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Abstract Passwords are currently the dominant authen-
tication mechanism in computing systems. However, users
are unwilling or unable to retain passwords with a large
amount of entropy. This reality is exacerbated by the
increasing ability of adversaries to marshal considerable
computational resources to mount offline attacks. In this
paper, we evaluate the current capabilities of adversaries
and attempt to ascertain the point at which passwords
will no longer be sufficient to securely mediate authenti-
cation. We develop an analytical model for computation
as a means to understand current and future password
recovery. An empirical study suggests the situation is
much worse than conventional wisdom would suggest. In
fact, we found that past systems vulnerable to offline
attacks will be obsolete in 5-15 years, and our study in-
dicates that a large number of these systems are already
obsolete. We conclude that we must discard or funda-
mentally change these systems, and to that effect, we
suggest a number of ways to prevent offline attacks.

Keywords Authentication · passwords · attack
modeling

1 Introduction

Password-based authentication mechanisms are the pri-
mary means by which users gain legitimate access to
computing systems. Because of their central role in the
protection of these systems, the vulnerabilities inherent
to these methods have long been known throughout the
security community. The best known of these vulnerabil-
ities is password choice. A variety of studies [21,25,32]
cite the lack of entropy, or unpredictability, included in
each password as the root of the problem. Because of the
chronic under-use of the available key space, as many as
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30% of user passwords are recoverable within a period of
hours [24].

The common wisdom is that if users can be educated
to select “perfect” passwords, offline brute-force attacks
to recover such information will remain beyond the com-
putational ability of modern machines [19]. In reality,
the current entropy in a perfectly-random 8 character
password, the most common password length, is actu-
ally less than that of a 56-bit DES key1. Thus, the se-
curity provided by these passwords is questionable. In
order to increase the security provided by passwords,
password length increases and password policies are com-
monly employed. A variety of password policies now re-
quest 15 character passwords. In this case, the entropy is
comparable to 3DES or AES. Password policies for guid-
ing users to select more effective passwords have become
more prevalent. As systems continue to rely on passwords
to provide authentication security, it is important to in-
vestigate the validity of these improvements.

In addition to the future increases in computing power,
the viability of password systems is limited by the en-
tropy that humans are actually able to use in practice.
Given that humans are only capable of remembering
approximately seven random items [10], an increase in
password length does not necessarily mean a commen-
surate increase in real entropy. As passwords lengths in-
crease, users may develop techniques to use predictable
chunks of randomly arranged passwords. Also, users will
be tremendously challenged to memorize multiple pass-
words of such length.

In this paper, we investigate two fundamental claims:
(1) near-term increases in available computing power
will soon enable offline brute-force cracking of perfectly-
random 8 character passwords on a variety of commod-
ity platforms, and (2) the maximum entropy that we can
expect from a password is limited to no more than the
commonly used 8 characters we have already, thus ren-
dering password systems that permit offline attacks ob-

1 DES was effectively broken by a brute-force attack in
1999 [2]
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solete. First, we use current forecasting of hardware per-
formance to estimate the end of the computational infea-
sibility for offline password attacks given the entropy of
an 8 character password. We find that computing power
that should be easily available to a typical user will be
sufficient to break a perfectly random 8 character pass-
word by May 2016. For more motivated attackers, the
time to recover passwords will be insignificant. Second,
we examine the entropy of real passwords and the impact
of password policies upon that entropy. The US National
Institute of Standards and Technology (NIST) analyzed
the entropy present in real-world passwords. Based on
this measure and the capabilities of modern password
cracking tools, an attacker with only one machine who
could search the potential password space in order of in-
creasing randomness would be able to recover even an
8-character password including numbers and symbols in
less than 15 hours. We perform a study of real passwords
from the Computer Science and Engineering (CSE) De-
partment at the Pennsylvania State University, and find
that the resulting password entropy is only slightly better
than the results from the NIST analysis. Furthermore, we
find that password policies significantly limit password
entropy and do not appreciably improve the protection
of passwords. No solution is known to exist that can save
password systems susceptible to offline attacks from ob-
solescence in the near future.

The remainder of this paper is organized as follows:
in Section 2, we discuss predictions of future computer
performance and their bearing on password vulnerabil-
ities; Section 3 examines the ways in which entropy is
actually removed from systems and revisits the above
predictions; Section 4 considers solutions to this prob-
lem; related works are presented in Section 5; Section 6
offers concluding remarks.

2 Future of Password Recovery Power

This section considers how hardware improvements and
processor availability impact the security provided by
password authentication systems. We begin by introduc-
ing a model of computing used to assess the vulnerability
of password systems to offline attacks. Using this model,
we consider the present and future security of popular
password systems.

