Camera Calibration

CIS4930 – Computer Vision
Camera Calibration

• Finding camera’s internal parameters that effect the imaging process.
 1. Position of the image center on the image.
 2. Focal length
 3. Scaling factors for row and column pixels.
 4. Lens distortion.
Row and Column Pixels Scaling

1. Camera pixels are not necessarily squares
2. Analog output and digitization.

cis4930 - Vemuri
Each camera can be considered as a function: a function that takes each 3D point to a point in 2D image plane.

\[(X, Y, Z) \longrightarrow (x, y)\]

Camera calibration is about finding (or approximating) this function.

Difficulty of the problem depends on the assumed form of this function, e.g., perspective model, radial distortion of the lens.
Good camera calibration is needed when we want to reconstruct the 3D geometry from images, with applications to:

- Robotics, human-robot interaction
- Robot navigation
- Scene reconstruction
Example: Locating feature points in 3D

Suppose the camera is calibrated and the 3D positions of the feature pts. are known for the first frame. Also given: 2D tracker
Example: Locating feature pts. in 3D using calibrated camera
Camera Calibration

- Hundreds of published papers on this topic.
- We will stick with linear algebraic methods here.
- Can be used as initialization for iterative non-linear method.
- Vanishing points and projective geometry.
Calibration Procedure

Calibration: finding the function (defined by the camera) that maps 3D points to 2D image plane.

First step: Obtain pairs of corresponding 3D and 2D points. \((X_1, Y_1, Z_1) \ (x_1, y_1), \ (X_2, Y_2, Z_2) \ (x_2, y_2), \ldots\)
Calibration Procedure

Calibration Target: Two perpendicular planes with chessboard pattern.

1. We know the 3D positions of the corners with respect to a coordinates system defined on the target.

2. Place a camera in front of the target and we can locate the corresponding corners on the image. This gives us the correspondences.

3. Recover the equation that describes imaging projection and camera’s internal parameters. At the same time, also recover the relative orientation between the camera and the target (pose).
Finding Corners

1. Corner detector

2. Canny Edge detector plus fitting lines to the detected edges. Find the intersections of the lines.

Matching 3D and 2D points (we know the number of corners) by counting. This gives corresponding pairs

(world point) < --- > (image point)

(\(X_1, Y_1, Z_1\)) \((x_1, y_1)\),

cis4930 - Vemuri
World Coordinates and Camera Coordinates

Image point (x_i, y_i, f)

(x_s, y_s, z_s)

(X_s, Y_s, Z_s)
Camera Frame to World Frame

CO = T translation vector

CM = CO + OM

\[
x_S i + y_S j + z_S k = T_x i + T_y j + T_z k + X_S i + Y_S j + Z_S k
\]

\[
x_S = T_x + X_S i + Y_S j + Z_S k
\]

\[
\begin{bmatrix}
x_S \\
y_S \\
z_S
\end{bmatrix} = \begin{bmatrix}
T_x \\
T_y \\
T_z
\end{bmatrix} + \begin{bmatrix}
I.i & J.i & K.i \\
I.j & J.j & K.j \\
I.k & J.k & K.k
\end{bmatrix} \begin{bmatrix}
X_S \\
Y_S \\
Z_S
\end{bmatrix}
\]

Rotation matrix
Take inner product on both sides of the first equation with the unit vector i.
Homogeneous Coordinates

\[
\begin{bmatrix}
 x_s \\
 y_s \\
 z_s \\
 1
\end{bmatrix} =
\begin{bmatrix}
 T_x \\
 T_y \\
 T_z \\
 1
\end{bmatrix}
+
\begin{bmatrix}
 I.i & J.i & K.i \\
 I.j & J.j & K.j \\
 I.k & J.k & K.k \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 X_s \\
 Y_s \\
 Z_s \\
 1
\end{bmatrix}
\]

Coordinates of the camera center in the world coordinates be \(\tilde{C} = \mathbf{R}^t \mathbf{T} \)
Perspective Projection

Use Homogeneous coordinates, the perspective projection becomes linear.

\[x_i = f \frac{x_s}{z_s} \]
\[y_i = f \frac{y_s}{z_s} \]
Pixel Coordinates

Transformation uses:

