Recursion, pt. 1

The Foundations
What is Recursion?

- **Recursion** is the idea of solving a problem in terms of itself.
 - For some problems, it may not be possible to find a direct solution.
 - Instead, the problem is typically broken down, progressively, into simpler and simpler versions of itself for evaluation.
What is Recursion?

• One famous problem which is solved in a *recursive* manner: the factorial.
 – \(n! = 1 \) for \(n = 0, n = 1 \ldots \)
 – \(n! = n \times (n-1)!, \ n > 1. \)

• Note that aside from the \(n=0, n=1 \) cases, the factorial’s solution is stated in terms of a *reduced* form of itself.
What is Recursion?

• As long as \(n \) is a non-negative integer, \(n! \) will eventually reach a reduced form for which there is an exact solution.

\[
5! = 5 \times 4! = 5 \times 4 \times 3! = \ldots = 5 \times 4 \times 3 \times 2 \times 1
\]
What is Recursion?

• From this point, the solution for the reduced problem will be used to determine the exact solution.

\[5 \times 4 \times 3 \times 2 \times 1 = 5 \times 4 \times 3 \times 2\]
\[= 5 \times 4 \times 6\]
\[= 5 \times 24\]
\[= 120.\]
Recursion

• Thus, the main idea of recursion is to reduce a complex problem to a combination of operations upon its simplest form.
 – This “simplest form” has a well-established, exact solution.
What is Recursion?

• As a result of how recursion works, it ends up being subject to a number of jokes:
 – “In order to understand recursion, you must understand recursion.”
 – Or, “recursion (n): See recursion.”
A Mathematical Look

• Recursion is actually quite similar to a certain fairly well-known mathematical proof technique: induction.
A Mathematical Look

• Proof by induction involves three main parts:
 – A base case with a known solution.
 • Typically, for the most basic version of the problem. Say, for $i = 0$ in a series.
 – A proposed, closed-form solution for any value k, which the base case matches.
A Mathematical Look

• Proof by induction involves three main parts:
 – A proof that shows that if the proposed solution works for time step \(k \), it works for time step \(k + 1 \).
 • Typically, it works by showing that the closed form solution for time step \(k + 1 \) is equal to that given by a known, correct alternative.
A Mathematical Look

• The main idea behind how induction works is the same as that for recursion.
 – The process is merely inverted: the way that induction proves something is how recursion will actually produce its solution.
The Basic Process

• There are two main elements to a recursive solution:
 – The *base case*: the form (or forms) of the problem for which an exact solution is provided.
 – The recursive step: the reduction of one version the problem to a simpler form.
The Basic Process

• Note that if we progressively reduce the problem, one step at a time, we’ll eventually hit the base case.
 – From there, we take that solution and modify it as necessary on the way back up to yield the true solution.
The Basic Process

• There are thus these two main elements to a recursive solution of the factorial method:
 – The base case: 0! and 1!
 – The recursive step: \(n! = n \times (n-1)! \)
 – Note that the “\(n \times \)” will be applied after the base case is reached.
 – \((n-1)!\) is the reduced form of the problem.
Coding Recursion

• As we’ve already seen, programming languages incorporate the idea of function calls.
 – This allows us to reuse code in multiple locations within a program.
 – Is there any reason that a function shouldn’t be able to reuse itself?
Coding Recursion

```c
int factorial(int n)
{
    if(n == 0 || n == 1)
        return 1;
    else return n * factorial(n-1);
}
```
Coding Recursion

Potential problem: how can the program keep track of its state?

- There will multiple versions of “n” over the different calls of the factorial function.
- The answer: stacks!
- The stack is a data structure we haven’t yet seen, but may examine in brief later in the course.