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Abstract
Mandatory access control (MAC) enforcement is becom-

ing available for commercial environments. For exam-
ple, Linux 2.6 includes the Linux Security Modules (LSM)
framework that enables the enforcement of MAC policies
(e.g., Type Enforcement or Multi-Level Security) for indi-
vidual systems. While this is a start, we envision that MAC
enforcement should span multiple machines. The goal is to
be able to control interaction between applications on dif-
ferent machines based on MAC policy. In this paper, we
describe a recent extension of the LSM framework that en-
ables labeled network communication via IPsec that is now
available in mainline Linux as of version 2.6.16. This func-
tionality enables machines to control communication with
processes on other machines based on the security label as-
signed to an IPsec security association. We outline a se-
curity architecture based on labeled IPsec to enable dis-
tributed MAC authorization. In particular, we examine the
construction of a xinetd service that uses labeled IPsec
to limit client access on Linux 2.6.16 systems. We also dis-
cuss the application of labeled IPsec to distributed storage
and virtual machine access control.

1 Introduction

Mandatory access control (MAC) enforcement has ar-
rived for commercial operating systems, such as Linux 2.6.
With the Linux Security Modules (LSM) framework [22],
Linux has a comprehensive reference monitor implemen-
tation, and MAC enforcement systems have been built to
leverage this infrastructure. For example, RedHat includes
the SELinux [14] LSM enabled in its Fedora Core 5 distri-
bution.
However, application of LSM has focused on a single

machine at a time. For example, SELinux MAC policy
covers 29 different types of objects, but control of network
communication has been primitive to date. The SELinux
system controls which ports, IP addresses, and network in-

terfaces a process may use, but such controls are notoriously
flawed (e.g., IP spoofing) and coarse-grained.
What we want is to be able to control communication,

such that we can determine whether two processes on two
different machines are permitted to communicate with one
another. Two machines X and Y have n and m processes,
respectively. A reference monitor (e.g., LSM) on X must
be able to determine whether a process Xi can commu-
nicate each particular process Yj on Y in an independent
manner based on MAC policy. Further, different applica-
tion paradigms, such as grid computing, client-server com-
puting, and migrating processes, imply different types of
enforcement requirements. For example, grid computing
implies that only processes with common labels can com-
municate, whereas client-server systems often permit the
server be more privileged than the clients and be able to
run limited processing on behalf of clients.
In order to enable MAC control of network communica-

tion, we have implemented a network access control mech-
anism for LSM based on IPsec [10, 11, 12, 17]. The mech-
anism’s design is motivated by prior work that restricted
socket access to IPsec security associations for the Flask
system [21]. In that work, a process’s access to network
communication requires two permissions: (1) a process’s
permission to use a socket and (2) a socket’s permission to
use a security association. We have applied this same ap-
proach to the Linux kernel using the Linux implementation
of IPsec, called the XFRM subsystem (pronounced “trans-
form”). We call the mechanism labeled IPsec, and our im-
plementation has become available in the mainline kernel
as of version 2.6.16. This mechanism goes far beyond the
original prototype in that: (1) it is a complete implementa-
tion, including IPsec policy management and negotiation;
(2) we have experience using it on real applications; and (3)
it is part of a widely used system.
In this paper, we examine the application of Linux la-

beled IPsec to build secure systems. Our primary exam-
ple the xinetd program, a (more) secure version of the
old inetd program that launches server programs upon



requests at their designated port. The new Linux labeled
IPsec mechanism enables control of who can use a ma-
chine’s xinetd, and it enables xinetd to start services
with limited permissions based on the source of the commu-
nication. Also, Linux labeled IPsec can be used to convey
labels to third party machines, such that processing can be
limited to client access even when the request is forwarded
from an intermediate party trusted to make such decisions,
not typical of the current xinetd.
This paper has the following contributions:

• We detail a mechanism for authorization of network
communications based on the labeling of IPsec ob-
jects, called labeled IPsec. This mechanism is now
available in mainline Linux, as of version 2.6.16.

