CNT 5410 - Computer and Network Security: Denial of Service

Professor Patrick Traynor
Fall 2017
Reminders

• Midterm exam on Friday, October 13th.
 ▶ Hmm… let’s take a look at some examples.

• Assignment #3 due on 10/18.
 ▶ Great! You have time to take care of this.
 ▶ Ouch! This is a hard assignment!
"The art of war teaches us to rely not on the likelihood of the enemy's coming, but on our own readiness to receive him; not rely on the chance of his not coming, but rather on the fact that we have made our position unassailable."

-- Sun Tzu, The Art of War
We have covered a huge amount of material thus far:

- Many Textbook Chapters
- 12 Academic Papers
- Research Techniques
- Side conversations, diversions, student questions, headlines...

All these things are fair game.

You are expected to be well versed in the topics we have covered thus far....
Rules

• The test starts precisely at 12:50 and ends at 1:40.
 ▶ If you show up late, you do not get extra time.

• Cell phones are banned.
 ▶ I will keep a clock going in the front for you to see.
 ▶ Too many people cheat, so nobody can have these out.
 ▶ If I see a phone, I will take your exam.

• Write all answers on the test itself!
 ▶ The space is planned to help you with brevity.
Format

- **Short Questions**
 - Should be easy to answer. 2-3 sentences MAX.
 - If you write more, you've missed the point.

- **Long Answer**
 - Questions require in-depth responses.
 - May require math, applying an algorithm, expressing a policy, etc.

- **Applied Knowledge**
 - Asks you to solve a real-world problem with the things you have learned this semester.
Short Questions

• What is the difference between an attack and a compromise?

• Does a MAC provide non-repudiation?

• Why are biometrics considered “fuzzy” authentication mechanisms?
Short Questions

• List three differences between symmetric and asymmetric cryptosystems.

• What is the fundamental vulnerability of DNS?

• What is the difference between Kerberos and Digest Authentication?
Long Answers

• Explain three differences between digest and basic authentication.

• With $k^+ (\{7,33\})$ and $k^- (\{3,33\})$, use RSA to:
 ▶ encrypt the plaintext value 4.
 ▶ decrypt the ciphertext created above.
The recent proliferation of mobile devices has lead many to argue for a resurrection of fully-fledged PKIs. Argue for or against this idea using evidence from our discussion on the topic.
Denial of Service

• Intentional prevention of access to valued resource
 • CPU, memory, disk (system resources), DNS, print queues, NIS (services), Web server, database, media server (applications)
 • This is an attack on availability (fidelity)
 • Note: launching DOS attacks is easy, preventing DOS attacks is hard!
 • Mitigation the path most frequently traveled
 • Two major types: Brute force and semantic
Canonical (common) DOS - Brute Force

- Attack: request flooding
 - Overwhelm some resource with legitimate requests
 - e.g., web-server, phone system

- Note: unintentional flood is called a flash crowd
Example: SMURF Attacks

- This is one of the deadliest and simplest of the DOS attacks (called a naturally amplified attack)
 - Send a large number PING packet networks on the broadcast IP addresses (e.g., 192.168.27.254)
 - Set the source packet IP address to be your victim
 - All hosts will reflexively respond to the ping at your victim
 - ... and it will be crushed under the load.
 - Fraggle: UDP based SMURF - sent to echo port (7)
Example: DNS Amplification

- DNS Requests are small, but responses are large.
 - The above attack is a 70:1 ratio.
- Ok, so an attacker might be able to send a few Mbps… is this really a problem?
Semantic DoS

• Taking advantage of an “artificial” limitation to deny service.
 ‣ “Ping of Death”
 ‣ “Land” Attacks
 ‣ SYN-floods
 ‣ FIN-floods

• Fixes tend to be much more specific to the attack.
 ‣ e.g., offloading state to client, memory management, better randomness, etc
Distributed denial of service

• DDOS: Network oriented attacks aimed at preventing access to network, host or service
 • Saturate the target’s network with traffic
 • Consume all network resources (e.g., SYN)
 • Overload a service with requests
 • Use “expensive” requests (e.g., “sign this data”)
 • Can be extremely costly (e.g., Amazon)
• Result: service/host/network is unavailable
• Frequently distributed via other attack

• Note: IP is often hidden (spoofed)
The canonical DDOS attack
Why DDOS

• What would motivate someone DDOS?
 ▶ An axe to grind …
 ▶ Curiosity (script kiddies) …
 ▶ Blackmail
 ▶ Information warfare …

• Internet is an open system …
 ▶ Packets not authenticated, probably can’t be
 • Would not solve the problem just move it (firewall)
 ▶ Too many end-points can be remote controlled
Why is DDOS possible? (cont.)

