Introduction to Modern Cryptography
Problem Set 1 (Solutions)

Problem 1. Fix $k,n > 0$ and let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher. Define $F: \{0,1\}^{k+n} \times \{0,1\}^n \to \{0,1\}^n$ by $F(K_1\|K_2, X) = F_{K_1,K_2}(X) = E_{K_1}(X \oplus K_2)$, where $K_1 \in \{0,1\}^k$ and $K_2 \in \{0,1\}^n$. Notice that F is a blockcipher with a $(k+n)$-bit key and an n-bit blocksize.

Modelling E as an ideal cipher, what is the complexity of an exhaustive key-search attack on F? Can you recover the key $K_1 \parallel K_2$ (with overwhelming probability) using significantly fewer than 2^{k+n} local computations of F?

Solution. Let’s say that you know an input output pair $(X,Y = F_{K_1,K_2}(X))$. In particular, you know that $Y = E_{K_1}(X \oplus K_2)$, which is equivalent to saying that $E_{K_1}^{-1}(Y) = X \oplus K_2$. So do $O(2^k)$ local computations of $Z = E_{K_1}^{-1}(Y)$, one for each $L_1 \in \{0,1\}^k$. Note that for each L_1 there is exactly one possible second key L_2 to consider, namely $L_2 = Z \oplus X$. That is, the key pair L_1,L_2 maps X to Y. So now you have a list of length 2^k of pairs (L_1,L_2), and you know that one of is the correct pair, i.e., $(L_1,L_2) = (K_1,K_2)$. Which one? You can almost certainly tell with a second input-output pair $(U,V = F_{K_1,K_2}(U))$. Namely, for every (L_1,L_2) in the list, compute $E_{L_1}(U \oplus L_2)$ and compare the result to V. This requires another $O(2^k)$ local computations. (If there still exists more than one candidate (L_1,L_2) after this step, the total number will be very small, and a third input-output pair will find the correct one.) Thus you can find the full $(k+n)$-bit key with much less than 2^{k+n} local computations.

Note that this construction actually came up as part of the academic community’s response to U.S. export control laws in the 90s, which restricted the key-length of DES implementations in export versions of early web browsers. Although this construction doesn’t really give you any additional “effective” key-length, this one does $E_{K_1}(X \oplus K_2) \oplus K_3$. Check out the papers on the “DESX” construction.

Problem 2. BR notes, Chapter 3: problem1.
Carefully describe your adversary, and give the PRP advantage of it. (Please use the notation we use in class when describing the adversary, etc.)

Solution. This problem a common one in cryptography, generally known as “domain extension”. In this case, how can we securely extend the domain of an n-bit blockcipher E to $2n$-bit inputs? We are asked to show that $E'_K(x \parallel x') = E_K(x) \parallel E_K(x \oplus x')$ is not a secure way to do this, namely because the PRP-security of E will not be maintained by this construction. Consider the following adversary D:

\footnote{https://cseweb.ucsd.edu/~mihir/cse207/w-prf.pdf}
We now analyze the advantage this adversary achieves. First, we note that
\[\Pr[\text{Exp}^\text{prp}_{E'}(D) = 1 \mid b = 1] = 1 \]
where \(b \) is the challenge bit in the PRP experiment. What about when \(b = 0 \), i.e., the oracle \(O = \pi \) where \(\pi \) is a random permutation over \(\{0, 1\}^{2n} \)? In this case we have
\[\Pr[\text{Exp}^\text{prp}_{E'}(D) = 1 \mid b = 0] = 1 - \Pr[\text{Exp}^\text{prp}_{E'}(D) = 0 \mid b = 0] = 1 - \Pr[\text{Exp}^\text{prp}_{E'}(D) : D \Rightarrow 1 \mid b = 0] = 1 - \frac{1}{2^n} \]
where, recall the notation \(D \Rightarrow 1 \) reads “\(D \) outputs 1”, and the probability of this event is over the coins used in the execution of \(\text{Exp}^\text{prp}_{E'}(D) \). When \(b = 0 \) the probability that \(D \Rightarrow 1 \) is exactly the probability that \(Y_\ell = Y_r \), and the chance of that is \(1/2^n \) since there are exactly \(2^n \) strings (of length \(2n \)) such that the first and last halves are the same.

so by substituting these into the definition of PRP-advantage, we get \(\text{Adv}^\text{prp}_{E'}(D) = 1 - 2^{-n} \geq 1/2 \).