- image center \((x_0, y_0)\)
- scaling factors \(k_x\) and \(k_y\)

\[
x_i = f \frac{x_s}{z_s}
\]
\[
y_i = f \frac{y_s}{z_s}
\]
\[
x_{pix} = k_x x_i + x_0 = f k_x \frac{x_s + z_s x_0}{z_s}
\]
\[
y_{pix} = k_y y_i + y_0 = f k_y \frac{y_s + z_s y_0}{z_s}
\]

\[
\begin{bmatrix}
u' \\
v' \\
w'
\end{bmatrix} =
\begin{bmatrix}
\alpha_x & 0 & x_0 & 0 \\
0 & \alpha_y & y_0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_s \\
y_s \\
z_s \\
1
\end{bmatrix}
\]

with

\[
\alpha_x = f k_x
\]
\[
\alpha_y = f k_y
\]

then

\[
x_{pix} = u' / w'
\]
\[
y_{pix} = v' / w'
\]

 cis4930 - Vemuri
Calibration Matrix

\[
\begin{bmatrix}
 u' \\
 v' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 \alpha_x & s & x_0 & 0 \\
 0 & \alpha_y & y_0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
 x_s \\
 y_s \\
 z_s \\
 1
\end{bmatrix}
\]

with

\[
\alpha_x = f \ k_x \\
\alpha_y = -f \ k_y
\]

\[
x_{\text{pix}} = u' / w' \\
y_{\text{pix}} = v' / w'
\]

\[
\begin{bmatrix}
 \alpha_x & s & x_0 & 0 \\
 0 & \alpha_y & y_0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} = \mathbf{K} \begin{bmatrix}
 \mathbf{I}_3 \\
 0_3
\end{bmatrix}
\]

- \(\alpha_x \) and \(\alpha_y \) “focal lengths” in pixels
- \(x_0 \) and \(y_0 \) coordinates of image center in pixels
- Added parameter \(S \) is skew parameter
- \(\mathbf{K} \) is called calibration matrix.
 Five degrees of freedom.
 - \(\mathbf{K} \) is a 3x3 upper triangular matrix
Putting Everything Together

\[
\begin{bmatrix}
u' \\
v' \\
w'
\end{bmatrix} = K \begin{bmatrix} I_3 & 0_3 \end{bmatrix} \begin{bmatrix} x_s \\
y_s \\
z_s \\
1
\end{bmatrix} \Rightarrow \begin{bmatrix}
u' \\
v' \\
w'
\end{bmatrix} = K \begin{bmatrix} I_3 & 0_3 \end{bmatrix} \begin{bmatrix} R & -R \tilde{C} \\
0^T_3 & 1
\end{bmatrix} \begin{bmatrix} X_s \\
Y_s \\
Z_s \\
1
\end{bmatrix}
\Rightarrow \begin{bmatrix}
u' \\
v' \\
w'
\end{bmatrix} = P \begin{bmatrix} X_s \\
Y_s \\
Z_s \\
1
\end{bmatrix}
\]

\[x = PX\]
Calibration

1. Estimate matrix \mathbf{P} using scene points and their images

2. Estimate the intrinsic and extrinsic parameters

$$\mathbf{P} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I}_3 & -\mathbf{C} \end{bmatrix}$$

Left 3x3 submatrix is the product of an upper triangular matrix and an orthogonal matrix.
Computing the Matrix P

- Use corresponding image and scene points
 - 3D points X_i in world coordinate system
 - Images x_i of X_i in image
- Write $x_i = P X_i$ for all i
Computing the Matrix P

- $x_i = P X_i$ involves homogeneous coordinates, thus x_i and $P X_i$ just have to be proportional: $x_i \times P X_i = 0$

- Let p_1^T, p_2^T, p_3^T be the 3 row vectors of P

\[
P X_i = \begin{bmatrix}
p_1^T X_i \\
p_2^T X_i \\
p_3^T X_i
\end{bmatrix}
\]

\[
x_i \times P X_i = \begin{bmatrix}
v_i^T p_3^T X_i - w_i^T p_2^T X_i \\
v_i^T p_1^T X_i - u_i^T p_3^T X_i \\
u_i^T p_2^T X_i - v_i^T p_1^T X_i
\end{bmatrix}
\]

\[
\Rightarrow \begin{bmatrix}
0^T_4 \\
w_i^T X_i^T \\
-v_i^T X_i^T
\end{bmatrix}
\begin{bmatrix}
- w_i^T X_i^T \\
v_i^T X_i^T \\
-u_i^T X_i^T
\end{bmatrix}
\begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix}
= 0
\]

\[
\begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix}
\text{is a } 12 \times 1 \text{ vector}
\]
Computing the Matrix P