- Interdependence - services dependent on each other
 - E.g., Web depends on TCP and DNS, which depends on routing and congestion control, …

- Limited resources (or rather resource imbalances)
 - Many times it takes few resources on the client side to consume lots of resources on the server side
 - E.g., SYN packets consume lots of internal resources

- You tell me .. (as said by Mirkovic et al.)
 - Intelligence and resources not co-located
 - No accountability
 - Control is distributed
DDOS and the E2E argument

• E2E (very simplified version): We should design the network such that all the intelligence is at the *edges*.
 ▶ So that the network can be more robust and scalable
 ▶ Many think is the main reason why the Internet works

• Downside:
 ▶ Also, no real ability to police the traffic/content
 ▶ So, many security solutions break this E2E by cracking open packets (e.g., application level firewalls)
 ▶ DDOS is real because of this …
Q: An easy fix?

- How do you solve distributed denial of service?
Simple DDOS Mitigation

- Ingress/Egress Filtering
 - Helps spoofed sources, not much else

- Better Security
 - Limit availability of zombies, not feasible
 - Prevent compromise, viruses, …

- Quality of Service Guarantees (QOS)
 - Pre- or dynamically allocate bandwidth
 - E.g., diffserv, RSVP
 - Helps where such things are available …

- Content replication
 - E.g., CDNs
 - Useful for static content
Reverse-Turing Tests

• *Turing test*: measures whether a human can tell the difference between a human or computer (AI)

• *Reverse Turning tests*: measures whether a user on the internet is a person, a bot, whatever?

• **CAPTCHA** - *C*ompletely *A*utomated *P*ublic *T*uring test to tell *C*omputers and *H*umans *A*part
 - contorted image humans can read, computers can’t
 - image processing pressing SOA, making these harder

• Note: often used not just for DOS prevention, but for protecting “free” services (email accounts)
CAPTCHA Limitations

• Lots of varieties have been proposed.
 ▶ Text, Audio, Video, and cats…
 ▶ Only a small number have been adopted, largely due to usability purposes.

• Automated techniques to solve virtually all of these defenses…
 ▶ … and people willing to pay/trick others to solve them…
DOS Prevention - Puzzles

- Make the solver present evidence of “work” done
 - If work is proven, then process request
 - Note: only useful if request processing significantly more work than
- Puzzle design
 - Must be hard to solve
 - Easy to Verify
- Canonical Example
 - Puzzle: given all but k-bits of r and $h(r)$, where h is a cryptographic hash function
 - Solution: Invert $h(r)$
 - Q: Assume you are given all but 20 bits, how hard would it be to solve the puzzle?

Can You Find The Answer?

$+ \quad + \quad = 24$

$- \quad = 6$

$= {?}$
Pushback

- Initially, detect the DDOS
 - Use local algorithm, ID-esque processing
 - Flag the sources/types/links of DDOS traffic
- Pushback on upstream routers
 - Contact upstream routers using PB protocol
 - Indicate some filtering rules (based on observed)
- Repeat as necessary towards sources
 - Eventually, all (enough) sources will be filtered
- Q: What is the limitation here?
Traceback

• Routers forward packet data to source
 ▶ Include packets and previous hop …
 ▶ At low frequency (1/20,000) …
• Targets reconstruct path to source (IP unreliable)
 ▶ Use per-hop data to look at
 ▶ Statistics say that the path will be exposed
• Enact standard
 ▶ Add filters at routers along the path
Overlays

- Traffic is not delivered to a host...
 - It must pass through an overlay network first.

- Getting into the overlay is where the “magic” happens.
 - What does “Portcullis” do?
 - What else could be done?
Network Isolation: VPNs

- Idea: I want to create a collection of hosts that operate in a coordinated way
 - E.g., a virtual security perimeter over physical network
 - Hosts work as if they are isolated from malicious hosts

- Solution: Virtual Private Networks
 - Create virtual network topology over physical network
 - Use communications security protocol suites to secure virtual links “tunneling”
 - Manage networks as if they are physically separate
 - Hosts can route traffic to regular networks (split-tunneling)
VPN Example: RW/Telecommuter

Internet

LAN
VPN Example: Hub and Spoke
VPN Example: Mesh

Internet

LAN
VPNs/Overlays - Limitations

• Traffic not able to enter the VPN can not overload weakly provisioned end points.
 ▶ Great... mission accomplished?

• Modern DDoS attacks are hundreds of Gbps in volume.
 ▶ Good luck stopping that anywhere near the endpoints.
 ▶ Accordingly, this approach has somewhat limited value.
None of the “protocol oriented” solutions have really seen any adoption

- too many untrusting, ill-informed, mutually suspicious parties must play together well (hint: human nature)
- “solutions” have many remaining challenges

Real Solution

- Large ISP police there ingress/egress points very carefully
- Watch for DDOS attacks and filter appropriately
 - e.g., BGP (routing) tricks, blacklisting, whitelisting
- Products that coordinate view from many points in the network to identify upswings in traffic to specific prefixes.