• We develop an architecture for distributed authoriza-
tion based on labeled IPsec.

• We detail the implementation of this architecture and
its application to the xinetd service. We also sketch
two other applications of this architecture.

• We examine issues related to building secure services
using labeled IPsec, such as the granularity of IPsec
flows, the impact of client-server asymmetry, and the
building of Internet-scale distributed systems.

In Section 2, we describe the problem of building a dis-
tributed authorization system for server applications like
xinetd. In Section 3, we outline the architecture that we
envision and describe how it will be achieved. In Section 4,
we detail the implementation of the labeled IPsec mecha-
nism that is the basis for the distributed authorization archi-
tecture, the additional services necessary to complete the ar-
chitecture, and describe its application to xinetd. We also
outline the application of this architecture in other more ex-
tensive examples. Section 5 examines some significant is-
sues identified in the course of this work. We summarize
our findings and describe future work in Section 6.

2 Problem
In this section, we define the problem that we aim to

solve in this paper: process-level access control across ma-
chines. We examine related work in solving this problem at
the end of the section.

2.1 Example

inetd provides a centralized service for starting net-
work daemons on demand. Such daemons use well-known
ports, so inetd simply needs to maintain passive sock-
ets open on those ports and start the appropriate service
based on the port where the packet is received. inetd uses

a tcp wrapper tcpd to actually start the services, so that
hosts.allow and hosts.deny rules can be enforced
on the request. Such rules are based on the IP address or
hostname of the source of the request.
xinetd is a replacement for inetd that provides more

security function, including full logging, denial of service
prevention measures, and access control for other types of
services.
The access control in xinetd does not distinguish

which individual users can access services. This is fun-
damentally important in multi-level security [2] (MLS) be-
cause we do not want services with access to higher-secrecy
data to respond to lower-secrecy users (or vice versa). For
example, we do not want an ftp server to communicate
with a lower-secrecy process.
In non-MLS cases, we can also envision cases where

limiting access by process rather than by client may be rele-
vant. Consider a corporate service that should only commu-
nicate with the certain corporate software running on behalf
of employees. In this case, arbitrary malware on the same
machine should not be able to communicate with the corpo-
rate service.
At present, the distinction between arbitrary malware

and client software is hard to make on commercial operating
systems (e.g., Windows and Linux). In most cases, the mal-
ware and user processes run with the same privilege. How-
ever, the availability of mandatory access control (MAC)
enforcement in commercial systems, such as Linux, enables
separation of important processes from low integrity ones.

2.2 Network Controls

We identify three types of network controls that we want
to enable for xinetd and other server applications:

• Authorize RemoteAccess By Process: Control which
individual remote processes can access xinetd and
other server processes.

• Limit Worker Process Access: Limit the rights that
worker processes can obtain based on the remote pro-
cess for whom it was generated.

• Convey Limits Remotely: Enable the server to con-
struct a worker process on another machine whose
rights are still limited by those that would be made
available to the original remote process.

First, the service (e.g., xinetd) must be authorized to
receive packets from the remote client and vice versa. Au-
thorization is based on the label of the process and theMAC
authorization policy. The label identifies the permissions in
the MAC authorization policy available to the process with
that label (e.g., a SELinux subject type which is analogous
to a UNIX UID). For example, an xinetd server may run



with the label top-secret for an MLS authorization policy to
prevent it from sending packets to client processes labeled
unclassified. This also should enable control for non-MLS
cases, such as an xinetd that runs with a label corpo-
rate xinetd such that it can only receive packets from the
corporation’s users via approved client programs.
Second, xinetd creates a worker process for handling

the client request. xinetd must be able to identify the la-
bel of the client peer and create processes with an appropri-
ate label to control the remote client’s access. For example,
if xinetd starts an ftpd process, the client should only
be able to access files that its label would be authorized for.
Third, it may be desirable to ship the worker process to

a third machine (e.g., for load balancing). In addition to
the IP address of the client, the service needs to convey the
client’s security label to the subcontracting service.

