deliver packets from source to all other nodes
source duplication is inefficient:

source duplication: how does source
determine recipient addresses?
In-network duplication

flooding: when node receives brdcst pckt, sends copy to all neighbors
- **Problems:** cycles & broadcast storm

controlled flooding: node only brdcsts pkt if it hasn’t brdcst same packet before
- Node keeps track of pckt ids already brdcsted
- Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source

spanning tree
- No redundant packets received by any node
Spanning Tree

First construct a spanning tree
Nodes forward copies only along spanning tree

(a) Broadcast initiated at A
(b) Broadcast initiated at D
Spanning Tree: Creation

Center node
Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

(a) Stepwise construction of spanning tree
(b) Constructed spanning tree
Goal: find a tree (or trees) connecting routers having local mcast group members
- **tree:** not all paths between routers used
- **source-based:** different tree from each sender to rcvrs
- **shared-tree:** same tree used by all group members
Approaches:

• **source-based tree:** one tree per source
 - shortest path trees
 - reverse path forwarding

• **group-shared tree:** group uses one tree
 - minimal spanning (Steiner) center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches.
mcast forwarding tree: tree of shortest path routes from source to all receivers

Dijkstra’s algorithm

LEGEND

- router with attached group member
- router with no attached group member
- link used for forwarding, i indicates order link added by algorithm
Reverse Path Forwarding

- rely on router’s knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

 \[
 \text{if} \ (\text{mcast datagram received on incoming link on shortest path back to center}) \\
 \text{then} \ \text{flood datagram onto all outgoing links} \\
 \text{else} \ \text{ignore datagram}
 \]
• result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links
Forwarding tree contains subtrees with no mcast group members.
No need to forward datagrams down subtree.
“prune” msgs sent upstream by router with no downstream group members.

LEGEND

- S: source
- P: prune message
- Red lines: links with multicast forwarding
- Router with attached group member
- Router with no attached group member
• **Steiner Tree**: minimum cost tree connecting all routers with attached group members

problem is NP-complete

excellent heuristics exists

not used in practice:
computational complexity
information about entire network needed

monolithic: re-run whenever a router needs to join/leave
Center-based trees

single delivery tree shared by all
one router identified as "center" of
tree
to join:
edge router sends unicast join-msg
addressed to center router
join-msg "processed" by intermediate
routers and forwarded towards center
join-msg either hits existing tree branch
for this center, or arrives at center
path taken by join-msg becomes new
branch of tree for this router
Center-based trees: an example

Suppose R6 chosen as center:

LEGEND
- router with attached group member
- router with no attached group member
- path order in which join messages generated
- **DVMRP**: distance vector multicast routing protocol, RFC1075
- **flood and prune**: reverse path forwarding, source-based tree

 RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers. No assumptions about underlying unicast.

 Initial datagram to mcast group flooded everywhere via RPF. Routers not wanting group: send upstream prune msgs.
• **soft state:** DVMRP router periodically (1 min.) “forgets” branches are pruned: mcast data again flows down unpruned branch downstream router: reprune or else continue to receive data routers can quickly regraft to tree following IGMP join at leaf odds and ends commonly implemented in commercial routers Mbone routing done using DVMRP
Q: How to connect “islands” of multicast routers in a “sea” of unicast routers?

- mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram
- normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router
- receiving mcast router unencapsulates to get mcast datagram
flood-and-prune RPF, similar to DVMRP but

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router
center-based approach
router sends *join* msg to rendezvous point (RP)
intermediate routers update state and forward *join*
after joining via RP, router can switch to source-specific tree
increased performance: less concentration, shorter paths
sender(s):
unicast data to RP, which distributes down RP-rooted tree
RP can extend mcast tree upstream to source
RP can send *stop* msg if no attached receivers

```
R1
join

R2
join

R3
join

R4

R5

R6

R7

all data multicast from rendezvous point
rendezvous point
```
Consequences of Sparse-Dense Dichotomy:

Dense

- group membership by routers assumed until routers explicitly prune
- data-driven construction on mcast tree (e.g., RPF)
- bandwidth and non-group-router processing profligate

Sparse

- no membership until routers explicitly join
- receiver-driven construction of mcast tree (e.g., center-based)
- bandwidth and non-group-router processing conservative