Querying in the Relational Model

- Relational model is not all about storage
- Also allows data manipulation (queries, updates)
- Queries in RM: idea is to mathematically specify a new relation that holds only the answer tuples
- Two ways to specify: *Relational Calculus* and *Relational Algebra*
Ways To Specify Queries

• Relational Calculus
 • Related to predicate calculus / first order logic
 • Discrete math strikes again!
 • Idea: specify what the answer tuples look like
 • Advantage: relatively easy to specify the most complex queries
 • Disadvantage: far removed from implementation

• Other way: Relational Algebra
Ways To Specify Queries (Cont’d)

• Relational Algebra
 • Like writing a program
 • Specify a list of operations that are performed on data, step-by-step
 • It’s an algebra over relations!
 • Advantage: closely resembles how a database actually works
 • Advantage: simple queries easier to specify in RA compared to RC
 • Disadvantage: more difficult queries are often very difficult to specify in RA
• But, RA and RC have same power in the end
Why Not Go Straight to SQL?

• SQL (or “structured query language”) is worldwide standard RDB query language
• Why not skip this RA/RC stuff?
 • Hard to really understand SQL w/o background in RA/RC (esp. RC!)
 • Modern DB systems implement RA under the hood
 • So, hard to understand tuning, DBA w/o grounding in RA
• We’ll do RA first
Relational Algebra

• Any algebra needs a domain and a set of operations
• The domain for RA is all valid relations
• The RA consists of a set of unary/binary operations
• Like all algebras, RA is closed:
 • Apply an op to a relation or a pair of valid relations
 • Then you get back a valid relation!
Relational Selection

• Most fundamental operation is relational selection
• Is a simple filter over a relation’s tuples
• Given a relation R, selection is written as $\sigma_B(R)$
 • In databases, the Greek letter σ is the selection operator
 • Different from the SQL SELECT clause!
 • B is some boolean function accepting/rejecting single tuples from R
 • Key rule: can only look at single tuples
 • Key rule: no other outside information allowed
 • Typical operations in B are $=, \neq, \text{and, or, not, etc.}$
Relational Selection

• Example: $\text{LIKES}(\text{drinker}, \text{beer})$

• If (“Joe”, “Milwaukee’s Best”) is in LIKES, it means that “Joe” likes “Milwaukee’s Best”

• Say we want all of the people who like the beer “Bud”

• Simply use $\sigma_{\text{beer} = \text{Bud}}(\text{LIKES})$
Relational Selection (cont’d)

• If the state of \(\text{LIKES}(\text{drinker}, \text{beer}) \) is
 \[
 \{(\text{Joe, Bud}), (\text{Sam, Bud}), (\text{Sue, Coors}), (\text{John, Beast})\}
 \]

• Then \(\sigma_{\text{beer} = \text{Bud}}(\text{LIKES}) \) is
 \[
 \{(\text{Joe, Bud}), (\text{Sam, Bud})\}
 \]

• Say we want all of the people who like either “Bud” or “The Beast” (aka “Milwaukee’s Best”)
 • Simply use \(\sigma_{\text{beer} = \text{Bud} \lor \text{beer} = \text{Beast}}(\text{LIKES}) \)
Relational Projection

• However, if we want the people who drink Budweiser, will \(\sigma_{\text{beer} = \text{Bud}}(\text{LIKES}) \) really do it?
• Problem: gives us the beer “Bud” in every tuple
• Projection kills unwanted attributes
• Given a relation \(R \), projection is written as \(\pi_P(R) \)
 • In databases, the Greek letter \(\pi \) is the projection operator
 • \(P \) lists the attributes that you wish to retain
 • Note: changes the schema of the output relation!
Relational Projection (cont’d)

• So $\pi_{drinker}(\sigma_{beer = Bud}(LIKES))$ is what we really want

• If the state of $LIKES(drinker, beer)$ is

 $\{(Joe, Bud), (Sam, Bud), (Sue, Coors), (John, Beast)\}$

• Then $\pi_{drinker}(\sigma_{beer = Bud}(LIKES))$ gives us a one attribute relation (attribute name $drinker$) and the tuples $\{(Joe), (Sam)\}$
The Various Join Operators

• In relational model, the answer to a query is often spread across multiple relations
• Can be put together via the various \textit{join} operators
• All of these are based upon the \textit{cross product} operation, denoted by a \times
• Given R and S, then $R \times S$ returns the following:

\[
result = \{
\}
For \ r \ in \ R
\]
\[
For \ s \ in \ S
result = result \cup (r \cdot s)
\]
Cross Product