2.3 Related Work

An early solution forMAC control of network communi-
cations between applications is the IP Security Options [18]
(IPSO) which is still used today (e.g., by Trusted Solaris).
In IPSO, the MLS sensitivity levels and categories are en-
coded in the packet header. The receiving system can deter-
mine the label of the packet from the IPSO values, and can
authorize whether this packet can be delivered to the des-
tination process. We are not aware of a method by which
applications may extract this labeling information from the
operating system using IPSO.
The original Linux Security Modules (LSM) proposal

used IPSO to encode labeling information in packets. The
overhead of extracting this information and maintaining la-
bels as packets are fragmented and defragmented added sig-
nificant overhead to packet processing, even when no secu-
rity information was specified [22]. This part of the LSM
proposal was rejected by the Linux networking subsystem
maintainers, so LSMs currently control socket access by re-
stricting the network interface, IP addresses, and ports that
sockets may use. Also, iptables can control access, but
this does not account for the label of the process using a
specified port. As a result, iptables (and firewalls in
general) cannot enforce MAC policies currently.
The Distributed Computing Environment (DCE) defined

a mechanism by which remote clients could be authorized.
Within an administrative domain, subjects could be identi-
fied (e.g., using Kerberos v5), but for other users they are
identified as foreign. Since Kerberos has largely been lim-
ited to a single administrative domain, many users would be
foreign. Also, the translation of tickets that maintain client
labels between the service and the subcontracting system is
not supported.
Trust management enables distributed authorization by

including authorization information in credentials [3, 8, 7].
In fact, the KeyNote trust management mechanism has been

integrated with IPsec [4]. KeyNote is used in order to
manage the creation of security associations between hosts,
rather than to enable control of application-to-application
communications. Since KeyNote enables packet filtering
some control of application-to-application communication
is enabled via the packet filtering rules that reference ports,
but these rules do not limit the communication based on the
application’s security label. Any application that can use a
port is able to do so in the KeyNote policy.
A previous prototype on the Flask security architec-

ture [6] demonstrated that socket access to IPsec security
associations could be used to control packet sends and re-
ceives. This work serves as a motivation for our basic ap-
proach. This prototype only demonstrated that the approach
is feasible. This work did not integrate IPsec labeling into
the systems infrastructure necessary to manage such poli-
cies, build IPsec security associations (e.g., negotiation), or
demonstrate how to use such an approach for distributed au-
thorization. We address those issues in this paper.

3 Distributed Authorization

Figure 1 shows the system architecture that uses labeled
IPsec in Linux 2.6.16 to enable distributed authorization,
addressing the problems described in Section 2.2. The fun-
damental concepts are: (1) a verifiable trusted computing
base; (2) a consistent authorization policy and enforcement
across machines; (3) secure, authorized communication be-
tween each pair of machines; and (4) extending services to
extract and use these labels to create less privileged worker
processes (5).
A trusted computing base on each machine that main-

tains a consistent mandatory access control (MAC) policy
provides the foundation of the system. The trusted comput-
ing base of each machine must be verified for dependable
enforcement of policy. For example, if the client’s trusted
computing base is untrusted, then the server’s xinetd sys-
tem cannot be certain that the client’s processes are labeled
correctly. Thus, per process access control is not possible,
although the server can limit access at the granularity of
the client machine. Having the machines within a com-
mon administrative control or verification via remote attes-
tation [16, 20] provides such a guarantee.
Consistent labeling of subjects is necessary, so that a pro-

cess labeled in a certain way on the client will have a consis-
tent meaning at the xinetd server. A process labeled foo
on the client may be limited to foo communication chan-
nels, so that xinetd can limit the client process to foo ac-
cesses on the server and subcontractor. However, the mean-
ing of foo must be consistent across the machines. It can-
not mean unclassified on the client and top secret on the
server. The same goes for objects. There are two problems:
(1) conveying the labeling policy among machines and (2)
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Figure 1. Distributed Authorization Architecture. Based on: (1) an attested trusted computing base; (2)
consistent labeling of subjects across the two machines; (3) a secure, authorization communication
mechanism; (4) a mechanism for obtaining peer security labels; and (5) modifications of servers to
use of these labels in creating limited-access worker processes.

