \(C_{\text{outer}} \) define a “full” circle, and the center of \(C_{\text{outer}} \) is a farthest-point Voronoi diagram vertex!
Consider **case 3**: C_{outer} and C_{inner} each contain two points of P.

Then the two points on C_{inner} define a set of empty circles and the two points of C_{outer} define a set of full circles.
Case 3

The two points on C_{inner} define a set of empty circles whose centers lie on the Voronoi edge defined by these two points.

The two points of C_{outer} define a set of full circles whose centers lie on the farthest-point Voronoi edge defined by these two points.

The center lies on an intersection of an edge of the Voronoi diagram and an edge of the farthest-point Voronoi diagram!
Algorithm

To solve case 3:
1. Compute the Voronoi diagram of P
2. Compute the farthest-point Voronoi diagram of P
3. For each pair of edges, one of each diagram
 - defined by p, p' of the Voronoi diagram and
 by q, q' of the farthest-point Voronoi diagram
 - determine the annulus for p, p' and q, q' if the
 edges intersect
4. Keep the smallest-width one of these

This takes $O(n^2)$ time
Algorithm

To solve case 1:

1. Compute the farthest-point Voronoi diagram of P
2. For each vertex v of the FPVD
 - determine the point p of P that is closest to v
 - determine C_{outer} from the points defining v
 - determine the annulus from $p, v,$ and C_{outer}
3. Keep the smallest-width one of these

This takes $O(n^2)$ time
To solve **case 2**:

1. Compute the Voronoi diagram of P
2. For each vertex v of the Voronoi diagram
 - determine the point p of P that is farthest from v
 - determine C_{inner} from the points defining v
 - determine the annulus from p, v, and C_{inner}
3. Keep the smallest-width one of these

This takes $O(n^2)$ time
Theorem: The roundness, or the smallest-width annulus of n points in the plane can be determined in $O(n^2)$ time