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ABSTRACT
Content sharing using cooperative peer-to-peer model has
become increasingly more popular in a vehicular ad hoc
network (VANET). The small transmission window from a
vehicle to an access point (AP), high mobility of vehicles,
and intermittent and short-lived connectivity to an AP pro-
vide incentives for vehicles to cooperate with one another
to obtain information from the Internet. These character-
istics of VANETs naturally stipulate the use of cooperative
peer-to-peer paradigm and motivate related content sharing
application such as CarTorrent.

Building upon previous research on SPAWN[6, 1], we have
implemented CarTorrent and deployed it on a real VANET.
We have run extensive field tests to affirm the feasibility of
the peer-to-peer file sharing application tailored to VANET.
To the best of our knowledge, the deployment of such a con-
tent sharing application on a real vehicular ad hoc testbed
is the first of its kind.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms
Design, Experimentation, Measurement

Keywords
Data Mule, BitTorrent

1. INTRODUCTION
Navigation safety requirements have propelled the devel-

opment and deployment of VANET. Beyond the safety nav-
igation, new types of applications have emerged such as
office-on-wheels and on-car entertainment. Among these,
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file sharing is gaining its momentum: People want to down-
load not only music and movie trailers while driving, but
also location-cognizant data such as virtual hotel tour clips.

People can download files from road-side access points
(APs) that provide Internet connections, which is known
as Wardriving [8]. The conventional client-server model will
not work neither scale well for the following reasons. First,
due to the high mobility, the actual contact time to an AP is
short. For example, assuming that the WiFi range is 300m,
when driving at the speed of 45mph, we can have 30 sec-
onds of contact period. With the overhead of association,
DHCP, and Internet connections, the actual contact period
is shorter than 30 seconds. Second, in real environments sig-
nal strength is mainly a function of distance; i.e., as the dis-
tance from the AP increases, the signal strength decreases.
This increases the packet error rate; consequently, the ef-
fective throughput that one can achieve is much less than
expected. Third, it is neither practical to install APs every
300 meters, nor feasible to stop in the middle of roads to
download a file. Thus, we conclude that in reality, the con-
tact period is short, and its goodput is low. To effectively
handle this situation, we advocate the use of peer-to-peer file
swarming in which users out of AP range can still download
parts of files from others.

In P2P file swarming such as BitTorrent, a file is divided
into the same size pieces, and peers with fractions of a file
can exchange whatever pieces available by forming an over-
lay network. This not only sheds the load of the server,
but also increases the availability of pieces, thus expedit-
ing the downloading process. However, BitTorrent cannot
be directly ported to wireless environments because of the
discrepancy between a logical overlay topology and a phys-
ical topology of mobile nodes. For instance, a peer who
is one hop away in a logical overlay could be located five
hops away physically. To maximize the available wireless
resources by localizing traffic (i.e., which increases the spa-
tial diversity and reduces the routing overheads), researchers
thus far have focused on mapping the logical overlay to
physical topology [3, 7, 1]. In particular, SPAWN uses the
proximity-driven piece selection strategy, thus further reduc-
ing the average hop count of multi-hop pulling. It is known
that the proximity-driven piece selection outperforms the
conventional “rarest first” piece selection.

In this paper, we propose CarTorrent, a BitTorrent-style
file swarming protocol in the vehicular environment, by ex-
tending SPAWN [1]. For a given file, CarTorrent clients
disseminate their piece availability information via gossip-
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Figure 1: CarTorrent GUI

ing (i.e., by k-hop limited scope broadcasting). Each gossip
message is forwarded until it reaches to nodes located k-hop
away from the originator. Thus, peers can gather statistics
such as local topology and piece availability. Statistics are
then used to select a piece/peer that is preferably close in
proximity. In other words, given that two peers A and B own
a rarest piece that C desires, C would choose A because A
has a shorter hop count to C than B does. CarTorrent users
can send queries to other clients; the query is delay tolerant
such that whenever the connectivity is available the query
is sent out and resolved. Note that the craving for down-
loading information, e.g., sightseeing landmarks, movie pre-
views, outweighs the penchant for keeping to oneself and
thereby provides incentives for cooperative content sharing.

