Principal Component Analysis

CAP5416 : Computer Vision
Prof. Baba Vemuri
DIMENSIONALITY REDUCTION

Borrowing from:
Percy Liang (Stanford)
Linear Dimensionality Reduction

Idea: Project high-dimensional vector onto a lower dimensional space.

\[x \in \mathbb{R}^{361} \]

\[z = U^\top x \]

\[z \in \mathbb{R}^{10} \]
Problem Setup

Given \(n \) data points in \(d \) dimensions: \(\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d \)

\[
\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d \times n}
\]
Problem Setup

Given n data points in d dimensions: $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d \times n}$$

Want to reduce dimensionality from d to k

Choose k directions $\mathbf{u}_1, \ldots, \mathbf{u}_k$

$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \end{pmatrix} \in \mathbb{R}^{d \times k}$$
Problem Setup

Given n data points in d dimensions: $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$

\[
\mathbf{X} = \begin{pmatrix}
\mathbf{x}_1 \\
\vdots \\
\mathbf{x}_n
\end{pmatrix} \in \mathbb{R}^{d \times n}
\]

Want to reduce dimensionality from d to k

Choose k directions $\mathbf{u}_1, \ldots, \mathbf{u}_k$

\[
\mathbf{U} = \begin{pmatrix}
\mathbf{u}_1 \\
\vdots \\
\mathbf{u}_k
\end{pmatrix} \in \mathbb{R}^{d \times k}
\]

For each \mathbf{u}_j, compute “similarity” $\mathbf{z}_j = \mathbf{u}_j^\top \mathbf{x}$
Problem Setup

Given n data points in d dimensions: $x_1, \ldots, x_n \in \mathbb{R}^d$

$$X = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \in \mathbb{R}^{d \times n}$$

Want to reduce dimensionality from d to k

Choose k directions u_1, \ldots, u_k

$$U = \begin{pmatrix} u_1 & \cdots & u_k \end{pmatrix} \in \mathbb{R}^{d \times k}$$

For each u_j, compute “similarity” $z_j = u_j^T x$

Project x down to $z = (z_1, \ldots, z_k)^T = U^T x$

How to choose U?
Principal Component Analysis

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector $x \in \mathbb{R}^{361}$

$z = U^T x$

$z \in \mathbb{R}^{10}$

How do we choose U?

Two Objectives

1. Minimize the reconstruction error
2. Maximize the projected variance
PCA Objective 1: Reconstruction Error

U serves two functions:

- **Encode**: $z = U^T x$, $z_j = u_j^T x$

Objective: minimize total squared reconstruction error

$$\min_U \frac{1}{n} \sum_{k=1}^{n} \| x_k - U z_k \|^2$$
PCA Objective 1: Reconstruction Error

U serves two functions:

- **Encode:** $z = U^\top x$, $z_j = u_j^\top x$
- **Decode:** $\tilde{x} = Uz = \sum_{j=1}^{k} z_j u_j$

Want reconstruction error $k_x \tilde{x}$ to be small
PCA Objective 1: Reconstruction Error

U serves two functions:

- **Encode**: $z = U^\top x$, $z_j = u_j^\top x$
- **Decode**: $\tilde{x} = Uz = \sum_{j=1}^{k} z_j u_j$

Want reconstruction error $\|x - \tilde{x}\|$ to be small
PCA Objective 1: Reconstruction Error

\(\mathbf{U} \) serves two functions:

- **Encode**: \(\mathbf{z} = \mathbf{U}^\top \mathbf{x}, \quad z_j = \mathbf{u}_j^\top \mathbf{x} \)

- **Decode**: \(\tilde{\mathbf{x}} = \mathbf{Uz} = \sum_{j=1}^{k} z_j \mathbf{u}_j \)

Want reconstruction error \(\|\mathbf{x} - \tilde{\mathbf{x}}\| \) to be small

Objective: minimize total squared reconstruction error

\[
\min_{\mathbf{U} \in \mathbb{R}^{d \times k}} \sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{U} \mathbf{U}^\top \mathbf{x}_i\|^2
\]
PCA Objective 2: Projected Variance

Empirical distribution: uniform over $\mathbf{x}_1, \ldots, \mathbf{x}_n$

Expectation (think sum over data points):

$$\hat{E}[f(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)$$

Variance (think sum of squares if centered):

$$\text{var}[f(\mathbf{x})] + (\hat{E}[f(\mathbf{x})])^2 = \hat{E}[f(\mathbf{x})^2] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)^2$$
PCA Objective 2: Projected Variance