2.1 Forecasting Model for Password Recovery

To assess the viability of current and future password
systems, we introduce a model for investigating the im-
pact of increasing processor speeds and parallelism on
brute-force attacks. These factors, modeled as functions
s(t) and p(t), are based on expert predictions of fu-
ture computing trends. We also evaluate the effect of
the growing availability of large systems of computers
on brute-force attack speed.

2.1.1 Model Definition

Our model is composed of the following components:
password space, processor performance, parallelism, and
system size.
Password Space(c): The password space is the set of
all possible passwords that a system can represent. In
terms of password recovery, the password space indicates
the average amount of work required to recover a pass-
word. Given the limitations of human memory, we shall
assume a typical user password is composed of 8 charac-
ters, where each character can be any of the 95 characters
readily represented with a keyboard. In the best case sce-
nario (from the point of view of system security), user
passwords will be uniformly distributed across the pass-
word space. Thus, an adversary on average must search
half of the password space to recover a password. Based
on these parameters, we represent the average number
of tries required to recover a password as a constant:

c = 958/2 ≈ 3.3 × 1015, (1)

where each attempt to break a password is termed as
try.
Processor Performance(s(t)): The processor perfor-
mance function models the amount of work that can be
accomplished by a single processing element2. To map
this factor to password recovery, we define processor per-
formance as the number of seconds required to perform
a single try, denoted as a time varying function s(t). In
Section 2.1.2 we consider several models that predict how
processor performance will change with time.
Parallelism(p(t)): The parallelism function models the
increasing prevalence of processor replication in contem-
porary computing systems by measuring the number of
processor cores present within a single computer. Pass-
word recovery is a highly parallelizable activity; the pass-
word space can be subdivided into disjoint components
and independently processed by different processor cores.
The level of parallelism present in a given machine greatly
increases the rate at which the password space is exam-
ined. For instance, a machine with 4 processing cores
can simultaneously perform 4 tries. We denote the level
of parallelism present in a given computer as a time vary-
ing function p(t). In Section 2.1.3 we consider different
models that have been used to forecast the number of in-
dependent processing cores present within a single com-
puter.
System Size(z): System size models the increasing preva-
lence of computational devices. For instance, the num-
ber of computers in homes is steadily increasing [16].
Further, the number of computers present in comput-
ing clusters is quickly growing. Finally, the overwhelm-
ing size of botnets is increasing. To capture this trend we
represent the number of independent computers present
in a system as a variable z.

2 To avoid ambiguity, this factor specifically measures the
amount of work a single processor core can perform.
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Password Cracking Forecasting Model(T (t)): Given
our definitions of c, s(t), p(t), and z we can now intro-
duce our model of forecasting how the computing trends
of increasing processor performance and increasing par-
allelism will affect the viability of brute-force password
cracking attacks. Our model represents the amount of
time required to recover a random 8 character password:

T (t) =
(3.3 × 1015) · s(t)

p(t) · z . (2)

2.1.2 Predicting Processor Performance s(t)

This section examines predictions on the growth of future
processor performance as made by experts in the field. It
then defines the function for this growth, s(t), over time
which is used in our model.

Determining future processor performance has been
a widely studied problem for more than 50 years. Moore
stated in 1965 that chip density will double every 12 to
18 months. Unfortunately, chip density is reaching its
limits due to heat and power consumption [14]. Because
of these challenges, the industry is looking towards other
methods to increase overall computing power instead of
focusing on clock speed. Nanotechnologies, compiler op-
timization and other innovations are being considered
as approaches for increasing chip performance [14,20].
However, the industry still looks to Moore’s law as a
predictor of future computing power [20].

Shown in Figure 1, Moore’s Law is represented by
the function, sM (t). However a study by Ekman et al.
showed that the rate of performance growth proposed
in Moore’s law is unrealistically fast and that over the
past 7.5 years, the actual rate of computer performance
growth has been closer to 41% per year. [18]. This more
conservative predictor serves as a second function for
performance growth, sR(t).

Because the limits of physics are affecting the appli-
cation of traditional methods for performance improve-
ment, sM (t) and sR(t) may be unrealistic for future pre-
dictions. Because chip density reaching its limit, there
has been much discussion that Moore’s law is no longer
valid, even by Moore himself [17]. Experts are beginning
to doubt that processor power is going to continue to
grow at rates that we have seen in the past. Taking this
into consideration, we define two more functions, sSG(t)
and s0(t), to more conservatively project the growth of
processor performance. The first function, sSG(t), is a
conservative estimate of 20% processor power growth per
year derived from the expert predictions of future com-
puting power. The second function, s0(t), assumes no
growth over the next 15 years. All four of our processor
performance growth functions are plotted in Figure 1.