checking consistency of the policy under dynamic condi-
tions. A variety of policy distribution methods are feasible,
but we believe that a remote attestation mechanism is nec-
essary to verify the labeling policy used, particularly given
policy changes. We have heard of cases where a centrally
administered policy diverges amongmachines as the system
runs.
Communication between machines must be secure and

authorized on both ends using the MAC policy. The trusted
computing base on each machine must be able to authorize
communication based on the security label of the individual
processes. For example, we can restrict the access of partic-
ular xinetd servers to specific clients, such as those that
belong to a particular corporation. We use Linux labeled
IPsec security associations described in Section 4.1 as the
basis for authorizing secure communications. The labels of
the processes and their sockets determine whether they can
send or receive particular packets.
xinetd needs to be able to extract the labels for its

clients, so that it can create the appropriately labeled worker
processes. As enforcement of the MAC policy for com-
munication is done by the operating system (Linux), it is
necessary for the operating system to provide a means for
extracting such labels. We extend the kernel-based, labeled
IPsec implementation to enable extraction of these labels
(see Section 4.2).
Lastly, xinetd needs a mechanism by which it can

create worker processes that run with the appropriate se-
curity label, even if it ships this processing to subcontrac-
tor systems. Again, this requires a mechanism between the
xinetd application and the operating system that enforces
access control. For the subcontractor case, this also requires
that the server be able to convey the label securely to the
subcontractor system. We describe how an application uses
a IPsec labels to create a worker process of the appropriate
label in Section 4.3.

4 Implementation

We describe the implementation of labeled IPsec (Sec-
tion 4.1), label extraction (Section 4.2), and the modifica-
tion of the xinetd server program to use such labels (Sec-
tion 4.3).
This implementation assumes the presence of a remote

attestation mechanism to verify the integrity of the trusted
computing base. We also envision that this remote attesta-
tion would be used to verify the consistency of their MAC
policy labeling. For example, we would expect that attes-
tation of the programs that perform labeling and the inputs
that they use for generating labels would be sufficient. We
discuss the use of remote attestation in the virtual machine
system example in Section 4.4.2.

4.1 Labeled IPsec

The implementation of the LSM/SELinux, IPsec, and
ipsec-tools extensions that enable packet-level access con-
trol based on labeled security associations is shown in Fig-
ure 2. For background on these systems, see Appendix A.
First, we extend the Linux XFRM subsystem that imple-
ments IPsec to label IPsec policies and IPsec security as-
sociations, and use LSM/SELinux to authorize the assign-
ment of labels. Second, we extend LSM/SELinux to autho-
rize the selection of IPsec policies based on the label of the
sending/receiving socket. Third, we use these IPsec policies
to control the generation of labeled IPsec security associa-
tions, so they reflect the authorized label choice, even in
negotiation via the IKE daemon racoon.
In the remainder of the section, we discuss the details of

the design of these three additions and the resolution of the
design issues that were identified.
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Figure 2. Labeled IPsec implementation: (1) Au-
thorized IPsec policy labeling; (2) IPsec pol-
icy authorization; and (3) Labeled IPsec se-
curity association generation.