Empirical distribution: uniform over $\mathbf{x}_1, \ldots, \mathbf{x}_n$

Expectation (think sum over data points):

$$\hat{E}[f(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)$$

Variance (think sum of squares if centered):

$$\text{var}[f(\mathbf{x})] + (\hat{E}[f(\mathbf{x})])^2 = \hat{E}[f(\mathbf{x})^2] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)^2$$

Assume data is centered: $\hat{E}[\mathbf{x}] = 0$
PCA Objective 2: Projected Variance

Empirical distribution: uniform over $\mathbf{x}_1, \ldots, \mathbf{x}_n$

Expectation (think sum over data points):

$$\hat{\mathbb{E}}[f(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)$$

Variance (think sum of squares if centered):

$$\text{var}[f(\mathbf{x})] + (\hat{\mathbb{E}}[f(\mathbf{x})])^2 = \hat{\mathbb{E}}[f(\mathbf{x})^2] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)^2$$

Assume data is centered: $\hat{\mathbb{E}}[\mathbf{x}] = 0$ (what’s $\hat{\mathbb{E}}[\mathbf{U}^\top \mathbf{x}]$?)
PCA Objective 2: Projected Variance

Empirical distribution: uniform over $\mathbf{x}_1, \ldots, \mathbf{x}_n$

Expectation (think sum over data points):

$$\hat{\mathbb{E}}[f(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)$$

Variance (think sum of squares if centered):

$$\hat{\text{var}}[f(\mathbf{x})] + \left(\hat{\mathbb{E}}[f(\mathbf{x})]\right)^2 = \hat{\mathbb{E}}[f(\mathbf{x})^2] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)^2$$

Assume data is centered: $\hat{\mathbb{E}}[\mathbf{x}] = 0$ (what’s $\hat{\mathbb{E}}[\mathbf{U}^\top \mathbf{x}]$?)

Objective: maximize variance of projected data

$$\max_{\mathbf{U} \in \mathbb{R}^{d \times k}, \mathbf{U}^\top \mathbf{U} = \mathbf{I}} \hat{\mathbb{E}}[\|\mathbf{U}^\top \mathbf{x}\|^2]$$
PCA Objective 2: Projected Variance

Empirical distribution: uniform over \(\mathbf{x}_1, \ldots, \mathbf{x}_n \)

Expectation (think sum over data points):
\[
\hat{E}[f(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)
\]

Variance (think sum of squares if centered):
\[
\text{var}[f(\mathbf{x})] + (\hat{E}[f(\mathbf{x})])^2 = \hat{E}[f(\mathbf{x})^2] = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}_i)^2
\]

Assume data is centered: \(\hat{E}[\mathbf{x}] = 0 \) (what’s \(\hat{E}[\mathbf{U}^\top \mathbf{x}] \)?)

Objective: maximize variance of projected data
\[
\max_{\mathbf{U} \in \mathbb{R}^{d \times k} \; \mathbf{U}^\top \mathbf{U} = \mathbf{I}} \hat{E}[\|\mathbf{U}^\top \mathbf{x}\|^2]
\]

\[\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{i,j}\]
Equivalence of two objectives

Key intuition:

\[
\text{variance of data} = \text{captured variance} + \text{reconstruction error}
\]

fixed

want large

want small

Minimize reconstruction error

Maximize captured variance

Principal component analysis (PCA) / Basic principles
Equivalence of two objectives

Key intuition:

\[
\text{variance of data} = \text{captured variance} + \text{reconstruction error}
\]

Pythagorean decomposition: \(x = UU^\top x + (I - UU^\top)x \)

\[
\|x\| = \|UU^\top x\| + \|(I - UU^\top)x\|
\]

Take expectations; note rotation \(U \) doesn’t affect length:

\[
\hat{E}[\|x\|^2] = \hat{E}[\|UU^\top x\|^2] + \hat{E}[\|x - UU^\top x\|^2]
\]
Equivalence of two objectives

Key intuition:

\[
\text{variance of data} = \underbrace{\text{captured variance}}_{\text{fixed}} + \underbrace{\text{reconstruction error}}_{\text{want small}}
\]

