3. Sound / Audio

- Sound: produced by the vibration of matter.
- Waveform: the pattern of the oscillation. It repeats the same shape in a period
- Frequency = 1 / period, measured by Hz
- Audible sound is between 20 Hz - \(\boxed{20 \text{ kHz}}\)
- Human voice is in between 40 Hz - 4 kHz
- Amplitude is the loudness of the sound.

(c) Jonathan C.L. Liu, Ph.D.
Digital Audio

- Analog to Digital Conversion (ADC)
- Sampling (Nyquist Theorem): Digitization is lossless if the sampling rate is at least twice the highest signal frequency
 - 8000 Hz: Mono sound
 - 22 kHz: Stereo sounds
 - 44 kHz: CD-quality sounds

(c) Jonathan C.L. Liu, Ph.D.
Digital Audio (cont.)

- Quantization (bits per sample)
 - 4 bits, 8 bits or 16 bits per sample

(c) Jonathan C.L. Liu, Ph.D.
Music and Speech

- Music Instrument Digital Interface (MIDI)
 - Transmit music notes instead of raw samples
 - Reduce the information amount significantly
 - Quality is the main concern

- Speech-related Tasks
 - Speech Generation
 - Speech Analysis
 - Speech Recognition

(c) Jonathan C.L. Liu, Ph.D.
4. Images & Graphics

- A digital image is represented by a matrix of numerical values each representing a quantized intensity value.
- The points at which an image is sampled are known as picture elements, or commonly called *pixels*.
Image & Graphics (cont.)

- The image format is determined by two parameters:
 - Spatial resolution: pixels*pixels
 - Color coding: bits per pixel
 - Example: Parallax XVideo card can support 24-bit/pixel and 640*480 pixel resolution

- Many formats available: GIF, BMP, PostScript, JPEG and TIFF

(c) Jonathan C.L. Liu, Ph.D.
Visual Perception: Resolution and Brightness

Spatial resolution (of single points) depends on:
- Image size
- Viewing distance

Perception of brightness:
- Higher than perception of color
 - Especially high perception of bright edges
 - Perception decreases with brightness of surroundings
- Different perception of the primary colors
 - Relative brightness:
 green : red : blue = 59% : 30% : 11%

Example:
- 2 lines with distance of 1 mm are recognized as two lines if:
 - Viewing distance < 3m or
 - Viewing angle >10°
Image Formats

Capturing / Recording format:

Spatial resolution [pixel x pixel]

Planes

Color coding [bits/pixel]

Storage format:

2-dimensional matrix representing pixels

Example:

- Bitmap matrix containing binary values

Color image: four important approaches

- 3 numbers representing intensities for red, green, blue (RGB) or ("true color" if numbers fine-grained enough, e.g., 8-bit; very common)
- 3 numbers representing pointers to color table (1 color per entry - R,G,B)
- 1 number as pointer (index) to color table: "color lookup table CLUT"
 (most common, apart from true color)
 - e.g., 8 bit-pointer: 256 colors possible
 - e.g., CLUT-entry 3 Bytes: one for each main color (256-out-of-16
 }
Postscript

History:
- Developed 1984 by Adobe
- First time fonts became important to the general public

Functionality:
- Integration of high-quality text, graphics and images
- Programming language
 - full-fledged
 - with variables, control structures and files

Postscript Level-1:
- Earliest version developed in 1980ies
- Scalable font concept (in contrast to fixed-size fonts available until then)
- Problem: no patterns available to fill edges of letters resulting in lower quality

Postscript Level-2:
- High-quality pattern filling
- Greater number of graphics primitives
Postscript 3 and beyond

1. Finalized in 1997, and remains stable
 - better colors and 4096 gray levels
 - adopted by laser printers and magazines
 - file name: ***.ps

2. Influenced NeXT and SUN with X11

3. A fully-functional programming language
 - Like stack-based Forth and LISP

4. Extended to Encapsulated PostScript (eps)