The goal of this paper is to test the feasibility of in-vehicle
content sharing (i.e., CarTorrent). Toward this goal we im-
plement CarTorrent and measure its performance in a real
VANET testbed. The use of the peer-to-peer application
on a real VANET testbed is the first of its kind. We show
that peers can utilize the gossip mechanism to recognize one
another’s presence and employ the piece-selection strategy
to optimally download files from one another. We run ex-
tensive field tests and obtain performance measurements in
a real VANET testbed. We demonstrate performance com-
parisons between baseline static parking lot and real road
mobile scenarios. We believe that many lessons learned and
technologies picked up to set up a testbed of this size are
invaluable to VANET research.

The rest of this paper is organized as follows. Section
2 illustrates CarTorrent’s architecture and implementation
details. Section 3 presents our experiment setup and re-
sults. Section 4 shows the related work. Finally, Section
5 draws conclusion of the paper, and present the possible
future work.

2. CARTORRENT OVERVIEW AND ARCHI-
TECTURE

The rightful progression to cooperative peer-to-peer shar-
ing has led to the concept of CarTorrent, a BitTorrent-like
swarming protocol that exploits the broadcast nature of the
wireless medium and node proximity by the use of a gossip
mechanism and a novel piece selection strategy, respectively.
In this section, we describe CarTorrent’s overview and ar-
chitecture.

SendGossipThreadFileSplitter RecvGossipThread ListenThread

CarTorrent
File Manager RecvPacketThreadSendPacketThread

Client

AODV

Figure 2: CarTorrent Architecture

2.1 CarTorrent Overview
Figures 1(a) and 1(b) show the GUI version of the Car-

Torrent. A typical use case is described as follows: Client A
wishes to share a file F . F is split into pieces by FileSplitter.
SendGossipThread periodically sends gossips that contains
the originator of a file, a sequence number, a filename, a
piece availability bit vector, a time-to-live (TTL), and hop
count. Upon sharing F , SendGossipThread sends gossips
regarding the existence of file F .

Client B sees the file F being shared as its RcvGossipThread
receives gossips about file F . The gossips are then fed
to CarTorrent File Manager which runs the engine of the
piece selection algorithm. Based on the algorithm,
SendPacketThread requests a particular piece from Client A
through AODV.

Client A’s ListenThread serves the incoming requests.
Upon receiving a request for a particular piece, the con-
nection is immediately processed by ReceivePacketThread.
It retrieves the particular piece from its stable storage and
sends the piece through AODV. The difference between
SendPacketThread and ReceivePacketThread is
SendPacketThread only sends out requests and
ReceivePacketThread receives requests and pieces for the
requests.

2.2 CarTorrent Implementation
We describe the five major components of CarTorrent in

Figure 2 in the remaining section.

2.2.1 CarTorrent File Manager
Each file is managed by the CarTorrent File Manager. It

is responsible for keeping track of the status of each piece



Figure 3: Straight road scenario

for the file. In addition, it maintains a list of peers and their
hop count with respect to each piece. The status information
is updated whenever a piece is received. The list of peers
and their hop count are updated whenever a client receives
a gossip. The retrieval of closest rarest piece and the peer
that owns the piece are conveniently associated with each
file. It provides a quick way to determine which piece to
download and who the piece should be downloaded from.

2.2.2 SendGossipThread
SendGossipThread component is responsible for sending

out gossips periodically. There are two types of gossips that
it is responsible for. One is from the node itself. The other
is from the queue where gossips from the other nodes are
kept. Gossips are sent out with different frequencies based
on probabilities parameterized in the node’s program ini-
tially. Gossips that are of the node’s interest are sent out
with higher probability, therefore, higher frequency than
gossips that are not of the node’s interest. The interest
is determined by whether the node is interested in the file
gossiped by the other nodes.

2.2.3 ReceiveGossipThread
This component is responsible for receiving gossips. The

thread unblocks whenever a gossip is received. The gossip
is discarded if the received gossip is from the node itself. If
the gossip message is not discarded, it is forwarded to the
CarTorrent File Manager for further processing and is kept
in a gossip queue to be sent out by its SendGossipThread
component.

2.2.4 SendPacketThread
This component is responsible for sending out requests

periodically. Request for a particular file stops when the
client has downloaded all pieces of the file.

2.2.5 ListenThread and ReceivePacketThread
When the CarTorrent application starts, the ListenThread

component is created for incoming connections. Each incom-
ing connection is then handed off to ReceivePacketThread
for further processing. Currently, the system creates three
ReceivePacketThreads that will process incoming connec-
tions in a round-robin fashion. If the number of incoming
connections exceeds three, there will be a delay in processing
those requests.