2.1.3 Predicting Parallelism Factor p(t)

Parallel computing is popularly seen as a counterbal-
ance to the slowing growth of processor performance.
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Fig. 1 Predicted impact of increased processor performance
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Fig. 2 Predicted impact of future processor parallelism

Multi-core technologies, multiple processors and hyper-
threading have been proposed to increase performance.
Intel and AMD have released estimates for the amount
of parallelism that they expect will exist in a single com-
puter in the near future. Intel predicts that a processor
will have anywhere from tens to hundreds of cores within
ten years [14], while AMD projects that processors will
contain more than 2 cores by 2007 and more than 8 by
2008 [1].

Given these estimates, we predict where parallelism
will be in the near future. We extrapolate two functions
for AMD’s estimates and two functions for Intel’s esti-
mates. The first function of parallelism growth, pAU (t),
is based on AMD’s upper estimate of the number of pro-
cessors available in a single computer while pAL(t) is
their lower estimate. Similarly, Intel’s upper estimate de-
fines the function pIU (t) and their lower estimate defines
pIL(t). From the graph of these four functions shown
in Figure 2 we see that AMD’s estimates, pAU (t) and
pAL(t), are the upper approximations for parallelism growth
while Intel’s estimates, pIU (t) and pIL(t), establish the
lower bound.
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Fig. 3 Predicted UNIX password recovery

2.1.4 System Size z

Another way to gain parallelism in the password recov-
ery computations is to use multiple computers. The more
computers that are used, the less time it takes to recover
a password. A system of computers can consist of per-
sonal computers, clustered nodes, or large networks like
botnets. Any personal computer user can own any num-
ber of computers. In the case of a computing cluster,
the size of these systems can be much larger. Sizes of 20
to 500 nodes are not atypical for today’s standard com-
puter clusters. Large networks of computers provide the
largest factor of parallelism when executing one task. A
botnet, a large number of compromised machines that
can be remotely controlled by an attacker, is an example
of such a network. Botnets can range in size from thou-
sands to hundreds of thousands of computers. This grow-
ing availability of computers directly affects the amount
of parallelism available to any user.

2.2 Future Password Recovery

How safe will passwords be in the future? We can make
determinations of the threat posed by increases in com-
puting performance by using our model. We begin by
briefly describing the password systems that we attempt
to break and the time to recover passwords for each sys-
tem on today’s commodity hardware. The processor per-
formance, s(t), parallelism factor, p(t), and system size,
z, of the future computing systems used in the exper-
iment are defined. The ability to recover passwords of
these future systems is then evaluated in Figures 3, 4,
and 5, and discussed below.

In our experiments, we analyze three password sys-
tems: Unix crypt, MD5 crypt and Kerberos. Unix crypt [9]
is based on the DES algorithm and, with the increas-
ing processing power available, has become vulnerable to
brute force attacks. The MD5 algorithm [30] is also used
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Fig. 4 Predicted Kerberos password recovery
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Fig. 5 Predicted MD5 password recovery

in Unix-based systems and has been implemented as an
upgrade from the DES algorithm. Compared to DES’s
56-bit key size, MD5 uses a 128-bit value making brute
force attacks comparatively more difficult. Kerberos [23]
is a widely-used single-sign-on network authentication
system. Tickets in the Kerberos system are encrypted
with a key derived from a user’s password. These tick-
ets can be attacked in order to recover that password.
As explained in the introduction, we chose to analyze
these systems due to their current wide spread use. For
more information about these password systems see Ap-
pendix A. We ran password recovery software on com-
modity hardware to determine the speed of tries for each
password system. The results from these experiments are
illustrated in Table 1. These values serve as indicators of
current day password recovery ability. Using them as in-
puts to our models, we can derive the password recovery
ability of future computing systems.

For the following analysis, we posit one possible fu-
ture computer type. Given the fact that chip technolo-
gies are reaching the limits of power and heat, the slow
growth processor performance function, sSG(t), is used.
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System Tries/Sec
Unix Crypt 1557890
MD5 Crypt 17968
Kerberos 55462

Table 1 Password Recovery Speeds

In order to determine a median parallelism factor, we
take the average of the two middle values; AMD’s lower
estimate and Intel’s higher estimate. This results in a
function, pAV G(t), that characterizes the average of pAL(t)
and pIU (t). We analyze the impact of this computing
power as it exists within these systems of the future with
the following model:

Tz(t) =
(3.3 × 1015) · sSG(t)

pAV G(t) · z . (3)

The number of computers within a system, the pa-
rameter z in Equation 3, can range anywhere from one
to hundreds of thousands. We examine a six different
systems in our study: a personal computer system con-
sisting of 2 computers, clusters of 10 and 100 nodes, and
botnets of 1000, 10000, and 100000 compromised hosts.

Beginning with the initial values presented in Table 1,
we were able to determine, for each password system,
what each of the modeled computer systems was capable
of recovering over the span of 15 years. The results from
these experiments are presented in Figures 3, 4, and 5.

