Coding Recursion

• Potential problem: how can the program keep track of its state?
 – There will multiple versions of “n” over the different calls of the factorial function.
 – The answer: stacks!
 – The stack is a data structure we haven’t yet seen, but may examine in brief later in the course.
Coding Recursion

```c
int factorial(int n)
{
    if(n == 0 || n == 1)
        return 1;
    else return n * factorial(n-1);
}
```

- Each individual method call within a recursive process can be called a `frame`.
Coding Recursion

```c
int factorial(int n)
{
    if(n == 0 || n == 1)
        return 1;
    else return n * factorial(n-1);
}
```

- We’ll use this to denote each frame of this method’s execution.
 - Let’s try $n = 5$.

int factorial(int n)
{
 if(n == 0 || n == 1)
 return 1;
 else return n * factorial(n-1);
}

Result: 1
Coding Recursion

```c
int factorial(int n)
{
    if(n == 0 || n == 1)
        return 1;
    else return n * factorial(n-1);
}
```

<table>
<thead>
<tr>
<th>n</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
</tr>
</tbody>
</table>
int factorial(int n)
{
 if(n == 0 || n == 1)
 return 1;
 else return n * factorial(n-1);
}

Result: 6
Coding Recursion

```c
int factorial(int n)
{
    if(n == 0 || n == 1)
        return 1;
    else return n * factorial(n-1);
}
```

Result: 24
Coding Recursion

```c
int factorial(int n) {
    if(n == 0 || n == 1)
        return 1;
    else return n * factorial(n-1);
}
```

Result: 120

n: 5
Coding Recursion

• Notice how recursion looks in code – we have a function that calls itself.
 – In essence, we assume that we already have a function that already does most of the work needed, aside from one small manipulation.
 – The trick is that this “already there” function is actually the function we’re writing.
Coding Recursion

• Notice how recursion looks in code – we have a function that calls itself.
 – If the base case is correct, that’s half the battle.
 – If we then can show that our step properly calculates $f(k + 1)$ from $f(k)$, in math speak, we then have a proper recursive solution.
 • The function calls will perform the rest.
Recursion - Fibonacci

• Let’s examine how this would work for another classic recursive problem.
 – The Fibonacci sequence:
 \[\text{Fib}(0) = 1\]
 \[\text{Fib}(1) = 1\]
 \[\text{Fib}(n) = \text{Fib}(n-2) + \text{Fib}(n-1)\]
 – How can we code this?
 – What parts are the base case?
 – What parts are the recursive step?
int fibonacci(int n) {
 if (n == 0 || n == 1) {
 return 1;
 } else {
 return fibonacci(n-2) + fibonacci(n-1);
 }
}
Recursion - Fibonacci

```c
int fibonacci(int n)
{
    if(n == 0 || n == 1)
        return 1;
    else
        A: return fibonacci(n-2) +
        B: fibonacci(n-1);
}
```

We’ll use the below graphics to aid our analysis of this
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 1
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 1

n: 2 pos: A part: ---

n: 3 pos: B part: 1

n: 5 pos: A part: ---
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 1
Recursion - Fibonacci

if (n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 2

n: 3 pos: B part: 1
n: 5 pos: A part: ---
if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 3 n: 5 pos: A part: ---
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: ...

<table>
<thead>
<tr>
<th>n</th>
<th>pos</th>
<th>part</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>3</td>
</tr>
</tbody>
</table>
Didn’t we already get an answer for \(n = 2 \)?

Yep. So I’ll save us some time.
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 2

<table>
<thead>
<tr>
<th>n</th>
<th>pos</th>
<th>part</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>3</td>
</tr>
</tbody>
</table>
Didn’t we already get an answer for $n = 3$?

Yep. So I’ll save us some time.
Recursion - Fibonacci

Didn’t we already get an answer for n = 3?

Yep. So I’ll save us some time.
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
A: return fibonacci(n-2) +
B: fibonacci(n-1);

res: 5
n: 5 pos: B part: 3
Recursion - Fibonacci

if(n == 0 || n == 1)
 return 1;
else
 A: return fibonacci(n-2) +
 B: fibonacci(n-1);

res: 8
• Can this be done more efficiently?
 – You betcha! First off, note that we had had to recalculate some of the intermediate answers.
 – What if we could have saved those answers?
 – It’s possible, and the corresponding technique is called dynamic programming.
 – We’ll not worry about that for now.