[Fall 2019]   CIS6930 (Special Topics) — Privacy & Machine Learning

Instructor: Prof. Vincent Bindschaedler
(vbindsch [at] cise [dot] ufl [dot] edu)
Location: RNK 0225
Meeting Times: T 1:55 - 2:45pm   (Period 7)
R 1:55 - 3:50pm   (Periods 7-8)
Credits: 3
Office Hours: T - 2:45 - 3:45pm   (MAE 205A)


For a list of lectures, readings, assignments, and other important information, please refer to the E-learning platform. The schedule will be updated throughout the semester.

Syllabus in HWCOE Template format: PDF


Machine learning is increasingly integrated into our daily lives and promises advances in many applications domains including autonomous driving, facial recognition, and medical diagnosis. At the same time, machine learning techniques are surprisingly brittle and easy to misuse or abuse which highlights the potential dangers of this technology. Complex models can be fooled by tiny perturbations of their inputs; they can unintentionally memorize their training data; and they make decisions that are often inexplicable.

This course will explore recent academic research at the intersection of machine learning with data privacy. Students will read, analyze, and discuss research papers and undertake a semester-long research project.

List of Topics

Note: this list is subject to modification based on student interests and time constraints.


Knowledge of:

Familiarity with security and/or privacy concepts is a plus but not required.

Note: this course is primarily aimed at graduate students. But highly motivated undergraduates who seek exposure to research in this space are welcomed!

Learning objectives

Students will learn about foundational concepts at the intersection of machine learning with data privacy and acquire a firm grasp on recent developments in this area. By the end of the semester, successful students will be able to critically analyze research papers and will have demonstrated the ability to conduct research in this space.


Instruction format will be a blend of traditional lecture-style instruction and student-led seminar-style learning through paper reading and discussion. Students will be expected to read several research articles every week and discuss them in class. The research project will require that students execute research alone or in a small group.

Students will be evaluated based on the following breakdown:

Class Participation

To encourage interaction, participation will be assessed and count for 10% of the grade. Students will be expected to have done the reading before class and actively participate during lectures and discussions (e.g., by asking questions). This is important to do well in this course.

Attendance, Assignments and Lateness Policy

Attendance is strongly recommended but not mandatory. Due to the course format, students who miss many lectures will be at a significant disadvantage. To encourage interaction, participation will be assessed and count for 10% of the grade. Students are expected to have done the reading before class and actively participate during lectures and discussions (e.g., by asking questions or by volunteering their opinions). This is important to do well in this course.

Students will be assigned written, hands-on assignments and homeworks related to course topics and the course research project. Assignments will be announced in class and will be handled through the E-learning platform (elearning.ufl.edu).

Assignments turned in late will incur a lateness penalty of 15% per day, up to a maximum of 3 days (after which the grade will be 0). If an extension is required for a legitimate reason (e.g., medical or travel), students must contact the instructor and provide justification a few days ahead of the assignment due date.

Academic Integrity

Students are required to follow the university guidelines on academic conduct and the student honor code at all times. Students failing to meet these standards will be reported to the Dean of Students, which can result in the student receiving an 'E' for the semester. In particular, students are explicitly forbidden from copying anything off of the Internet (e.g., source code, text, slides) without proper attribution or citation. Students are also forbidden from copying code/answers from each other for the purposes of completing any assignment or a course project.

Ethics Statement

This course covers topics concerning the security of many systems that are widely deployed and potentially critical. As part of this course, we will investigate methods, tools and techniques whose use may negatively impact the rights, property and lives of others. As security professionals, we rely upon the ethical use of the above technologies to perform research. However, it is easy to use such tools in an unethical manner. Unethical use includes the circumvention of existing security or privacy measurements for any purpose, or the dissemination, promotion, or exploitation of vulnerabilities of these services.

This is NOT a class on hacking. Any activity outside of the spirit of these guidelines will be reported to the proper authorities both within and outside of UF and may result in dismissal from the class and the University. Exceptions to these guidelines may occur in the process of reporting vulnerabilities through the proper channels; however, students with any doubt should consult Professor Bindschaedler for advice. DO NOT conduct any action which could be perceived as technology misuse anywhere or under any circumstances unless you have received explicit permission from Professor Bindschaedler.