The most apparent result is that a botnet with 10,000
or more compromised computers is currently able to re-
cover any password from any password system in less
than 6 months. In less than five years, any botnet with
at least 1,000 compromised computers can recover any
password in under a month.

Given a smaller system, like a cluster, we see that
password recovery, naturally, takes longer. An average
sized cluster is able to recover any Unix crypt password
in under 6 months today. However, within only 8 years,
a cluster of minimal size will be able to recover any pass-
word from our three presented password systems.

Examining the extreme case of personal computing
systems, the results are startling. Within three years, any
Unix crypt password will be recoverable in less than 6
months . Unix crypt is obviously broken. The more dev-
astating result is that any password from any of the other
evaluated systems is recoverable in less than 6 months
by a single personal computing system in 10 years. This
means that our trusted authentication systems will be
vulnerable to raw computing power from the comfort of
your own home before 2017.

3 Passwords in Practice

In this section we show that the current state of pass-
word security is actually much worse than the theoretical

model presented in Section 2.1.4 suggests. The preced-
ing model examines the effect of improving hardware on
password recovery, but does so considering the full pass-
word space of 958 possibilities. In reality, the password
space is often much smaller, thus an adversary is not re-
quired to try every one of the 958 possible passwords. For
example, password policies serve to reduce the amount
of work an attacker is required to do to recover random
passwords by reducing the possible password space. We
examine specific password policies and demonstrate the
effect that they have on the speed of brute force attacks.

Password systems are further weakened due to the
poor choice of passwords. In practice, users choose non-
random passwords that contain much less than their
maximum allowable entropy. We demonstrate the degree
to which this occurs by examining passwords within an
actual institution and also by discussing NIST’s study
of passwords and their actual entropy. The effect of this
reduced entropy on the speed of password recovery is
examined.

3.1 Password Policy Restrictions

Based on the recommendations of the security commu-
nity [8,31], many password systems have begun to imple-
ment password policies restricting the types of passwords
that may be chosen. For instance, some sites do not allow
users to choose characters outside the alphanumeric set.
Others require passwords to be between a minimum and
maximum length. Still others make restrictions on the
types of characters that must be present in a password.
While these rules help to prevent users from choosing
dictionary-based passwords, we show that they decrease
the total password space and that this is not effective
in preventing brute-force attacks. We examine a num-
ber of policies and evaluate their effect on the speed of
password recovery attacks in comparison with the results
presented in Section 2.1.4.

We first analyze how policy restrictions reduce the
number of possible passwords. Let Ri be the set of pass-
words that do not satisfy a certain policy i. For in-
stance, if policy i required users to choose a lower-case
letter |Ri| = (95 − 26)8 thus, the password space is
|¬Ri| = 958 − (95 − 26)8. We also define Ri ∩ Rj to
be the intersection of passwords that do not satisfy both
policies i and j (i.e. both policies are not satisfied). Now,
we apply a variant of the inclusion-exclusion principle3

to the total password space to get the formula in equa-
tion 4, which computes how many passwords satisfy all
of the policies specified.

The first password policy we examine is from a recom-
mendation made by the SANS Institute password policy

3 The inclusion-exclusion principle is used to determine the
cardinality of multiple finite sets without double counting. It
over compensates by repeatedly including set intersections,
then recompensates by excluding the excess intersections.
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|
⋂

1≤i≤k

¬Ri| = (958)/2 + (−1)1(
∑

1≤i≤k

|Ri|) + (−1)2(
∑

1≤i1≤i2≤k

|Ri1 ∩ Ri2 |) +

. . . + (−1)k−1(|R1 ∩ R2 ∩ . . . ∩ Rk−1 ∩ Rk|) (4)

page [8]. SANS (SysAdmin, Audit, Network, Security)
is a large collaborative group of security professionals
that provide information security training and certifica-
tion [7]. Their recommended policy is intended to be used
by businesses when they establish password policies for
their enterprise networks. SANS recommends that users
pick at least one upper and lower case character, 1 digit
and 1 special character. Applying the formula in Equa-
tion 4, this fairly typical policy reduces the number of
valid passwords by more than a factor of 2.

The Computer Science and Engineering department
at The Pennsylvania State University recently enacted
a password policy applying to the password choices of
all students and faculty in the department. Following
the common wisdom, they used the Sun password policy
mechanisms to define a policy requiring all users to have
2 upper case characters, 2 lower case characters, 1 digit,
and one special character. Using the previous formula,
this reduces the pool of potential passwords by nearly a
third.

The last set of potential passwords examined here
are those generated with the pwgen utility [6]. pwgen
is a Unix utility that generates “memorable” passwords
of user-defined size (default is 8 characters). However,
until recently, pwgen would only mix alphanumeric char-
acters randomly to form passwords, and would not use
symbols. According to the pwgen changelog [5], this was
done so that passwords would be “much more usable.”
Obviously, this greatly restricts the number of poten-
tial passwords that can be chosen to the size 628, down
from 958. Unfortunately, pwgen is widely used to gener-
ate “random” passwords when secure initial or replace-
ment passwords are needed.