4.1.1 Adding Access Control Labels
The IPsec policy and the security association data structures
in the XFRM subsystem that implements IPsec in Linux
are extended by the addition of an access control label,
xfrm sec ctx. This structure has the following fields:

domain_of_interpretation
algorithm
SID
context_name

The domain of interpretation is used by the IKE daemon
to identify the domain in which the negotiation takes place.
The algorithm specifies the LSM for which the label is gen-
erated (e.g., SELinux). The SID is an integer representation

of the label that is interpreted by the LSM. The context name
is a string representation of the label, also interpreted by the
LSM. Storing both an integer and string representation for
the label is done to speed authorization, which uses the inte-
ger, and dumping contexts on user requests, which uses the
string.
When an IPsec policy or security association is input

(e.g., via the pfkey interface by the ipsec-tools pro-
gram setkey), an LSM hookmust be added to allocate the
label and perform any LSM-specific processing (e.g., com-
puting the SID from the context name). We have one new
LSM hook each for IPsec policies and security associations,
xfrm policy alloc and xfrm state alloc, re-
spectively. Since xfrm sec ctx is dynamically allocated,
it must also be freed, by hooks xfrm policy free and
xfrm state free.
The authority to label IPsec policy and IPsec security

associations must be authorized. Otherwise, any program
could change the labels of IPsec objects. For example, it is
also possible for applications to set IPsec policies for their
own sockets via setsockopt. The IKE daemon for ipsec-
tools, racoon, must set a policy for its socket that handles
negotiation, so that it can send packets without IPsec protec-
tions to avoid causing a recursive negotiation request. We
must ensure that the label chosen for such IPsec policies is
permissible. We do not want a low secrecy process to create
an IPsec policy that permits it to read high secrecy data. In
SELinux, this involves having permissions to relabelto
the specified label.

4.1.2 Authorizing IPsec Policy

IPsec policy selection is the point at which authorization
of network communication is done. In the XFRM sub-
system, an IPsec policy that matches the source, destina-
tion, protocol, and ports (if specified) is retrieved. In ad-
dition, we require that the IPsec policy has a security la-
bel that the socket is permitted to use for the operation
(i.e., send or receive) based on the MAC policy. An LSM
hook is added to authorize anymatching IPsec policy, called
xfrm policy lookup. If the IPsec policy is not autho-
rized, then the XFRM subsystem continues to search for
another match.
The result is that the IPsec policy selected for a socket is

always the first one retrieved that both matches the selection
criteria and is authorized. This is consistent with the prior
case where the first policy that matched the selection criteria
is returned.
The XFRM subsystem actually retrieves IPsec poli-

cies in two passes: (1) socket-specific policies added via
setsockopt and (2) general machine and port policies.
Thus, the xfrm policy lookup LSM hook for autho-
rization must be added in both places.



With the addition of labels, IPsec policies may be used to
control access to individual processes. In SELinux, sockets
inherit the labels of their process by default. For example, a
high secrecy service in an MLSMAC policy may be labeled
high service and its sockets would inherit the same label.
When the socket aims to send a packet to a remote com-
puter, our requirement of a verified trusted computing base
(e.g., by remote attestation) enables us to limit communica-
tion to only those other computers that we trust to deliver
the communication to authorized processes (e.g., other pro-
cesses labeled high service. If the remote TCB meets these
requirements, then we can define IPsec policies for commu-
nication with that machine labeled for high communication.
Also, the SELinux MAC policy must permit the high ser-
vice processes to send and receive using the high communi-
cation IPsec security associations. If the remote machine is
truly compatible and trustworthy, it can restrict the delivery
of packets only to sockets that can receive packets via the
high communication IPsec security associations. Since only
the sockets running in high service processes can receive
high communications on the remote machine, no lower se-
crecy applications can intercept the data. We do not actively
address covert channels in this design as we see it being out-
side the scope of hook placement (i.e., based on storage and
timing channels in the drivers and protocol).
In addition, we must ensure that packets that are found

not to require IPsec processing (i.e., are unlabeled) are
only sent when authorized. The SELinux LSM has ex-
isting functions for filtering inbound or outbound packets,
sock rcv skb and Netfilter postroute last, respec-
tively. Currently, these functions authorize socket access
to ports, IP addresses, and network interfaces. We extend
these functions to also authorize non-IPsec packets by eval-
uating whether the socket can send/receive in an unlabeled
manner. Since both IPsec and non-IPsec packets use this
hook, we distinguish between them by checking whether
the packet has any security associations attached to it. Note
that any IPsec communication has already been authorized
by xfrm policy lookup, even if the IPsec policy had
no label (i.e., is an unlabeled communication using IPsec).