Pythagorean decomposition: \(x = UU^\top x + (I - UU^\top)x \)

\[
\begin{align*}
\|x\| &= \|UU^\top x\| + \|(I - UU^\top)x\| \\
\end{align*}
\]

Take expectations; note rotation \(U \) doesn’t affect length:

\[
\hat{E}[\|x\|^2] = \hat{E}[\|UU^\top x\|^2] + \hat{E}[\|x - UU^\top x\|^2]
\]

Minimize reconstruction error \(\leftrightarrow \) Maximize captured variance
Finding one principal component

Input data:

\[X = \begin{pmatrix} x_1 & \ldots & x_n \end{pmatrix} \]

Objective: maximize variance of projected data

\[
\begin{align*}
\hat{E} \left(u^T x \right)^2 &= \max_{\|u\|^2 = 1} \left(u^T X^T X u \right) \\
&= \lambda_{\text{max}}
\end{align*}
\]

\(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(C \).
Finding one principal component

Input data:

\[X = \begin{pmatrix} x_1 & \ldots & x_n \end{pmatrix} \]

Objective: maximize variance of projected data

\[
\hat{\text{E}}[(u^\top x)^2] = \max_{\|u\|=1} \hat{\text{E}}[(u^\top x)^2]
\]
Finding one principal component

Input data:

\[X = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \]

Objective: maximize variance of projected data

\[= \max_{\|u\|=1} \mathbb{E}[u^\top x]^2 \]

\[= \max_{\|u\|=1} \frac{1}{n} \sum_{i=1}^{n} (u^\top x_i)^2 \]

where \(\mathbb{E} \) is the expected value, \(u \) is the unit vector, \(x_i \) are the input data points, and \(n \) is the number of data points.
Finding one principal component

Input data:

\[\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \]

Objective: maximize variance of projected data

\[
\begin{align*}
\text{max} & \quad \mathbf{u} \mathbf{X}^\top \mathbf{u} = \mathbf{u} \mathbf{X}^\top \mathbf{u} \\
\text{subject to} & \quad \|\mathbf{u}\| = 1
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \mathbf{u} \mathbf{X}^\top \mathbf{u} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u} \mathbf{x}_i)^2 \\
\text{subject to} & \quad \|\mathbf{u}\| = 1
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \frac{1}{n} \|\mathbf{u} \mathbf{X}\|^2 \\
\text{subject to} & \quad \|\mathbf{u}\| = 1
\end{align*}
\]
Finding one principal component

Input data:

\[
X = \begin{pmatrix} x_1 & \ldots & x_n \end{pmatrix}
\]

Objective: maximize variance of projected data

\[
= \max_{\|u\|=1} \mathbb{E}[(u^T x)^2]
\]

\[
= \max_{\|u\|=1} \frac{1}{n} \sum_{i=1}^{n} (u^T x_i)^2
\]

\[
= \max_{\|u\|=1} \frac{1}{n} \|u^T X\|^2
\]

\[
= \max_{\|u\|=1} u^T \left(\frac{1}{n} XX^T \right) u
\]

\[
def \text{C is covariance matrix of data}
\]

\[
\text{Principal component analysis (PCA) / Basic principles}
\]
Finding one principal component

Input data: \[X = \begin{pmatrix} x_1 & \ldots & x_n \end{pmatrix} \]

Objective: maximize variance of projected data

\[
\begin{align*}
&= \max_{\|u\| = 1} \mathbb{E}[(u^T x)^2] \\
&= \max_{\|u\| = 1} \frac{1}{n} \sum_{i=1}^{n} (u^T x_i)^2 \\
&= \max_{\|u\| = 1} \frac{1}{n} \|u^T X\|^2 \\
&= \max_{\|u\| = 1} u^T \left(\frac{1}{n}XX^T \right) u \\
&= \text{largest eigenvalue of } C \overset{\text{def}}{=} \frac{1}{n}XX^T
\end{align*}
\]
Finding one principal component

Input data: \(\mathbf{X} = \begin{pmatrix} x_1 & \ldots & x_n \end{pmatrix} \)

Objective: maximize variance of projected data

\[
\begin{align*}
&= \max_{\|\mathbf{u}\|=1} \mathbb{E}[(\mathbf{u}^\top \mathbf{x})^2] \\
&= \max_{\|\mathbf{u}\|=1} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}^\top x_i)^2 \\
&= \max_{\|\mathbf{u}\|=1} \frac{1}{n} \|\mathbf{u}^\top \mathbf{X}\|^2 \\
&= \max_{\|\mathbf{u}\|=1} \mathbf{u}^\top \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\top \right) \mathbf{u} \\
&= \text{largest eigenvalue of } \mathbf{C} \overset{\text{def}}{=} \frac{1}{n} \mathbf{X} \mathbf{X}^\top
\]

\((\mathbf{C} \text{ is covariance matrix of data})\)
How many components?