We now examine how limiting the password space af-
fects the speed of brute-force attacks. We perform this
examination with the same models used in Section 2.
Because the previous section already demonstrated that
older Unix crypt hashes are too weak to provide practi-
cal security, we evaluate the speed of brute-force attacks
under the Kerberos system. In this way, we demonstrate
the degree to which attacks can be sped up in a system
that would otherwise remain somewhat secure for the
next few years.

The new estimates for future brute-force attacks, based
on the password restrictions from the SANS recommen-
dations, are shown in Figure 6, while estimates based
on Penn State CSE recommendations are showin in Fig-
ure 7. As a point of reference, under the full password
space, a single user will be able to crack a Kerberos pass-
word in under a year by October 2013. We see that,
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Fig. 6 SANS password recovery with policy restrictions
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Fig. 7 CSE password recovery with policy restrictions

under the restricted password space that SANS defines,
this will happen around October 2012. The Computer
Science and Engineering policy restricts that password
space such that a personal computer will be able to re-
cover a Kerberos password in one year by around Novem-
ber 2011. Most devastatingly, pwgen-generated passwords
can be recovered approximately 30 times faster than
passwords without restrictions. This makes pwgen pass-
words approximately as weak as older Unix crypt hashes
without password restrictions. This policy, the most re-
strictive of the three, creates a situation in which a single
personal computer can crack a Kerberos password in 1
year around June, 2009. This demonstrates how policy
decisions can negate benefits accrued through proper al-
gorithm choice.
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Fig. 8 pwgen password recovery with policy restrictions

We conclude that password policies, while useful for
eliminating the weakest passwords, can severely restrict
the pool of passwords attackers must search. Requiring
users to pick only a subset of potential passwords can
drastically reduce the password space provided by per-
fectly random passwords in that system. The time to
crack a perfect password is reduced by up to a factor of
30, as shown in Figure 8. It is important to note that
when password policies are enforced, this sizable restric-
tion is applied to each and every password, no matter
how random the user’s password is. Another way of ob-
serving this issue is to note that system administrators
seem implicitly aware that 8-character passwords do not
truly possess the full amount of randomness that would
be expected, due to the triviality of recovering a bad
password through dictionary attacks. As the next sec-
tion shows, however, even with entropy-reducing pass-
word restrictions in places, there is still a continuum of
randomness within the passwords that users choose in-
side the policy-enforced subspace.

3.2 User Passwords

Despite password policies that try to force users to cre-
ate more random passwords, users still choose passwords
that contain very little entropy. Users often pick words
with obvious letter replacements, like “0” for O, dictio-
nary words with numbers or characters appended, and
misspellings of common words. Also, by nature, users are
much more likely to pick certain characters than oth-
ers based on elements of a language [27]. In short, they
still pick passwords that are not truly random and thus
are vulnerable to intelligent password guessing attacks.
In response to these tendencies, most password recovery
tools today contain fairly sophisticated methods of guess-
ing words with common symbol-for-letter replacements,
words with numbers appended, and variations on words
out of the dictionary. Some password crackers also have

an intelligent brute-force mode which tries all possible
passwords, but in order of increasing likelihood. For in-
stance, the string “bgtyae1T” would be tried long before
“t,I}&[*v”. Then end result of this is that the brute-
force times depicted in above analyses are still much too
conservative when applied to actual passwords.

In order to evaluate the severity of weakly chosen
passwords, a password file for the entire Computer Sci-
ence and Engineering Department at Penn State Uni-
versity was obtained as described in Appendix A. This
recovered the password hashes for 3500 users. The pass-
word recovery jobs were then submitted to a cluster of
20 nodes with dual AMD Opteron 250 processors. 16
of the 20 nodes were used for brute-forcing passwords
based on character frequencies, and 4 nodes for trying
passwords derived from dictionary words. The password
recovery tool John the Ripper was used since it is widely
available and has good support for both dictionary and
brute-force based attacks. This program ran for 5 days,
with the number of passwords recovered as a function of
time shown in Figure 9.

One of the most startling observations from this graph
is that approximately 25% of all passwords were cracked
within the first 2 hours. It is particularly interesting to
note that only 10.1% of the passwords recovered were re-
covered as a result of guesses based on dictionary words.
The remaining 1118 passwords were all recovered by the
nodes performing an intelligent brute-force attack. The
brute-forcing method found in John the Ripper [3], which
we used for these experiments, is clearly able to recover a
large number of non-dictionary based passwords. This is
a somewhat surprising result, as common lore in the se-
curity community is that the biggest problem with pass-
words is that users choose commonly used or dictionary-
based passwords. Instead, this data may reflect both a
growing consciousness about the weakness of dictionary
passwords and a persistent inability of users to pick pass-
words uniformly from the potential space of all possible
passwords.