4.1.3 Using Security Associations
Once an authorized IPsec policy has been selected, we must
ensure that the security associations used in the communica-
tion have the same access control label as the policy. Since
security associations are used differently on inbound and
outbound communications, we examine each separately.
For outbound communications, the XFRM subsystem

uses the previously cached bundle of security associations
for the IPsec policy. We ensure that any bundle retrieved
matches the access control label of that policy. If none are
cached, then security associations may be retrieved individ-
ually from the security association database. Once again,

we ensure that these security associations have a matching
access control labels with the IPsec policy. Finally, if there
is no matching security association in the database with the
same access control label, then the IKE daemon will be re-
quested to negotiate one. Note that this is the existing be-
havior of the XFRM subsystem, so no additional code is
necessary to trigger the negotiation. Once the negotiation
is complete, we check that the security association built by
the IKE daemon has an access control label that matches the
policy.
The IKE daemon (racoon in ipsec-tools) has been

modified as well to ensure that the access control label is
used in the negotiation. The IKE daemon on the initiator
of the negotiation may generate multiple proposal payloads
that consist of a set of transform payloads. The idea is that
one of the initiator’s proposal payloads should match the
proposal payload generated by the responder. If so, that
proposal is returned to the initiator for acceptance. We must
modify the proposal payload generation on both sides to en-
sure that security associations proposed are built with the
appropriate access control labels. On the initiator side, the
access control label is extracted from the authorized IPsec
policy submitted to the IKE daemon, and it is added as
an attribute to the corresponding security association in the
proposal payload. On the responder side, the responder is
changed to peek at the initiator’s proposal to extract the ac-
cess control labels. There must be an IPsec policy in the
initiator’s database that matches this proposal and access
control label, else the negotiation will fail.
For inbound communications, the XFRM subsystem

compares the security associations of the received packets
to the authorized IPsec policy for the socket. First, we ex-
tend the XFRM subsystem to ensure that only authorized
IPsec policies are selected. The same function is used to se-
lect policies for both the inbound and outbound direction, so
no newLSM hooks are required. Second, we compare secu-
rity associations and the authorized IPsec policies is based
on a runtime identifier, spi. When the security associa-
tions are built, templates are created and associated with the
IPsec policy from which they originated. Thus, the tem-
plate spi from the authorized IPsec policy and the packet’s
security association spi must match for the security associ-
ation to have originated from that IPsec policy. We extend
this comparison to also verify that the access control labels
match. This may not be strictly necessary since the ker-
nel verifies consistency between security associations and
policy on negotiation, but this does ensure correctness of
behavior at runtime for low cost.

4.2 Label Extraction

We want to enable applications, such as xinetd, to ex-
tract the security label for the peer process with which they
are communicating. Since the peer process is on a remote



machine, we do not see the label of the process, but we do
know the security label of the security association that the
process is using to communicate. Since the remote process
must have been authorized to use security associations with
this label, it is indicative of the client’s label. We discuss
how to use security association labels to identify process
labels even more accurately in Section 5. The challenge
is that network communication may be implemented using
different protocols (TCP or UDP) which have markedly dif-
ferent behavior. In both cases, we have extended SELinux
to provide the security label on request. This code is in the
process of being upstreamed for Linux.
For TCP sockets, the label of the security association

they are using to communicate with a remote peer (e.g.,
the xinetd client) is extracted using the getsockopt
system call with the SO PEERSEC option. Since TCP
is connection-oriented, the Linux kernel can determine
whether the socket is currently connected. The kernel
caches the security associations used by a socket via its
sk dst cache field (specifically, in the sock data struc-
ture), so the security label can be retrieved from these
cached entries. Note that interpretation of a security label
must be done by a LSM; however, an LSM hook to request
a peer label in the same manner for UNIX domain sock-
ets (local sockets) already exists. We modified the SELinux
implementation to also enable retrieval for TCP sockets.
For connectionless UDP sockets, we do not have a