• Similar to question of “How many clusters?”
• Magnitude of eigenvalues indicate fraction of variance captured.

Eigenvalues on a face image dataset:

2 3 4 5 6 7 8 9 10 11

\begin{align*}
287.1 \\
553.6 \\
820.1 \\
1086.7 \\
1353.2 \\
\end{align*}

• Eigenvalues typically drop sharply, so don’t need that many.
• Of course variance isn’t everything...

Principal component analysis (PCA) / Basic principles 15
How many components?

- Similar to question of “How many clusters?”
- Magnitude of eigenvalues indicate fraction of variance captured.
- Eigenvalues on a face image dataset:
How many components?

• Similar to question of “How many clusters?”
• Magnitude of eigenvalues indicate fraction of variance captured.
• Eigenvalues on a face image dataset:

![Eigenvalues Plot]

• Eigenvalues typically drop off sharply, so don’t need that many.
• Of course variance isn’t everything...
Method 1: eigendecomposition

\(\mathbf{U} \) are eigenvectors of covariance matrix \(\mathbf{C} = \frac{1}{n} \mathbf{X} \mathbf{X}^\top \)
Computing PCA

Method 1: eigendecomposition

\[U \] are eigenvectors of covariance matrix \(C = \frac{1}{n}XX^\top \)

Computing \(C \) already takes \(O(nd^2) \) time (very expensive)
Method 1: eigendecomposition

U are eigenvectors of covariance matrix $C = \frac{1}{n}XX^\top$

Computing C already takes $O(nd^2)$ time (very expensive)

Method 2: singular value decomposition (SVD)

Find $X = U_{d \times d} \Sigma_{d \times n} V_{n \times n}^\top$

where $U^\top U = I_{d \times d}$, $V^\top V = I_{n \times n}$, Σ is diagonal
Computing PCA

Method 1: eigendecomposition

\(U \) are eigenvectors of covariance matrix \(C = \frac{1}{n}XX^\top \)

Computing \(C \) already takes \(O(nd^2) \) time (very expensive)

Method 2: singular value decomposition (SVD)

Find \(X = U_{d \times d} \Sigma_{d \times n} V_{n \times n}^\top \)

where \(U^\top U = I_{d \times d} \), \(V^\top V = I_{n \times n} \), \(\Sigma \) is diagonal

Computing top \(k \) singular vectors takes only \(O(ndk) \)
Computing PCA

Method 1: eigendecomposition

\[\textbf{U} \text{ are eigenvectors of covariance matrix } C = \frac{1}{n} \textbf{X}\textbf{X}^\top \]

Computing \(C \) already takes \(O(nd^2) \) time (very expensive)

Method 2: singular value decomposition (SVD)

Find \(\textbf{X} = \textbf{U}_{d \times d} \Sigma_{d \times n} \textbf{V}_{n \times n}^\top \)

where \(\textbf{U}^\top \textbf{U} = \textbf{I}_{d \times d}, \textbf{V}^\top \textbf{V} = \textbf{I}_{n \times n}, \Sigma \text{ is diagonal} \)

Computing top \(k \) singular vectors takes only \(O(ndk) \)

Relationship between eigendecomposition and SVD:

Left singular vectors are principal components \((C = \textbf{U}\Sigma^2\textbf{U}^\top) \)

- $d =$ number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $x_{ji} =$ intensity of the j-th pixel in image i

- $d = \text{number of pixels}$
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $x_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

\[
\mathbf{X}_{d \times n} \approx \mathbf{U}_{d \times k} \mathbf{Z}_{k \times n}
\]

Idea: \mathbf{z}_i more "meaningful" representation of i-th face than \mathbf{x}_i

Can use \mathbf{z}_i for nearest-neighbor classification

Much faster: $O(dk + nk)$ time instead of $O(dn)$ when $n, d \gg k$

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18

- $d =$ number of pixels
- Each $x_i \in \mathbb{R}^d$ is a face image
- $x_{ji} =$ intensity of the j-th pixel in image i

$$X_{d \times n} \approx U_{d \times k} (Z_{k \times n})$$

Idea: z_i more “meaningful” representation of i-th face than x_i
Can use z_i for nearest-neighbor classification
Eigen-faces [Turk & Pentland 1991]

