Proofs of Correctness: An Introduction to Axiomatic Verification

CEN 5035
Software Engineering

Prepared by
Stephen M. Thebaut, Ph.D.
University of Florida
Important info for students:

- “Intro to Proofs of Correctness” is an elementary introduction to the verification material covered in CEN 4072/6070, Software Testing & Verification.
- Therefore, if you have already taken CEN 4072/6070, you will NOT be tested on this material in Exam 2.
- Instead, you will be tested on Sommerville Chaps 16 and 25 (“Software reuse” and “Configuration management”), which will NOT be covered in class.
Outline

• Introduction
• Weak correctness predicate
• Assignment statements
• Sequencing
• Selection statements
• Iteration
Introduction

• *What is Axiomatic Verification?*

A formal method of reasoning about the **functional** correctness of a **structured, sequential program** by tracing its state changes from an initial (i.e., pre-) condition to a final (i.e., post-) condition according to a set of self-evident rules (i.e., **axioms**).
What is its primary goal?

To provide a means for “proving” (or “disproving”) the functional correctness of a sequential program with respect to its (formal) specification.
• What are the benefits of studying axiomatic verification?
 - Understanding its limitations.
 - Deeper insights into programming and program structures.
 - Criteria for judging both programs and programming languages.
 - The ability to formally verify small (or parts of large) sequential programs.
Bottom line: even if you never attempt to “prove” a program correct outside this course, the study of formal verification should change the way you write and read programs.
Weak Correctness Predicate

- To prove that program S is (weakly) correct with respect to pre-condition P and post-condition Q, it is sufficient to show: \{P\} S \{Q\}.
- Interpretation of \{P\} S \{Q\}: "if the input (initial state) satisfies pre-condition P and (if) program S executes and terminates, then the output (final state) must satisfy post-condition Q."
Note that \(\{P\} S \{Q\} \) is really just a “double conditional” of the form:

\[(A \land B) \Rightarrow C\]

where \(A \) is “\(P \) holds before executing \(S \)”, \(B \) is “\(S \) terminates”, and \(C \) is “\(Q \) holds after executing \(S \)”.

Therefore, what is the one and only case (in terms of the values of \(A, B, \) and \(C \)) for which \(\{P\} S \{Q\} \) is \textit{false}?
Weak Correctness Predicate (cont’d)

• Thus, \{P\} S \{Q\} is true unless Q could be false if S terminates, given that P held before S executes.

• What are the truth values of the following assertions?

(1) \{x=1\} y := x+1 \{y>0\}
Weak Correctness Predicate (cont’d)

• Thus, \{P\} S \{Q\} is *true* unless Q *could be false* if S terminates, given that P held before S executes.

• What are the truth values of the following assertions?

(2) \{x>0\} x := x-1 \{x>0\}
Weak Correctness Predicate (cont’d)

- Thus, \{P\} S \{Q\} is true unless Q could be false if S terminates, given that P held before S executes.

- What are the truth values of the following assertions?

 (3) \{1=2\} k := 5 \{k<0\}
Weak Correctness Predicate (cont’d)

• Thus, $\{P\} \ S \ \{Q\}$ is true unless Q could be false if S terminates, given that P held before S executes.

• What are the truth values of the following assertions?

(4) $\{\text{true}\}$ while $x \not< 5$ do $x := x - 1$ $\{x=5\}$

 (Hint: When will S terminate?)
Weak Correctness Predicate (cont’d)

- We now consider techniques for proving that such assertions hold for structured programs comprised of assignment statements, if-then (-else) statements, and while loops.

 (Why these particular constructs?)
Reasoning about Assignment Statements

• For each of the following pre-conditions, P, and assignment statements, S, identify a "strong" post-condition, Q, such that \{P\} S \{Q\} would hold.

• A "strong" post-condition captures all after-execution state information of interest.

