Recursion, pt. 2:

Thinking it Through
Sorting

- One classic application for recursion is for use in sorting.
 - What might be some strategies we could use for recursively sorting?
 - During the course introduction, a rough overview of quicksort was mentioned.
 - There are other divide-and-conquer type strategies.
One technique, called merge sort, operates on the idea of merging two pre-sorted arrays.

- How could such a technique help us?
One technique, called merge sort, operates on the idea of merging two pre-sorted arrays.

- If we have two presorted arrays, then the smallest overall element must be in the first slot of one of the two arrays.
- It dramatically reduces the effort needed to find each element in its proper order.
Problem: when presented with a fresh array, with items in random order within it... how can we use this idea of “merging” to sort the array?

- Hint: think with recursion!
- Base case: $n = 1$ – a single item is automatically a “sorted” list.
Merge Sort

• We’ve found our base case, but what would be our recursive step?
 – Given the following two sorted arrays, how would we *merge* them into a single sorted array?

 \[
 [13] \\
 \Rightarrow [13 \ 42] \\
 [42]
 \]
Merge Sort

• Given the following two sorted arrays, how would we merge them into a single sorted array?

[-2, 47]
=> [-2, 47, 57, 101]
[57, 101]
Merge Sort

• Given the following two sorted arrays, how would we merge them into a single sorted array?

\[
\begin{align*}
[13, 42] & \Rightarrow [7, 13, 42, 101] \\
[7, 101] &
\end{align*}
\]
Merge Sort

• Can we find a pattern that we can use to make a complete recursive step?
Merge Sort

• Given the following two sorted arrays, how would we *merge* them into a single sorted array?

\[
[13, 42] \quad \Rightarrow \quad [7, 13, 42, 101]
\]
• In words:
 – If both lists still have remaining elements, pick the smaller of the first elements and consider that element removed.
 – If only one list has remaining elements, copy the remaining elements into place.

• This is the recursive step of merge sort.
Merge Sort

13 32 77 55 43 1 42 88
[13 32 77 55], [43 1 42 88]
[13 32], [77 55], [43 1], [42 88]

| | | | |

[13 32], [55 77], [1 43], [42 88]
[13 32 55 77], [1 42 43 88]
[1 13 32 42 43 55 77 88]
Merge Sort

• Note that for each element insertion into the new array, only one element needs to be examined from each of the two old arrays.
 – It’s possible because the two arrays are presorted.
 – The “merge” operation thus takes $O(N)$ time.
Recursive Structure: Binary Tree

Diagram of a binary tree with nodes 13, 7, 2, 9, 17, 25, and 42.
Recursive Structures

- One data structure we’ve have yet to examine is that of the binary tree.
- How could we create a method that prints out the values within a binary tree in sorted order?
Binary Tree
template <typename K, typename V>
class TreeNode<K, V>
{
 public:
 K key;
 V value;
 TreeNode<K, V>* left;
 TreeNode<K, V>* right;
}
Binary Tree

• What can we note about binary trees that can help us print them in sorted order?
Binary Tree

• Note that for a given node, anything in the left subtree comes (in sorted order) before the node.
• On the other hand, anything in the right subtree comes after the node.
Binary Tree Recursion

- So, to print out the binary tree...

```cpp
void print(TreeNode<K, V>* node)
{
    if(node == 0) return;
    print(node.left);
    cout << node.value << " ";
    print(node.right);
}
```
Binary Tree Recursion

- Calling print() with the tree’s root node will then print out the entire tree.
 - Note that we’re dumping the values to the console because it’s simpler for teaching purposes.
 - We should instead set up either an iterator which returns each item in the tree, one at a time, in proper order... or a custom operator<<.
Analysis

1. We started at n and reduced the problem to 1!.
 – Is there a reason we couldn’t start from 1 and move up to n?

2. The actual computation was done entirely at the end of the method, after it returned from recursion.
 – Could we do some of this calculation on the way, before the return?
Using Recursion

• Note that the core reduction of the problem is still the same, no matter how we handle the issues raised by #1 and #2.

• How we choose to code this reduction, however, can vary greatly, and can even make a difference in efficiency.
Using Recursion

• Let’s examine the issue raised by #1: that of starting from the reduced form and moving to the actual answer we want.
Coding Recursion

```
int factorial(int n)
{
    if(n<0) throw Exception();
    if(???)
        return ?;
    else return n * factorial(n+1);
}
```

• Hmm. We’re missing something.
Coding Recursion

• How will we know when we reach the desired value of n?
 – Also, isn’t this method modifying the actual value of n? Maybe we need... another parameter.
Coding Recursion

```java
int factorial(int i, int n) {
    if (i<0) throw exception();
    if (???)
        return ?;
    else return i * factorial(i+1, n);
}
```

- That looks better. When do we stop?
int factorial(int i, int n)
{
 if(i<0) throw exception();
 if(i >= n) return n;
 else return i * factorial(i+1, n);
}

• Well, almost. It might need cleaning up.
Helper Methods

- Unfortunately, writing the methods in this way does leave a certain design flaw in place.
 - We’re expecting the caller of these methods to know the correct initial values to place in the parameters.
 - We’ve left part of our overall method implementation exposed. This could cause issues.
Helper Methods

- A better solution would be to write a *helper method* solution.
 - It’s so named because its sole reason to exist is to *help* setup the needed parameters and such for the true, underlying method.
Coding Recursion

```c
int factorial(int i, int n)
{
    if (i >= n)
        return n;
    else return i * factorial(i+1, n);
}
```
Helper Methods

```java
int factorialStarter(int n)
{
    if(n < 0) throw exception();
    else if(n==0) return 1;
    else return factorial(1, n);
}
```
Helper Methods

- Note how factorialStarter performs the error-checking and sets up the special recursive parameter.
 - This would be the method that should be called for true factorial functionality.
 - The original factorial method would then be its helper method, aiding the originally-called method perform its tasks.
Helper Methods

• Note that we wish for only factorialStarter to be generally accessible – to be **public**.
 – Assuming, of course, that these methods are class methods.
 – The basic factorial method is somewhat exposed.
 – The solution? Make factorial **private**!
Using Recursion

• Let’s now turn our attention to the issue raised by #2: that of when the main efforts of computation occur.
 – For this version, we’ll return to starting at “n” and counting down to 1.
Using Recursion

• How can we perform most of the computation before reaching the base case of our problem?

 – $5! = 5 \times 4!$

 = $5 \times 4 \times 3!$

 = ...

 = $5 \times 4 \times 3 \times 2 \times 1!$
Using Recursion

• How can we perform most of the computation before reaching the base case of our problem?

 – \(5! = 5 \times 4!\)
 \(= 5 \times 4 \times 3!\)
 \(= \ldots\)
 \(= 5 \times 4 \times 3 \times 2 \times 1!\)

 – We could keep track of this multiplier across our recursive calls.
Coding Recursion

```c
int factorial(int part, int n)
{
    if(n == 0 || n == 1)
        return part;
    else
        return factorial(part * n, n-1);
}
```
Coding Recursion

```c
int factorial(int n)
{
    return factorial(1, n);
}
```

• Using a separate method to start our computation allows us to hide the additional internal parameter.
Tail Recursion

• A *tail-recursive* method is one in which all of the computation is done during the initial method calls.
 – When a method is tail-recursive, the final, full desired answer may be obtained once the base case is reached.
 – In such conditions, the answer is merely forward back through the chain of remaining “return” statements.