• Say we have LIKES and SERVICES \(\text{bar, beer} \)
• If (Moe’s, Bud) is in SERVICES, it means “Moe’s” serves “Bud”.
• The state of LIKES (drinker, beer) is
 \{ (Joe, Bud), (Sam, Bud), (Sue, Coors), (John, Beast) \}
• The state of SERVICES (bar, beer) is
 \{ (Moe’s, Bud), (Moe’s, Beast) \}
• Then LIKES \times \text{SERVICES} is...
Cross Product (cont’d)

\{(Joe, Bud), (Sam, Bud), (Sue, Coors), (John, Beast)\} \times \{(Moe’s, Bud), (Moe’s, Beast)\} =

\{(Joe, Bud, Moe’s, Bud), (Sam, Bud, Moe’s, Bud), (Sue, Coors, Moe’s, Bud), (John, Beast, Moe’s, Bud), (Joe, Bud, Moe’s, Beast), (Sam, Bud, Moe’s, Beast), (Sue, Coors, Moe’s, Beast), (John, Beast, Moe’s, Beast)\}
Cross Product (con’t)

• So now, what if we want all people who can get a beer that they like at “Moe’s”

• Can use

\[\text{TEMP}(\text{drinkr}, b1, \text{bar}, b2) \leftarrow \text{LIKES} \times (\sigma_{\text{bar} = \text{Moes}}(\text{SERVES})) \]

• For convenience, this specifies a temporary relation to hold the result of the cross product

• Followed by:

\[\pi_{\text{drinkr}}(\sigma_{b1 = b2}(\text{TEMP})) \]
The Join Operator

• All of the time, we end up doing cross product followed by selection to “link” across a foreign key
• Can use the join operator as shorthand $R \bowtie_B S$
• This does a cross product over R and S, then applies a relational selection using the predicate B
• Ignoring the projection, the last query could be:
 • $\text{LIKES} \bowtie_{(L.BAR = S.BAR)}(\sigma_{\text{bar} = \text{Moes}}(\text{SERVES}))$
• Note: convention is to use the “dot” notation to disambiguate attribute names in join predicate
The Natural Join Operator

• Most of the time, the join is a so-called “equi-join” over all attributes having the same name, followed by deletion of duplicate attributes

• Can use the natural join operator as shorthand for this: $R \ast S$
The Natural Join Operator (cont’d)

• Example: \(LIKES \ast (\sigma_{\text{bar} = \text{Moes}}(SERVES)) \)
• This finds all attributes in \(LIKES \) and \(SERVES \) that have the same name (\(LIKES.\text{beer} \) and \(SERVES.\text{beer} \))
• Then does an equi-join on them
• Then removes the redundant attributes, resulting in the output schema (\(\text{drinker, beer, bar} \))
• So all people who can get a beer they like at Moe’s is:

\[
\pi_{\text{drinker}}(LIKES \ast (\sigma_{\text{bar} = \text{Moes}}(SERVES)))
\]
The Natural Join Operator (cont’d)

• A bigger example. Say we have
 \[R(a, b, c, d, e, f) \]
 \[S(d, e, f, g, h, i) \]
• Then \(R \ast S \) does a join with the predicate
 \[R.d = S.d \land R.e = S.e \land R.f = S.f \]
• And gives the output schema
 \((a, b, c, d, e, f, g, h, i) \)
Set Operations

• RA also includes the standard set operations

 • Subtraction: $R - S$ is all tuples in R but not in S
 • Union: $R \cup S$ is all tuples in R or in S
 • Intersection: $R \cap S$ is all tuples in R and in S

• Note: to be applicable, R and S must have the same schema

• Sometimes, the rename operation is useful: $\varphi_P(R)$
 • This takes R and changes the names to those in P

• So $LIKES - \varphi_{\text{drinker, bar}}(SERVES)$ is a valid (but really strange!) RA expression
Set Operations (cont’d)

- Ex: say we want people who like “Bud” or “The Beast” (aka “Milwaukee’s Best”) but not both

\[
BUD \leftarrow \pi_{\text{drinker}}(\sigma_{\text{beer} = \text{Bud}}(\text{DRINKER}))
\]

\[
BEAST \leftarrow \pi_{\text{drinker}}(\sigma_{\text{beer} = \text{Beast}}(\text{DRINKER}))
\]

\[
\text{ANSWER} \leftarrow BUD \cup BEAST - (BUD \cap BEAST)
\]
Next Week

• We will do a set of in-class problems that will give examples of how to write more complex RA queries