3.3 Study of User Passwords

Although the results in the preceding section paint a
dire picture of password strength in practice, there is ev-
idence that the actual resistance of passwords to attack is
much worse. According to the National Institute of Stan-
dards and Technology (NIST), passwords in practice are
much weaker than the theoretical maximum previously
discussed [32]. Based on experimental findings, NIST has
given some guidelines as to the practical entropy pro-
vided by passwords that users choose. In this section, we
evaluate the time to crack an 8 character password using
password entropy guidelines from NIST.

NIST measures the amount of randomness within a
given password using bits of entropy. Each bit of en-
tropy under a given password policy multiplies the pos-
sible password space by 2 (e.g., 5 bits of entropy means
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there are 25 possible passwords). In a system where a
user may chose any 8 character password, NIST spec-
ifies that the first character of a password gives 4 bits
of entropy, and successive characters give 2 bits apiece.
We will call this the permissive policy. In many systems,
however, users are forced to choose both upper-case and
non-alphanumeric characters. This nets a password with
an additional 6 bits of entropy, according to NIST. We
will refer to this as the special-character policy. If pass-
words are checked against an exhaustive dictionary of at
least 50,000 words (a factor of 10 less than the dictionary
searched in the preceding results), 6 bits of entropy are
added. Two new policies can be constructed, the dic-
tionary policy and the special-character and dictionary
policy, when the dictionary is applied to the permissive
and special-character policies, respectively.

Given the previously discussed entropy values and
equation for password space as determined by these val-
ues, we estimate the amount of time required to recover
any password with a single machine and with a 20-node
cluster. Table 2 presents the amount of time required
to recover these passwords in theory as determined by
NIST. Note that all of these measurements assume full
8 character passwords, as the time to compromise with
7 or fewer characters became negligible.

Using the NIST entropy guidelines, our estimates pre-
dict faster recovery than our experimental results show,
though not by much. As Table 2 shows, the average
special-character and dictionary password, the strongest
password type that the government identifies, takes 15
hours to recover. However, only a third of the CSE user
passwords were recoverable in this time. The discrepancy
in these values is likely caused by better passwords cho-
sen within the computer science department as opposed
to the general population.

Software may also play a role in explaining the dis-
crepancy between the actual brute-force recovery speed
and the theoretical brute-force recovery speed. For ex-
ample, although John the Ripper is a sophisticated pro-
gram, it does not do a perfect job of guessing passwords
in order of increasing randomness. Thus, even though a
user password may not be very random, it may not be
quickly recovered due to the imperfect nature of the pass-
word recovery software. Our experience has confirmed
this, as we have seen many passwords (like “myPword!”)
take a long time to crack, while possessing little random-
ness. Software algorithms for guessing passwords have
room for improvement, and the recent development of
new password recovery methods [3] indicates that these
improvements will likely continue to be made. This would
decrease the time to recover a password on every system
in every configuration for every password.

4 Mitigating Password Vulnerability

This section considers ways of mitigating the vulnerabil-
ities of current password systems, now and in the future.
We consider two broad approaches to limiting the vulner-
abilities associated with passwords: the first is to simply
prevent offline attacks from occurring, and the second is
to reduce the effectiveness of the offline attack.

4.1 Preventing Offline Attacks

In order to mount an offline password attack, recovery
material must be obtained, for example, a password file
or a TGT. This material normally consists of encrypted
or digested versions of passwords. Password material can
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Table 2 Time to recover passwords as specified by NIST

Password Type Bits of Entropy Time to recover
for single ma-
chine

20-node Cluster

permissive 18 < 1 minute < 1 second
special-character 24 14 minutes 20 seconds
dictionary 24 14 minutes 20 seconds
special-character and dictionary 30 15 hours 22 minutes

be obtained actively or passively. Active recovery re-
quires the adversary to perform some observable behav-
ior such as initiating a fake login or reading a password
file in order to obtain the necessary material. Passive
recovery is a covert action such as eavesdropping a net-
work exchange to acquire the material. Preventing the
adversary from obtaining this password material would
effectively prevent offline attacks. The mechanism used
to prevent the attack is related to the means by which
the password material is obtained.

In an attempt to prevent active password material
recovery, recent UNIX systems have begun to provide
mechanisms to reduce the visibility of password material
to all users of the system. Recent versions of Unix intro-
duced the concept of the /etc/shadow file, which stores
the password hash in a file readable only by root, instead
of by all users. This makes active recovery schemes more
difficult, thus making offline attacks more difficult.