cached connection. In this case, wewant to determine the
security label of the peer from the UDP packet that we are
receiving. Using the system call setsockopt for a UDP
socket with the socket options SOL IP and IP PASSSEC
tells the kernel to provide the security label in an ancillary
message of type SCM SECURITY. Again the LSM (e.g.,
SELinux) must be invoked to determine the actual label. A
new LSM hook is necessary to enable the attachment of the
security label to the UDP packet receipt process.

4.3 Worker Process Generation

We extend xinetd with a new configuration option
called secsock adopt and the supporting code that im-
plements this option. When the secsock adopt option
is selected, xinetd creates a worker processes for clients
based on the security label of the IPsec security association
used for the communication.
In this case, when a request is received by xinetd, it

retrieves the security label for the security association us-
ing getsockopt as described in the previous subsection
(for a TCP connection). As the mechanism uses security
labels from LSMs, the implementation must be aware of
the particular LSM. In this case, we have used the SELinux
LSM. Using the retrieved SELinux security label, we use
the SELinux library call setexeccon which sets the se-
curity label for the next process executed from this parent.

So, the worker process will be executed with the retrieved
SELinux security label for the security association. We en-
vision that the clients will establish security association us-
ing their label, so that the label used will directly identify
the label of the client.
A more general version of xinetdmight launch server

programs on one of several machines based on load bal-
ancing. If we want xinetd or any other server to be
able to submit the request to be processed on a remote ma-
chine, this can be enabled using labeled IPsec as well. For
xinetd, it can create a socket to pass the request to the re-
mote machine, and assign this socket the label of the client
using the setsockopt system call. When labeled IPsec
selects an authorized IPsec policy for this socket, only one
with the client’s label will be chosen (based on the SELinux
policy). Of course, the mechanism above requires the re-
ply to return through the first xinetd, so alternative net-
working approaches for load balancing, such as Network
Address Translation (NAT), may be preferred. Using UDP
encapsulation enable IPsec packets to be used with NAT, so
NAT and labeled IPsec can be used together.

4.4 Other Applications

We briefly discuss two systems that use the IPsec con-
trols described here to enforce their access control require-
ments: (1) a distributed storage system and (2) a distributed
virtual machine monitor.

4.4.1 Distributed Storage
To reduce management costs and overhead, many organiza-
tions are moving to centralize their storage resources. By
employing MAC labeling, we aim to enforce multi-level
security without separate infrastructures for each category.
Figure 3 shows an example of multiple web servers serv-
ing clients with different authorization levels, connected in
turn to back-end storage through a proxy. In this exam-
ple, the client establishes a security association labeled Cx

with web server x. When the web server’s worker process
requests access to the common storage, its security label
reflects that it is the web server working on behalf of the
client, rather than some more arbitrary client processing
as in the xinetd case. SELinux enables extended labels,
such as type enforcement for the web server label and multi-
level security for the client. The storage proxy makes ac-
cess control decisions based on both the server accessing the
storage and the client ultimately making the request (e.g., a
client with low security level should not be able to access
storage marked as high security). Further, the use of client
and web server labels enables the storage proxy to control
access based on the combination of server and client, such
that a user may have storage access through process x but
not through process y. Finally, labeled IPsec enables denial
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of access at the process level, so the BAD process will have
no access to this storage.

4.4.2 Virtual Machine Controls
We have used labeled IPsec as a basis for controlling net-
work communications between virtual machines distributed
among remote systems [25]. As shown in Figure 4, a vir-
tual machine trusted to enforce system policy (MAC VM)
uses the labeled IPsec mechanism to control communica-
tions between untrusted virtual machines. For example, we
implemented BOINC [1] servers and clients in VMs such
that the BOINC server could only communicate with its
clients. The main difference between this implementation
and the xinetd example is the use of tunnel mode with
labeled IPsec. The two MAC VMs use the labels to control
communication between untrusted virtual machines. Also,
remote attestation was used to verify the integrity of the au-
thorization infrastructure and policy.