There are two types of incoming packets. The first kind
is data request. The ReceivePacketThread will process the
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Figure 4: Per-piece goodput vs. block size

data request packet by sending out the piece that the other
node is requesting. The second kind is data. The incoming
data is the file piece that the node requested. It is saved in
the node’s local space and later combined when all pieces
are gathered.

3. EXPERIMENT
In this section, we describe two different experimental sce-

narios. The first scenario is static communication between
two laptops in a parking lot. It serves as a baseline perfor-
mance comparison with the second scenario in which two
moving vehicles download pieces from each other and the
AP in a straight road.

We present results of baseline and straight road. We first
present the baseline per-piece goodput versus block size and
distribution of the per-piece goodput. We then present the
straight road distribution of downloaded pieces over time
with respect to the link quality between peers themselves
and between peers and the AP and distribution of the per-
piece goodput.

3.1 Scenarios
We equipped each vehicle with a laptop that has two

802.11b wireless interface cards. One interface card is re-
sponsible for communication among vehicles in the ad-hoc
mode. The other interface card is responsible for commu-
nication between vehicles and the AP in the infrastructure
mode. When a vehicle approaches the AP, it receives gos-
sips and requests pieces from the AP on the interface where
the gossips are received from. After some time to associate
with the AP, the AP will obtain requests and send out the
requested pieces. At the same time, the vehicle also receives
gossips and requests pieces from its peers on the other in-
terface. Since CarTorrent uses threads to receive incoming
gossips, it can take care of simultaneous gossips from both
interfaces. Requests are stamped with the originator. This
allows the system to identify which interface data should be
sent out from. To avoid interference between the two in-
terface cards, we set one card to channel 1 and the other
card to channel 11. We used TCP as the transport proto-
col. We specified a timeout value of 0.65 sec to avoid stalling
on the blocking call so that ReceivePacketThread’s can con-
tinuously serve incoming requests. We tested AODV and
incorporated it into CarTorrent.

We performed two scenarios of the experiment. The first
scenario was done in an underground parking lot to elimi-
nate interference from other wireless signals. We transferred
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Figure 5: Distribution of the per-piece goodput (Parking Lot Scenario)
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Figure 6: Link Quality between
peers in the ad-hoc mode
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Figure 7: Link Quality between
peers and the AP in the infrastruc-
ture mode
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Figure 8: Distribution of down-
loaded pieces over time

a file of 25MB from one laptop to another with piece sizes of
64KB, 128KB, and 256KB, respectively to obtain the base-
line download progress over time and per-piece goodput. We
then conducted our real VANET experiment on a straight
road about 1KM long (Figure 3). We placed the AP in the
middle of the road. Two vehicles started from both ends of
the street. We observed that cars downloaded pieces from
each other and from the AP successfully using CarTorrent’s
gossips and piece-selection strategy. We show our results in
the next section.

3.2 Experimental Results

3.2.1 Parking Lot Scenario
Figure 4 shows the average piece goodput for piece sizes

of 64KB, 128KB, and 256KB. Because pieces are sent us-
ing TCP which takes time to set up, it is more efficient to
transmit pieces of larger sizes. However, the slope of such
an increase in the average per-piece goodput decreases be-
cause bigger pieces are more susceptible to retransmission in
a mobile wireless network. Moreover, because of the sender
and receiver buffer size, larger pieces are subject to fragmen-
tation and more processing. For those pieces that fail to be
transmitted in the range of the peers or the AP, they are
discarded after disconnection. All these suggest diminishing
return on the average per-piece goodput as the piece size
increases.

3.2.2 Straight Road Scenario
Figure 5 shows the distribution of per-piece goodput for

both 64KB and 128KB pieces. For 64KB pieces, the per-

piece goodput is 5.279Mbps. For 128KB pieces, the per-
piece goodput is 5.677Mbps. We define the per-piece good-
put as the piece size divided by the difference between the
time the request is sent for the piece and the time the piece
is received.

Figure 6, 7, and 8 show the correlation between the link
quality and the number of downloaded pieces in one of the
two cars. Peer-to-peer downloaded are indicated by four ar-
rows, denoting four different periods. Because of the space
constraint, we only present results from one car. Results
from the other car are very similar. Overall, the spikes in
link quality correspond well with spikes in numbers of down-
loaded pieces. In periods 40s-70s and 520s-600s, there were
no pieces downloaded from the peer but from the AP. This
reflects the way we design the piece-selection strategy. Even
though both the peer and seeder of the piece were one hop
away from the downloader, the piece-selection strategy fa-
vored downloading from the AP. There is no particular rea-
son to program in such a way and we plan to make a change
to the strategy.