Problem 3. BR notes, Chapter 3: problem 6. Here you must give a security reduction! Since this is your first one, I’ll get you started. Given an adversary \(A \) that attacks the PRP-security of \(E^{(2)} \), build an adversary \(B \) that attacks the PRP-security of \(E \). Carefully show that the PRP-advantage of \(B \) upperbounds the PRP-advantage of \(A \), by analyzing the probability that \(B \) “wins” its experiment. When building your adversary \(B \), try to make it as simple as possible, and as stingy as possible with respect to its resources. Finally, write a nice theorem statement to encapsulate your result.

Solution. Adversary \(A \) expects an oracle that either implements \(E^{(2)}_K \) for a random key \(K \), or a random permutation \(\pi \). We will construct \(B \) to simulate this as closely as possible. Here it is:

<table>
<thead>
<tr>
<th>adversary (B^{O}):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K1 \leftarrow {0, 1}^k)</td>
</tr>
<tr>
<td>When (A) queries (X):</td>
</tr>
<tr>
<td>\quad Return (E_{K1}(O(X))) to (A)</td>
</tr>
<tr>
<td>When (A) outputs bit (b)</td>
</tr>
<tr>
<td>\quad Return (b)</td>
</tr>
</tbody>
</table>

Notice that we do not return \(O(O(X)) \) to \(A \). This would be wrong in the case that \(O = E_K \), since then \(B \) would simulate \(E_K(E_K(X)) \) which has a single key. Let’s compute the PRP-advantage of this \(B \). What matters is \(\Pr[\text{Exp}^\text{prp}_{E'}(B) = 1] \), and we’ll do the usual trick of conditioning this on the value of the challenge bit \(b \) in \(\text{Exp}^\text{prp}_{E'}(\cdot) \). First, we observe that when \(b = 1 \) we perfectly simulate \(E^{(2)} \) when responding to \(A \)’s oracle queries. Thus \(\Pr[\text{Exp}^\text{prp}_{E'}(B) = 1 \mid b = 1] = \Pr[\text{Exp}^\text{prp}_{E^{(2)}}(A) = 1 \mid d = 1] \) where \(d \) is the challenge bit in \(\text{Exp}^\text{prp}_{E^{(2)}}(\cdot) \). On the other hand, when \(b = 0 \) we respond to query \(X \) with \(E_{K2}(\pi(X)) \). But the permutation \(\pi'(\cdot) = E_{K2}(\pi(\cdot)) \) is uniformly
random over Perm(ℓ), because π is. So Pr [Exp_{E}^{\text{prp}}(B) = 1 \mid b = 0] = Pr [Exp_{E(2)}^{\text{prp}}(A) = 1 \mid d = 0].

So we conclude that

\[
\text{Adv}_{E}^{\text{prp}}(B) = 2 \Pr [\text{Exp}_{E}^{\text{prp}}(B) = 1] - 1
\]

\[
= 2 \left(.5 \Pr [\text{Exp}_{E(2)}^{\text{prp}}(A) = 1 \mid d = 1] + .5 \Pr [\text{Exp}_{E(2)}^{\text{prp}}(A) = 1 \mid d = 0] \right) - 1
\]

\[
= 2 \left(\Pr [\text{Exp}_{E(2)}^{\text{prp}}(A) = 1] \right) - 1
\]

\[
= \text{Adv}_{E(2)}^{\text{prp}}(A)
\]

Let’s give a nice theorem statement to encapsulate the result. In the following, define notation

\[
\text{Time}(E)
\]

to be the worst-case running time, over (K, X) of some fixed, implicit implementation of E.

Theorem 1 Fix k, ℓ > 0 and let E: \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell be a blockcipher. Define blockcipher E(2): \{0, 1\}^{2k} \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell by E_{K_1 \parallel K_2}(x) = E_{K_1}(E_{K_2}(x)). Let A be a PRP-adversary for E(2) that has time-complexity t and asks q queries to its oracle. Then there exists an adversary B, constructed above, that has time-complexity at most t + q\text{Time}(E) and asks q queries, such that

\[
\text{Adv}_{E}^{\text{prp}}(B) = \text{Adv}_{E(2)}^{\text{prp}}(A).
\]