5 Discussion

In this section, we discuss a few issues related to building
the systems described above.

IPsec Flows Labeled IPsec is based on IPsec, so the gran-
ularity of its controls are limited by the granularity of the
possible IPsec security associations. Typically, IPsec is
used to establish security associations between individual
machines although it is possible to establish security associ-
ations at the port-level. Machine-level security associations
are more coarse-grained than desirable, and in some cases
port-level security associations are still insufficient. We can
imagine a case where two client processes on the same ma-
chine with different security labels contact the same server
process. Because the client processes will use unpredictable
port numbers, the server has no basis for describing an IPsec

policy for its communication with the client based on ports.
Therefore, both clients cannot communicate with the server.
We have investigated enabling IPsec flows to be based

on labels as well as machines. IPsec negotiation already
enables a server to create a security association if it has an
authorized policy, so we can have multiple security associa-
tions for the same flow differentiated by label. The problem
is that when the server receives the packet it only uses the
first security association that matches the flow, regardless of
the label associated with the received packet. It is straight-
forward to extract the label from the packet and use this
in selecting the corresponding security association, but this
requires a conceptual change in IPsec flows that the com-
munity is not ready for yet. The use of a virtual machine
per client as in Section 4.4.2 would remove the need for
finer-grained flows in many cases.

Actual Peer Labels Rather than using the label of the se-
curity association as a surrogate for the label of the peer, we
are examining whether we can determine the actual label
of the peer. Because IPsec security associations are uni-
directional, it is possible to have a different label for each
direction of the communication. For example, the xinetd
client packets are sent via a security association that is la-
beled for the client process, and the xinetd packets are
sent via a security association labeled for the xinetd ser-
vice. What we have done thus far is to use the client’s label
for the IPsec security association. Using a label in each di-
rection would enable the client to also ensure that it is talk-
ing to a specific server, not just any process that can send a
packet to the client.
The current implementation of IPsec negotiation is lim-

ited by the racoon semantics that result in the creation of
a symmetric connection. While this makes some sense for
cryptographic processing, it is limiting for authorization.
We are investigating a modification to racoon to enable
the negotiation of different labels for each direction of the
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IPsec communicationwhich would enable per process iden-
tification.

Internet-Scale Systems The next step would be to build
a distributed system based on several machines that are con-
nected, where communication is necessary, by labeled IPsec
security associations. The basic labeled IPsec mechanism
would be the same in such a scenario, but the management
problems would be exacerbated by the scale. For example,
verifying the trusted computing base and consistency of la-
beling would challenge scalability. Also, the distribution of
IPsec credentials would be much more difficult to manage.
We envision that more dynamic management of IPsec poli-
cies will be necessary. Dynamic modification of IPsec poli-
cies is not often done, but the complimentary work of Yin
and Wang [23] shows that dynamic modification of policies
is practical and useful. We plan to investigate these issues
in future work.

6 Conclusions
In this paper, we describe an architecture for distributed,

process-level authorization based on labeled IPsec security
associations. The architecture enables the operating system
to control communication between processes on machines
with compatible trusted computing bases (e.g., verified by
remote attestation). Further, the architecture enables appli-
cations to work with the security labels to further control
processing on behalf of clients.
The foundation for the architecture is the labeled IPsec

mechanism we built that is now available in Linux 2.6.16.
The implementation extends the Linux kernel, SELinux
LSM, and ipsec-tools management programs to use the
IPsec security labels in a coherent manner. Labeled IPsec
enables SELinux to control Linux network communication
by authorizing the selection of IPsec policies based on their
security labels entered and negotiated by ipsec-tools. In this
paper, we describe how this implementation fits in the over-
all architecture and demonstrate its use in several example
systems.
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