- Third row can be obtained from sum of u'_{i} times first row - v'_{i} times second row
\[
\begin{bmatrix}
0^T_4 & -w'_i X_i^T & v'_i X_i^T \\
w'_i X_i^T & 0^T_4 & -u'_i X_i^T \\
-v'_i X_i^T & u'_i X_i^T & 0^T_4
\end{bmatrix}
\begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix} = 0
\]

- So we get 2 independent equations in 11 unknowns (ignoring scale)

- With 6 point correspondences, we get enough equations to compute matrix P

$$A \ p = 0$$
Computing the Matrix P

- Linear system $\mathbf{A} \mathbf{p} = 0$
- When possible, have at least 5 times as many equations as unknowns (28 points)
- Minimize $\| \mathbf{A} \mathbf{p} \|$ with the constraint $\| \mathbf{p} \| = 1$
 - \mathbf{P} is the unit singular vector of \mathbf{A} corresponding to the smallest singular value (the last column of \mathbf{V}, where $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^T$ is the SVD of \mathbf{A})
Computing the translation component

- Find homogeneous coordinates of C in the scene

- C is the null vector of matrix P
 \[P C = 0: \]
 \[
P = K R \begin{bmatrix} I_3 & -\tilde{C} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & X_c \\ 0 & 1 & 0 & Y_c \\ 0 & 0 & 1 & Z_c \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}\]

- Find null vector C of P using SVD
 - C is the unit singular vector of P corresponding to the smallest singular value (the last column of V, where $P = U D V^T$ is the SVD of P)

 cis4930 - Vemuri
Computing the Matrix P

We now know P and we can get the translation C.

$$P = KR \begin{bmatrix} I_3 & -\tilde{C} \end{bmatrix}$$

Then let $M = KR$ be the upper left $(3,3)$ submatrix of P. Find the QR decomposition of M to get K and R !! Note that Q is upper triangular $= K$

Further Improvement

Use as initialization for nonlinear minimization of $\sum_i d(x_i, PX_i)^2$

Can use a gradient based method e.g. Newton’s method
Vanishing Points and Image Center

Parallel lines in 3D have a vanishing point on the 2D image plane. Point of intersection of a line parallel to these lines (and passing through the camera center) with the image plane is the vanishing point. It depends only on the direction of these lines & not the position.

Take three bundles of mutually perpendicular lines in 3D and compute the three vanishing points. The image center is the orthocenter of the triangle formed by the 3 vanishing points!!
• Radial distortion of the image
 – Caused by imperfect lenses
 – Deviations are most noticeable for rays that pass through the edge of the lens
Correcting radial distortion

from Helmut Dersch cis4930 - Vemuri
Modeling distortion

Project to “normalized” image coordinates

\[
\begin{align*}
x_n' &= \frac{\hat{x}}{\hat{z}} \\
y_n' &= \frac{\hat{y}}{\hat{z}}
\end{align*}
\]

Apply radial distortion

\[
\begin{align*}
x_d' &= x_n' (1 + \kappa_1 r^2 + \kappa_2 r^4) \\
y_d' &= y_n' (1 + \kappa_1 r^2 + \kappa_2 r^4)
\end{align*}
\]

Apply focal length translate image center

\[
\begin{align*}
x' &= f x_d' + x_c \\
y' &= f y_d' + y_c
\end{align*}
\]

- To model lens distortion
 - Use above projection operation instead of standard projection matrix multiplication
Other types of projection

• Lots of intriguing variants…
• (I’ll just mention a few fun ones)
360 degree field of view…

• Basic approach
 – Take a photo of a parabolic mirror with an orthographic lens (Nayar)
 – Or buy a lens from a variety of omnicam manufacturers…
 • See http://www.cis.upenn.edu/~kostas/omni.html

cis4930 - Vemuri
Tilt-shift images from Olivo Barbieri and Photoshop imitations

cis4930 - Vemuri

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html
Rotating sensor (or object)

Also known as “cyclographs”, “peripheral images”