• We won’t bother with propositions such as X=X' (“the final value of X is the same as the initial value of X”) for the time being.
Reasoning about Assignment Statements (cont’d)

<table>
<thead>
<tr>
<th>{P}</th>
<th>S</th>
<th>{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{J=6}</td>
<td>K := 3</td>
<td></td>
</tr>
<tr>
<td>{J=6}</td>
<td>J := J+2</td>
<td></td>
</tr>
<tr>
<td>{A<B}</td>
<td>Min := A</td>
<td></td>
</tr>
<tr>
<td>{X<0}</td>
<td>Y := -X</td>
<td></td>
</tr>
</tbody>
</table>
Reasoning about Assignment Statements (cont’d)

• For each of the following post-conditions, Q, and assignment statements, S, identify a “weak” pre-condition, P, such that \{P\} S \{Q\} would hold.

(A “weak” pre-condition reflects only what needs to be true before.)
Reasoning about Assignment Statements (cont’d)

\[\{P\} \quad S \quad \{Q\}\]

\[
\begin{align*}
I & := 4 & \{J=7 \land I=4\} \\
I & := 4 & \{I=4\} \\
I & := 4 & \{I=17\} \\
Y & := X+3 & \{Y=10\}
\end{align*}
\]
Reasoning about Sequencing

- In general: if you know \{P\} S_1 \{R\} and you know \{R\} S_2 \{Q\} then you know \{P\} S_1 ; S_2 \{Q\}.

 (So, to prove \{P\} S_1 ; S_2 \{Q\}, find \{R\}.)
Example 1

- Prove the assertion:

\[
\{A=5\} \quad B := A + 2; \quad C := B - A; \quad D := A - C \quad \{A=5 \land D=3\}
\]
Reasoning about If_then_else Statements

• Consider the assertion:
 \{P\} if b then S₁ else S₂ \{Q\}

• What are the necessary conditions for this assertion to hold?
Necessary Conditions: If_then_else
Reasoning about If_then Statements

- Consider the assertion:

 \{P\} \text{ if } b \text{ then } S \{Q\}

- What are the necessary conditions for this assertion to hold?

- What are the \textit{necessary} conditions for this assertion to hold?
Necessary Conditions: If_then
Example 2

- Prove the assertion:

\{Z=B\} \text{ if } A>B \text{ then } Z := A \ \{Z=\text{Max}(A,B)\}
Proof Rules

- Before proceeding to while loops, let’s capture our previous reasoning about sequencing and selection statements in appropriate *rules of inference* (ROI).

ROI for Sequencing:

\[
\begin{align*}
\{P\} S_1 & \{R\}, \{R\} S_2 \{Q\} \\
\{P\} S_1; S_2 \{Q\}
\end{align*}
\]
Proof Rules (cont’d)

ROI for \texttt{if_then_else} statement:

\[
\begin{align*}
\{P \land b \} & \iff S_1 \{Q\}, \{P \land \neg b\} \iff S_2 \{Q\} \\
\{P\} & \text{if } b \text{ then } S_1 \text{ else } S_2 \{Q\}
\end{align*}
\]

ROI for \texttt{if_then} statement:

\[
\begin{align*}
\{P \land b \} & \iff S \{Q\}, (P \land \neg b) \Rightarrow Q \\
\{P\} & \text{if } b \text{ then } S \{Q\}
\end{align*}
\]
Reasoning about Iteration

- Consider the assertion: \(\{P\} \text{ while } b \text{ do } S \{Q\} \)

- What are the necessary conditions for this assertion to hold?