Preventing passive recovery of password material in-
volves eliminating the availability of the material on un-
protected networks. One option is to not send password
material over the network. Password material includes
anything that is encrypted with a password or a deriva-
tion of a password. Thus, in order to abstain from send-
ing password material, data must be encrypted with some-
thing besides the password. The secure remote password
protocol (SRP) [33] and similar protocols [11] have cre-
ated a way for two parties to agree on a symmetric ses-
sion key with which to encrypt data instead of using pass-
words. However, authentication is still performed with
passwords, as both parties must have knowledge of the
password in order to agree on the symmetric key. Thus,
these protocols have eliminated the need to send pass-
word material over an insecure network in order to sup-
port authentication. They are designed such that they
effectively prevent brute-force online and offline attacks.

Protecting the network over which passwords are sent
is another way to protect password material. This tech-
nique is useful in systems that cannot support changes
to their protocols. For instance, SRP could be difficult
to apply to authentication to financial web services, due
to time synchronization restraints, export restrictions,
and network latencies. Encrypting the link over which
credentials are transmitted is a common method used
to prevent cracking material from falling into the wrong
hands. This could be done using a virtual private net-
work (VPN) or secure sockets layer (SSL). In this way, a
system may continue to use password systems which are

vulnerable to brute-force attacks but trust the network
to protect against them.

4.2 Hardening Password Systems

In many cases, protecting password material can be a
complicated or impossible task thus, the security of the
system lies in the difficulty of offline brute-force attacks.
A number of methods for making password guessing more
difficult have been proposed. One proposed solution is
simply to make the encryption more complex and com-
putationally expensive, thus reducing the speed of brute-
force attacks. However, this presents a few problems.
First, this may put a great strain on the server. In the
case of Kerberos, if the KDC must hash TGTs 1000 times
instead of just once, the computational load on the server
would increase considerably. This exposes authentication
servers to DoS attacks, since an attacker can repeat-
edly attempt to authenticate in most systems. Complex
encryption would also make it difficult to incorporate
legacy systems into new authentication schemes. For ex-
ample, an older 100MHz Pentium system cannot do 100
billion MD5 hashes very easily. Moreover, low power de-
vices are also much less capable of complex encryption.
Other solutions, such as hardware-dependent encryption
algorithms [28], result in a hardware-cryptography arms
race. As hardware increases in speed, cryptography is
deliberately slowed to maintain its security.

Another often proposed solution is to increase the
minimum number of characters required for passwords.
Unfortunately, this solution is restricted by a fundamen-
tal human limitation of remembering no more than 7
random items easily. While some users may be able to
memorize random strings of 12 or more characters, many
will not be able to, and will be forced to write down
passwords or pick passwords will very little randomness.
A good password recovery tool will be able to try such
non-random combinations quickly, negating most of the
benefit to having a longer password.

Implementation restrictions also make this solution
practically difficult. Any system that must inter-operate
with older crypt() implementations is limited to 8 char-
acters. Many sites today require passwords of no longer
than 8 characters because of this. Additionally, since
users must remember such a large number of passwords,
they often re-use them from site to site. As such, they
often pick passwords that will be universally accepted,
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thus restricting their password choices to 6-8 character
passwords conforming to standard password policies.

Pass phrases are an interesting alternative to pass-
words. In this system, a user would choose a pass phrase
of around 7 words. Since there are around 500,000 words
in the English language [4], the potential combination of
these words can provide a larger password space. How-
ever, in practice, informal studies have shown that it may
be the case that pass phrases often provide less random-
ness than passwords [29]. This is conjectured to be the
result of users picking common phrases and words, re-
sulting in less total randomness.

Two-factor authentication is another solution that
has gained recent prominence with the strong recommen-
dation of the Federal Financial Institutions Examination
Council that two-factor authentication should be used by
2006 for all Internet financial transactions [15]. As long
as the method of two-factor authentication used includes
some type of random number or symmetric key, this in-
formation could be combined with the user’s password
to create a key that falls randomly within the keyspace
of the encryption method used. This then eliminates the
fundamental restriction of passwords: that they only oc-
cupy a very limited subset of the keyspace supported by
the encryption used.

5 Related Work

Morris and Thompson first addressed the issue of pass-
word security in 1979 [26] by describing the challenges
faced by the UNIX password system. They observed prob-
lems that existed within the system stemming from the
availability of the password file and then identified guess-
ing passwords as a general approach that was successful
in penetrating the system. However, the time to encrypt
each guess and compare the result with the file entries
was highlighted as the main challenge in password guess-
ing. They analyzed passwords from 1 to 6 characters long
from key spaces of 26 to 128 characters and found that
exhaustively searching the key space was beneficial in
finding a fraction of a system’s passwords given enough
time. To simplify the searching task, they also noticed
that the users of the system chose short and simple pass-
words, which greatly reduced the key space.

