Algorithm Analysis

Partitioning into Two Sublists

1. Choose x.
2. Set $i = 2$ and set $f = n$.
3. If $x < A[i]$, then $f = i + 1$, else go to step 5.
4. If $x > A[i]$, then $i = i + 1$, else go to stop.
5. If $A[i] > x$, then $i = f$.
6. Repeat steps 2 through 5.

Additional work is necessary to combine them.

1. Divide the given sequence (array) in two nonempty subsequences such that each subarray contains all elements smaller than x.
2. Combine the two subarrays by recursive calls to quick-sort.
3. Combine in quick-sort the subarrays are sorted in place; therefore no special treatment is needed.

Example: Quick-Sort

<table>
<thead>
<tr>
<th>66</th>
<th>99</th>
<th>64</th>
<th>16</th>
<th>86</th>
<th>13</th>
<th>27</th>
<th>0</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>z</td>
<td>f</td>
<td>i</td>
<td>f</td>
<td>i</td>
<td>f</td>
<td>i</td>
<td>f</td>
</tr>
</tbody>
</table>
Analysis of QuickSort

Worst Case Analysis $O(N^2)$

We will consider the average analysis of QuickSort.

Assumptions:

1. $A[1], ..., A[n]$ are all distinct.
2. $A[i] \in \{1, 2, ..., n\}$ for $i = 1, ..., n$.
3. $A[i]$'s are randomly distributed.
4. Suppose $AC(n) = \text{Average number of comparisons required to sort } A[1], ..., A[n]$ by QuickSort.
5. Then, $AC(n) = (n + 1) + \frac{1}{n+1} \sum_{k=2}^{n} AC(k) + AC(n-k)$,
6. $nAC(n) = n(n+1) + 2AC(0) + ... + AC(n-1) + AC(n)$,
7. Consequently, $AC(n) = \frac{n(n+1) + 2AC(0) + ... + AC(n-1) + AC(n)}{n}$.

Substituting $(n+1)$ for n in the above equation gives:

$(n+1)AC(n+1) = (n+1)(n+2) + 2AC(0) + ... + AC(n) + AC(n+1)$.

Observations:

1. All $n!$ permutations of $A[1], ..., A[n]$ are equally likely.
2. Suppose $A[i] = k$. Then after one application of the partition method, size of the left subarray is $(k-1)$, size of the right subarray is $(n-k)$, and k is in its correct position.
3. Each $(n+1)$ comparisons are made in arranging the given array $A[i], ..., A[n]$ in partition method.
4. Each time i is increased by 1, the comparison is decreased by 1, until i becomes equal to j.

Algorithm QuickSort $A[1], ..., A[n]$

1. Find a partition of $A[1], ..., A[n]$ such that $A[1], ..., A[q]$ are all smaller than (new) $A[q+1], ..., A[n]$ for $1 \leq q \leq n-1$.
3. $A[q]$ is the median of the n values.
4. Other choices for X are $A[1], A[2], ..., A[n]$ and randomly chosen value i.e., $A[i]$. It makes sense to sort an array by special procedures such as BubbleSort, for small values of n, i.e., $n \leq M$. Practically choose $M \approx 9$.

Divide and Conquer (Part 15)

Divide and Conquer (Part 15)

Divide and Conquer (Part 15)

Divide and Conquer (Part 15)
\[(1 - u)\delta + \frac{1 + u}{\varepsilon} + \frac{\zeta + u}{\varepsilon} = (1 + u)\delta \]

Repeated substitution gives:

\[(u)\delta + \frac{\zeta + u}{\varepsilon} = (1 + u)\delta \]

Let

\[(1 + u)\varphi + \frac{\zeta + u}{\varepsilon} = \frac{(\zeta + u)}{(1 + u)\varphi} \]

Consequently

\[(u)\varphi(\zeta + u) + (1 + u)\zeta = (1 + u)\varphi(1 + u) \]

and the difference of the above two is:

\[\frac{(u)\varphi(\zeta + u)}{(1 + u)\varphi} \]

Example: Selection Problem

Find the path that leads to a given array \[\{1\}V \cdots \{1\}V \]

Example: Selection Problem

Find the path that leads to a given array \[\{1\}V \cdots \{1\}V \]
the (i - y)-th smallest element of \((u - y)\) of the right subarray \[a'_{1}[1]\] + \(1\).