- $d =$ number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $x_{ji} =$ intensity of the j-th pixel in image i

\[\mathbf{X}_{d \times n} \cong \mathbf{U}_{d \times k} \mathbf{Z}_{k \times n} \]

Idea: \mathbf{z}_i more “meaningful” representation of i-th face than \mathbf{x}_i

Can use \mathbf{z}_i for nearest-neighbor classification

Much faster: $O(dk + nk)$ time instead of $O(dn)$ when $n, d \gg k$

- $d =$ number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $x_{ji} =$ intensity of the j-th pixel in image i

$$
\mathbf{X}_{d \times n} \approx \mathbf{U}_{d \times k} \mathbf{Z}_{k \times n}
$$

$Idea: \mathbf{z}_i$ more “meaningful” representation of i-th face than \mathbf{x}_i

Can use \mathbf{z}_i for nearest-neighbor classification

Much faster: $O(dk + nk)$ time instead of $O(dn)$ when $n, d \gg k$

Why no time savings for linear classifier?
Latent Semantic Analysis [Deerwater 1990]

- $d =$ number of words in the vocabulary
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a vector of word counts
Latent Semantic Analysis [Deerwater 1990]

- $d =$ number of words in the vocabulary
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a vector of word counts
- $x_{ji} =$ frequency of word j in document i

\[
\mathbf{X}_{d \times n} \approx \mathbf{U}_{d \times k} \mathbf{Z}_{k \times n}
\]

stocks: 2 ... 0
chairman: 4 ... 1
the: 8 ... 7
...
wins: 0 ... 2
game: 1 ... 3

0.4 ... -0.001
0.8 ... 0.03
0.01 ... 0.04
0.002 ... 2.3
0.003 ... 1.9

How to measure similarity between two documents?

$z_1 \ldots z_n$ probably better than $x_1 x_2$

Applications: information retrieval

Note: no computational savings; original \mathbf{x} is already sparse
Latent Semantic Analysis [Deerwater 1990]

- \(d \) = number of words in the vocabulary
- Each \(\mathbf{x}_i \in \mathbb{R}^d \) is a vector of word counts
- \(\mathbf{x}_{ji} \) = frequency of word \(j \) in document \(i \)

\[
\mathbf{X}_{d \times n} \approx \mathbf{U}_{d \times k} \mathbf{Z}_{k \times n}
\]

<table>
<thead>
<tr>
<th></th>
<th>stocks: 2</th>
<th>chairman: 4</th>
<th>the: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>wins:</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>game:</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

\[0.4 \cdot -0.001 \cdot 0.4 \cdot -0.03 \cdot 0.01 \cdot 0.04 \cdot 0.002 \cdot 2.3 \cdot 0.003 \cdot 1.9\]

How to measure similarity between two documents?

\(\mathbf{z}_1^T \mathbf{z}_2 \) is probably better than \(\mathbf{x}_1^T \mathbf{x}_2 \)
Latent Semantic Analysis [Deerwater 1990]

- $d =$ number of words in the vocabulary
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a vector of word counts
- $x_{ji} =$ frequency of word j in document i

$$
\mathbf{X}_{d \times n} \approx \mathbf{U}_{d \times k} \mathbf{Z}_{k \times n}
$$

<table>
<thead>
<tr>
<th>Stocks: 2</th>
<th>...</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman: 4</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>The: 8</td>
<td>...</td>
<td>7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Wins: 0</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td>Game: 1</td>
<td>...</td>
<td>3</td>
</tr>
</tbody>
</table>

How to measure similarity between two documents?