- What are the necessary conditions for this assertion to hold?
Consider a Loop “Invariant” - I

Suppose I holds initially...

is preserved by S...

and implies Q when and if the loop finally terminates...

then the assertion would hold!
Sufficient Conditions: while_do

• Thus, a ROI for the `while_do` statement is:

\[
P \Rightarrow I, \ (I \land b) \ S \ {I}, \ (I \land \neg b) \Rightarrow Q \]

\[
{\{P\}} \ \text{while} \ b \ \text{do} \ S \ {\{Q\}}
\]

where the three antecedents are sometimes given the names *initialization*, *preservation*, and *finalization*, respectively.
Example 3

Use the invariant I: Z=XJ to prove:

\{\text{true}\} \quad \text{Initialization: } P \Rightarrow I

Z := X
J := 1
while J<>Y do
 Z := Z+X
 J := J+1
end_while

\{Z=XY\} \quad \text{Preservation: } \{I \land b\} \ S \ \{I\}

Finalization: (I \land \neg b) \Rightarrow Q
Example 3

Use the invariant $I: Z=XJ$ to prove:

$\{\text{true}\}$

\[
\begin{align*}
Z & := X \\
J & := 1 \\
\text{while } J<>Y \text{ do} \\
Z & := Z+X \\
J & := J+1 \\
\text{end_while}
\end{align*}
\]

$\{Z=XY\}$

Initialization: $P \Rightarrow I$

What is “P”?

$(Z=X \land J=1)$

Does $(Z=X \land J=1) \Rightarrow Z=XJ$?

Yep!
Example 3

Use the invariant $I: Z=XJ$ to prove:

$$\begin{align*}
\{\text{true}\} & \quad \text{Initialization: } P \Rightarrow I \checkmark \\
Z := X & \quad \text{Preservation: } \{I \land b\} S \{I\} \\
J := 1 & \quad \{Z=XJ \land J\neq Y\}
\end{align*}$$

while $J \not< \not> Y$ do

$$\begin{align*}
Z := Z+X & \quad Z := Z+X \\
J := J+1 & \quad \{Z=X(J+1) \land J\neq Y\}
\end{align*}$$

end_while

$$\begin{align*}
Z := X(J-1)+1 & \quad J := J+1 \\
{Z=X((J-1)+1) \land J-1\neq Y} & \Rightarrow Z=XJ
\end{align*}$$
Example 3

Use the invariant $I: Z=XJ$ to prove:

$$\{true\}$$

$Z := X$
$J := 1$

while $J<>Y$ do
 $Z := Z+X$
 $J := J+1$
end_while

$$\{Z=XY\}$$

Initialization: $P \Rightarrow I \checkmark$

Preservation: $\{I \land b\} \downarrow \{I\} \checkmark$

Finalization: $(I \land \neg b) \Rightarrow Q$

Does $(Z=XJ \land J=Y) \Rightarrow Z=XY$?

Yep!
Example 3

Use the invariant $I: Z=XJ$ to prove:

{true} \\
\begin{align*}
Z &:= X \\
J &:= 1 \\
\text{while } J &\not<\not> Y \text{ do} \\
&\quad Z := Z+X \\
&\quad J := J+1 \\
\text{end}_\text{while}
\end{align*}

{Z=XY}

Initialization: $P \Rightarrow I$ √

Preservation: $\{I \land b\} \subseteq \{I\}$ √

Finalization: $(I \land \neg b) \Rightarrow Q$ √
Exercise

- See **WHILE LOOP VERIFICATION EXERCISE** on course website
Some Limitations of Formal Verification

• Difficulties can arise when dealing with:
 – parameters
 – pointers
 – synthesis of invariants
 – decidability of verification conditions
 – concurrency
Some Limitations of Formal Verification (cont’d)

• In addition, a formal specification:
 – may be expensive to produce
 – may be incorrect and/or incomplete
 – normally reflects *functional* requirements only

• Will the proof process be manual or automatic? Who will prove the proof?
That’s all, folks, but if you like formal verification...

- Take CEN 6070, Software Testing & Verification and learn about:
 - deriving invariants using the Invariant Status Theorem,
 - proving termination using the Method of Well-Founded Sets,
 - Predicate transforms (“weakest pre-conditions”)
 - function-theoretic verification (prove the correctness of loops without invariants!)
 - and MUCH more!
Proofs of Correctness: An Introduction to Axiomatic Verification

CEN 5035
Software Engineering

Prepared by
Stephen M. Thebaut, Ph.D.
University of Florida