This case can be seen as equivalent to finding \[a'_{1}[1]\] + \(1\) if \(\gamma < \gamma'\).

\[
\gamma = \gamma' \quad (1 + u) = (1 + u')f
\]

\[
\gamma > \gamma' \quad (1 + u')f + (1 + u) = (1 + u)f
\]

This indicates the average value by \(\gamma'\): i.e.,

\[
\gamma' = 1, 2, \ldots, n. \text{ So let us calculate the average of } f(1).
\]

But in general, we will be finding the \(i\)-th smallest element for any \(i\). In general, we will be finding the \(i\)-th smallest element for any \(i\).

\[
\gamma = 1, 2, \ldots, n. \text{ So let us calculate the average of } f(1).
\]

But in general, we will be finding the \(i\)-th smallest element for any \(i\).

\[
\gamma = 1, 2, \ldots, n. \text{ So let us calculate the average of } f(1).
\]

But in general, we will be finding the \(i\)-th smallest element for any \(i\).
\[(u)O = \frac{u}{(1 - u)} + (1 - u)f_0 \frac{u}{1 - \varepsilon u} = (u)f\]

\[\varepsilon(1 - u)f_0(1 - \varepsilon u) + (1 - u)\varepsilon u = (u)f \varepsilon u\]

\[(1 - u)f \{z(1 - u) + (1 - u)\varepsilon + \varepsilon u - u + \varepsilon u\} = (u)f \varepsilon u\]

\[\{u \varepsilon(1 - u) - (1 + u)\varepsilon\} = (1 - u)f \varepsilon(1 - u) - (u)f \varepsilon u\]

This and Carone (p. 36)

Example: Finding Closest Pair of Points

\[\text{Problem: Let } \{n \in \mathbb{Z} : 1 \leq n \leq 10 \} \text{ be a set. Find the closest pair of points.}\]
Algorithm

Finding Closest Pair of Points - Divide and Conquer

1. Find a set of points \(p \) in \(\mathbb{R}^2 \) and \(d \) and \(L \) respectively. (This is opposite of \(d \) and \(L \) respectively.)

2. Consider the points \(A \) and \(B \) and \(C \) and \(D \) respectively in \(\mathbb{R}^2 \). This can be done by the sorted \(X \) coordinate in \(\mathbb{R}^2 \). Consider the line \(L \) and \(d \).

3. Find the closest point \(x \) that points \(p \) in \(\mathbb{R}^2 \) in two central parts and \(d \) and \(L \).

4. Find a vertex \(\mathbb{R}^2 \) that points \(p \) in \(\mathbb{R}^2 \) and \(d \) and \(L \).

5. Find the closest point \(d \) and \(L \) from \(\mathbb{R}^2 \) and \(d \) and \(L \).

The initial set \(\mathbb{R}^2 \) is sorted for \(x \) and \(y \).

We proceed as follows.

1. Find the closest point \(d \) and \(L \) from \(\mathbb{R}^2 \) and \(d \) and \(L \).

2. Find the closest point \(d \) and \(L \) from \(\mathbb{R}^2 \) and \(d \) and \(L \).

3. Find the closest point \(d \) and \(L \) in \(\mathbb{R}^2 \) and \(d \) and \(L \).

4. Find the closest point \(d \) and \(L \) from \(\mathbb{R}^2 \) and \(d \) and \(L \).

We are done if \(d \) and \(L \) do not correspond to the closest pair.

If \(d \) and \(L \) do correspond to the closest pair.

We are done if \(d \) and \(L \) do not correspond to the closest pair.