$\mathbf{z}_1^\top \mathbf{z}_2$ is probably better than $\mathbf{x}_1^\top \mathbf{x}_2$

Applications: information retrieval
Note: no computational savings; original \mathbf{x} is already sparse
Network anomaly detection [Lakhina 2005]

\[x_{ji} = \text{amount of traffic on link } j \text{ in the network during each time interval } i \]
Network anomaly detection [Lakhina 2005]

\[x_{ji} = \text{amount of traffic on link } j \text{ in the network during each time interval } i \]

Model assumption: total traffic is sum of flows along a few “paths”
Apply PCA: each principal component intuitively represents a “path”
Anomaly when traffic deviates from first few principal components
Multi-task learning [Ando & Zhang 2005]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_i
- Want to share structure between classifiers
Multi-task learning [Ando & Zhang 2005]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_i
- Want to share structure between classifiers

One step of their procedure:

given n linear classifiers x_1, \ldots, x_n, run PCA to identify shared structure:

$$X = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \approx UZ$$

Each principal component is a eigen-classifier
Multi-task learning [Ando & Zhang 2005]

- Have n related tasks (classify documents for various users)
- Each task has a linear classifier with weights x_i
- Want to share structure between classifiers

One step of their procedure:

given n linear classifiers x_1, \ldots, x_n, run PCA to identify shared structure:

$$X = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \approx UZ$$

Each principal component is a eigen-classifier

Other step of their procedure:

Retrain classifiers, regularizing towards subspace U
PCA Summary

- **Intuition**: capture variance of data or minimize reconstruction error

- **Algorithm**: find eigendecomposition of covariance matrix or SVD

- **Impact**: reduce storage (from $O(nd)$ to $O(nk)$), reduce time complexity

- **Advantages**: simple, fast

- **Applications**: eigen-faces, eigen-documents, network anomaly detection, etc.
Generative Model [Tipping and Bishop, 1999]:

For each data point $i = 1, \ldots, n$:
- Draw the latent vector: $z_i \sim \mathcal{N}(0, I_{k \times k})$
- Create the data point: $x_i \sim \mathcal{N}(Uz_i, \sigma^2 I_{d \times d})$

PCA finds the U that maximizes the likelihood of the data

$$\max_U p(X \mid U)$$
Probabilistic Interpretation

Generative Model [Tipping and Bishop, 1999]:

For each data point $i = 1, \ldots, n$:
- Draw the latent vector: $z_i \sim \mathcal{N}(0, I_{k \times k})$
- Create the data point: $x_i \sim \mathcal{N}(Uz_i, \sigma^2 I_{d \times d})$

PCA finds the U that maximizes the likelihood of the data

$$\max_U p(X \mid U)$$

Advantages:
- Handles missing data (important for collaborative filtering)
- Extension to factor analysis: allow non-isotropic noise (replace $\sigma^2 I_{d \times d}$ with arbitrary diagonal matrix)
Limitations of Linearity

PCA is effective

PCA is ineffective

Principal component analysis (PCA) / Kernel PCA
Limitations of Linearity

Problem is that PCA subspace is linear:

\[S = \{ \mathbf{x} = U \mathbf{z} : \mathbf{z} \in \mathbb{R}^k \} \]

In this example:

\[S = \{(x_1, x_2) : x_2 = \frac{u_2}{u_1} x_1 \} \]
Nonlinear PCA

We want desired solution:
\[S = \{ (x_1, x_2) : x_2 = \frac{u_2}{u_1} x_1^2 \} \]
Nonlinear PCA

We want desired solution: \[S = \{(x_1, x_2) : x_2 = \frac{u_2}{u_1} x_1^2 \} \]

We can get this: \[S = \{ \phi(x) = Uz \} \text{ with } \phi(x) = (x_1^2, x_2)^\top \]
Nonlinear PCA

We want desired solution: \(S = \{ (x_1, x_2) : x_2 = \frac{u_2}{u_1} x_1^2 \} \)

We can get this: \(S = \{ \phi(x) = Uz \} \) with \(\phi(x) = (x_1^2, x_2)^\top \)

Linear dimensionality reduction in \(\phi(x) \) space

\[\Downarrow \]

Nonlinear dimensionality reduction in \(x \) space
Nonlinear PCA

We want desired solution: \[S = \{(x_1, x_2) : x_2 = \frac{u_2}{u_1} x_1^2\} \]

We can get this: \[S = \{\phi(x) = Uz\} \] with \[\phi(x) = (x_1^2, x_2)^\top \]

Linear dimensionality reduction in \(\phi(x) \) space

\[\upharpoonright \]
Nonlinear dimensionality reduction in \(x \) space

Idea: Use kernels
Kernel PCA

Representer theorem:

\[\mathbf{X} \mathbf{X}^\top \mathbf{u} = \lambda \mathbf{u} \quad \mathbf{u} = \mathbf{X} \alpha = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i \]
Kernel PCA