In period 790s-810s and 890s-910s, even though the link
quality between the peers was good, there was no download-
ing activity. We reason that the node had no pieces that it
wanted from its peer. Since both peers owned exactly the
same pieces, piece exchange did not take place. This reason-
ing is backed up by the very last spike we see in 920s-950s;
during this period, pieces were all downloaded from the AP.
The effect of TCP setup time was seen in 480s-520s. Even
though the link quality between the AP and the peer was
high, downloading did not start until 510s. The late start
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Figure 9: Distribution of the per-piece goodput (Straight Road Scenario)

indicates AP association and TCP setup time.
There are two mysterious periods centered around 300s

and 400s. During these two periods, the link quality be-
tween the AP and the peer was high; however, there was no
downloading activity. We compare the same periods with
the other peer’s piece downloading graph and reason that
the “capturing effect” from the other peer requesting for
pieces caused the number of threads in the AP busy serving
those requests. When the AP was ready to serve requests
from the starving peer, the peer had already gone out of
range. As discussed earlier, we plan to modify the piece
selection strategy so that peers download from each other
in the range of AP. We also would like to experiment with
increased number of threads in serving incoming requests to
minimize starvation.

Figure 9 shows the mean per-piece goodput of 64KB pieces
for both peers. The goodput is about 1.5Mbps less than the
baseline in the parking lot where there is no interference
with other wireless signals.

4. RELATED WORKS
BitTorrent[1] has been a popular file-sharing protocol that

accounts for a rather significant portion of Internet traffic.
However, BitTorrent does not scale well for mobile ad-hoc
networks because it gives equal weight to and therefore does
not distinguish rarest pieces that are both far and near. This
increases the downloading time as one chooses the longer
way to get a rarest piece. Because of node mobility, nodes
that are further away are a less reliable downloading medium
that nodes that are close.

The characteristics of a VANET call for a different de-
sign of BitTorrent. The use of BitTorrent-like protocols for
VANETs is not new but has been done primarily in analysis
on paper or simulations. [7] studies the mobility model of
vehicles and utilizes the Random Waypoint Model. It simu-
lates vehicular mobility in ns-2. SPAWN[1], which this work
extends to, is only implemented in simulation on Nab, a
network simulator written in Ocaml. We have implemented
the torrent-swarming protocol based on SPAWN on an ac-
tual VANET testbed. Furthermore, we have incorporated
the AODV routing implementation in linux developed by
Uppsala University as the bottom layer in performing peer
discovery and multi-hop message transfer[5].

CodeTorrent [4] is another peer-to-peer file sharing proto-
col that exchanges pieces by performing encoding operations
that exploit the randomness of coded pieces and thereby re-

duce download time in a VANET. Unlike CarTorrent, a peer
only needs to receive any k encoded pieces to decode the
file, where k is the number of pieces of a file. The inher-
ent redundancy of network coding takes care of problems of
node departures [2]. In addition, nodes take advantage of
overhearing coded blocks even though they are not directly
involved in communication. This further increases the col-
lection of k coded blocks and thus speeds up the download
time. CodeTorrent’s strategy in disseminating pieces is dif-
ferent from CarTorrent’s. We plan to implement CodeTor-
rent in a real VANET and compare its results with CarTor-
rent.

In summary, our work is unique because of the actual Car-
Torrent implementation and field measurements on a real
VANET testbed.

5. CONCLUSION
Vehicular ad-hoc networks are surging in popularity and

there have been implementations in the areas of sensor net-
works and advertisement flooding. In this paper, we focus
on tackling the problem of an efficient peer-to-peer content
sharing protocol and system for vehicular nodes in a real
VANET. We have demonstrated the detection of available
files with periodic gossips and the successful downloading of
files. The efficient selection of a file piece is possible with
the use of the Rarest-Closest First strategy where each node
first determines the rarest file piece it needs and looks for
the closest node that has it. This exploits the mobility of
vehicular nodes in error-prone wireless links.

Finally, we have implemented and deployed CarTorrent on
a real vehicular ad hoc testbed. We have shown promises of
running the peer-to-peer content sharing application that is
tailored to the constraints of VANETs. We plan to study the
effects of channel condition by varying AP location and im-
prove gossip mechanism by incorporating direction, speed,
and distance information.
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