Representer theorem:

\[XX^\top u = \lambda u \quad u = X\alpha = \sum_{i=1}^{n} \alpha_i x_i \]

Kernel function: \(k(x_1, x_2) \) such that

- \(K \), the kernel matrix formed by \(K_{ij} = k(x_i, x_j) \),
- is positive semi-definite
Kernel PCA

Representer theorem:

\[\mathbf{X} \mathbf{X}^\top \mathbf{u} = \lambda \mathbf{u} \quad \mathbf{u} = \mathbf{X} \mathbf{\alpha} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i \]

Kernel function: \(k(\mathbf{x}_1, \mathbf{x}_2) \) such that

\(K \), the kernel matrix formed by \(K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) \), is positive semi-definite.

\[
\max_{\|\mathbf{u}\| = 1} \mathbf{u}^\top \mathbf{X} \mathbf{X}^\top \mathbf{u} = \max_{\mathbf{\alpha}^\top \mathbf{x}^\top \mathbf{x} \mathbf{\alpha} = 1} \mathbf{\alpha}^\top (\mathbf{X}^\top \mathbf{X})(\mathbf{X}^\top \mathbf{X}) \mathbf{\alpha} \\
= \max_{\mathbf{\alpha}^\top \mathbf{K} \mathbf{\alpha} = 1} \mathbf{\alpha}^\top \mathbf{K}^2 \mathbf{\alpha}
\]
Kernel PCA

Direct method:

Kernel PCA objective:

$$\max_{\alpha^\top K \alpha = 1} \alpha^\top K^2 \alpha$$

$$\Rightarrow$$ kernel PCA eigenvalue problem: $X^\top X \alpha = \lambda' \alpha$

Modular method (if you don’t want to think about kernels):

Find vectors x'_1, \ldots, x'_n such that

$$x'_i^\top x'_j = K_{ij} = \phi(x_i)^\top \phi(x_j)$$

Key: use any vectors that preserve inner products

One possibility is Cholesky decomposition $K = X'^\top X'$
Kernel PCA
Canonical Correlation Analysis (CCA)
Motivation for CCA [Hotelling 1936]

Often, each data point consists of two views:

- **Image retrieval**: for each image, have the following:
 - \(x \): Pixels (or other visual features)
 - \(y \): Text around the image
Often, each data point consists of two views:

- **Image retrieval**: for each image, have the following:
 - x: Pixels (or other visual features)
 - y: Text around the image

- **Time series**:
 - x: Signal at time t
 - y: Signal at time $t + 1$
Motivation for CCA [Hotelling 1936]

Often, each data point consists of two views:

- **Image retrieval**: for each image, have the following:
 - x: Pixels (or other visual features)
 - y: Text around the image
- **Time series**:
 - x: Signal at time t
 - y: Signal at time $t + 1$
- **Two-view learning**: divide features into two sets
 - x: Features of a word/object, etc.
 - y: Features of the context in which it appears
Motivation for CCA [Hotelling 1936]

Often, each data point consists of two views:

- **Image retrieval**: for each image, have the following:
 - \(x\): Pixels (or other visual features)
 - \(y\): Text around the image

- **Time series**:
 - \(x\): Signal at time \(t\)
 - \(y\): Signal at time \(t + 1\)

- **Two-view learning**: divide features into two sets
 - \(x\): Features of a word/object, etc.
 - \(y\): Features of the context in which it appears

Goal: reduce the dimensionality of the two views **jointly**
CCA Example

Setup:

Input data: \((x_1, y_1), \ldots, (x_n, y_n)\) (matrices \(X, Y\))

Goal: find pair of projections \((u, v)\)
CCA Example

Setup:

Input data: \((x_1, y_1), \ldots, (x_n, y_n)\) (matrices \(X, Y\))

Goal: find pair of projections \((u, v)\)

Dimensionality reduction solutions:

Independent Joint

\(x\) and \(y\) are paired by brightness
CCA Definition

Definitions:

Variance: $\hat{\text{var}}(u^T x) = u^T XX^T u$

Covariance: $\hat{\text{cov}}(u^T x, v^T y) = u^T XY^T v$

Correlation: $\frac{\hat{\text{cov}}(u^T x, v^T y)}{\sqrt{\hat{\text{var}}(u^T x)} \sqrt{\hat{\text{var}}(v^T y)}}$

Objective: maximize correlation between projected views

$$\max_{u,v} \hat{\text{corr}}(u^T x, v^T y)$$

Properties:

• Focus on how variables are related, not how much they vary
• Invariant to any rotation and scaling of data
From PCA to CCA

PCA on views separately: no covariance term

\[
\max_{u,v} \frac{u^\top XX^\top u}{u^\top u} + \frac{v^\top YY^\top v}{v^\top v}
\]

PCA on concatenation \((X^\top, Y^\top)^\top\): includes covariance term

\[
\max_{u,v} \frac{u^\top XX^\top u + 2u^\top XY^\top v + v^\top YY^\top v}{u^\top u + v^\top v}
\]
From PCA to CCA

PCA on views separately: no covariance term

$$\max_{u,v} \frac{u^TXX^Tu}{u^Tu} + \frac{v^TYY^Tv}{v^Tv}$$

PCA on concatenation $((X^T, Y^T)^T):$ includes covariance term

$$\max_{u,v} \frac{u^TXX^Tu + 2u^TXY^Tv + v^TYY^Tv}{u^Tu + v^Tv}$$

Maximum covariance: drop variance terms

$$\max_{u,v} \frac{u^TXY^Tv}{\sqrt{u^Tu} \sqrt{v^Tv}}$$
From PCA to CCA

PCA on views separately: no covariance term
\[
\max_{u,v} \frac{u^\top XX^\top u}{u^\top u} + \frac{v^\top YY^\top v}{v^\top v}
\]

PCA on concatenation \((X^\top, Y^\top)^\top\): includes covariance term
\[
\max_{u,v} \frac{u^\top XX^\top u + 2u^\top XY^\top v + v^\top YY^\top v}{u^\top u + v^\top v}
\]

Maximum covariance: drop variance terms
\[
\max_{u,v} \frac{u^\top XY^\top v}{\sqrt{u^\top u} \sqrt{v^\top v}}
\]

Maximum correlation (CCA): divide out variance terms
\[
\max_{u,v} \frac{u^\top XY^\top v}{\sqrt{u^\top XX^\top u} \sqrt{v^\top YY^\top v}}
\]
Importance of Regularization

Extreme examples of degeneracy:

• If $x = Ay$, then any (u, v) with $u = Av$ is optimal (correlation 1)

• If x and y are independent, then any (u, v) is optimal (correlation 0)
Importance of Regularization

Extreme examples of degeneracy:

- If $x = Ay$, then any (u, v) with $u = Av$ is optimal (correlation 1)
- If x and y are independent, then any (u, v) is optimal (correlation 0)

Problem: if X or Y has rank n, then any (u, v) is optimal (correlation 1) with $u = X^\top Yv \Rightarrow$ CCA is meaningless!
Importance of Regularization

Extreme examples of degeneracy:

- If $\mathbf{x} = \mathbf{A}\mathbf{y}$, then any (\mathbf{u}, \mathbf{v}) with $\mathbf{u} = \mathbf{A}\mathbf{v}$ is optimal (correlation 1)
- If \mathbf{x} and \mathbf{y} are independent, then any (\mathbf{u}, \mathbf{v}) is optimal (correlation 0)

Problem: if \mathbf{X} or \mathbf{Y} has rank n, then any (\mathbf{u}, \mathbf{v}) is optimal (correlation 1) with $\mathbf{u} = \mathbf{X}^\top\mathbf{Y}\mathbf{v} \Rightarrow$ CCA is meaningless!

Solution: regularization (interpolate between maximum covariance and maximum correlation)

$$
\max_{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^\top\mathbf{X}\mathbf{Y}^\top\mathbf{v}}{\sqrt{\mathbf{u}^\top(\mathbf{X}\mathbf{X}^\top + \lambda \mathbf{I})\mathbf{u}}\sqrt{\mathbf{v}^\top(\mathbf{Y}\mathbf{Y}^\top + \lambda \mathbf{I})\mathbf{v}}}
$$
Canonical Correlation Forests

(a) Single CART (unpruned) (b) RF with 200 Trees (c) Single CCT (unpruned) (d) CCF with 200 Trees

Example: RF that uses CCA to determine axis for splits
Summary

Framework: $z = U^T x$, $x \approx U z$

Criteria for choosing U:
- PCA: maximize projected variance
- CCA: maximize projected correlation

Algorithm: generalized eigenvalue problem

Extensions:
- non-linear using kernels (using same linear framework)
- probabilistic, sparse, robust (hard optimization)