In order to make cracking user passwords more chal-
lenging, Morris and Thompson proposed a list of tips to
make stronger passwords. The suggestions were attempts
to slow the process of password cracking and included ba-
sic ideas like choosing longer passwords, choosing pass-
words constructed from a larger character set, or having
the system create passwords. The authors also proposed
password salting, combining the password with extra
well-known data, as a technique to make pre-computation
impossible and increase the time necessary to crack a
password. These defenses became the basis for future
password cracking prevention techniques.

Ten years later, a paper was published discussing the
claims of Morris and Thompson as well as the progress
of password security and cracking [19]. Like its predeces-
sor, the paper examined the performance of key space
searches. They looked at the possible times for crack-
ing passwords with the same key space as Morris and
Thompson, but examined lengths ranging from 4 to 8
characters. With the addition of password salting, the
searches had indeed become more complex. The authors
claimed that a large key space of 95 characters “is large
enough to resist brute force attacks in software ... It is
impossible to use exhaustive search over the large search
space...” However, they determined that password crack-
ing was very possible if the search space was limited. This
could be done by creating a common password word list
to guess passwords from instead of attempting to guess
every possible password.

In order to maximize the difficulty of password crack-
ing, [19] discussed execution speed of the hashing mecha-
nism and password entropy. The authors concluded that,
because computing speed and power were changing, at-
tacking the problem by increasing the speed of the en-
cryption algorithm was not plausible. They also analyzed
other solutions including changing the encryption algo-
rithm and better protecting the cracking material. It was
concluded that making passwords less predictable was
the principal defense against password cracking.

Dictionary attacks are the fastest, easiest way to crack
passwords because passwords are commonly chosen from
a small set of words. In order to prevent these fast,
simple attacks, systems implemented policies that re-
quired passwords contain a certain amount of entropy.
The policies include rules on minimal length and required
password characters. To enforce these policies, password
checking software was developed, which determined if
a given password had enough entropy to be considered
secure. However, dictionary attacks then evolved by ex-
ploiting common non-dictionary choices for passwords.
The techniques used by these attacks included search-
ing for random capitalization, permutations of dictionary
words and usernames, letter and number manipulations,
and foreign language words. These attacks continue to
evolve by examining and exploiting common policies.
Unfortunately, research has shown that despite password
policy advice, users still tend towards dictionary words
for passwords [22].

Sophisticated analysis of the English language has
aided in password guessing. For example, character fre-
quency, once very successfully used as a spellchecker in
UNIX, is now being used in password cracking [3]. Anal-
ysis of common passwords has also contributed to faster
password cracking. Possible passwords are tried in a cer-
tain order based on how common the password is. From
these advanced methods, we see that password guessing
techniques continue to evolve as long as passwords are
still in use. As a result, a variety of solutions have been
proposed to combat password guessing.
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Twenty five years after Morris and Thompson’s pa-
per, modern passwords are still vulnerable to offline crack-
ing attacks. Basic hashes and digests are still used to
encrypt these passwords, thus today’s cracking mate-
rial is similar to that available in the 1980s. However,
the ability hash passwords, and thus recover passwords,
has drastically improved due to developments in software
that have quickened the performance of these encryption
techniques, sometimes by as much as a factor of 5 [13].
These improvements have impacted the speed at which
passwords can be cracked, thus increasing the difficulty
of preventing offline password cracking.

6 Conclusion

Password authentication systems that permit offline at-
tacks can no longer resist the concerted efforts of attack-
ers. Such systems are fundamentally restricted in the
amount of protection they can provide because of the
rapidly growing array of resources at attackers disposal.
The ease with which even truly random passwords will
be recoverable in the next 5 years mandates new intro-
spection by the security community. Protocols must be
designed to prevent offline attacks, and the material that
can be used to mount such an attack must be protected
with the understanding that its exposure will be fatal to
the systems that the passwords protect.
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Appendix

Unix Crypt

The previous work in this field has examined password
cracking primarily as it applies to cracking attempts against
the Unix/Linux /etc/passwd, so we start by examin-
ing this password storage type to give a sense of how
modern techniques and equipment compare to what was
previously available. This type of authentication system
is used to authenticate users to a Unix/Linux system.
In the traditional Unix crypt system, hashes of users’
passwords are stored in a password file often named ei-
ther /etc/password or /etc/shadow, with the 2 letter salt
prepended to the hash. A user enters their password,
which is then combined with the salt in the password
file, and then encrypted using a variation of the DES al-
gorithm. The resulting ciphertext is compared with the
hash in the password file, and if the values match, the
user is successfully authenticated. Newer systems, such
as the one first found in modern crypt function, hash the
password with MD5 repeatedly (up to 1000+ times), in-
stead of just once[28].

For this type of authentication system, an attacker
must somehow obtain a copy of this password hash file.
Unfortunately, this can be made available to an attacker
in a variety of ways. The simplest of these is if an attacker
has root access on a machine, in which case he can sim-
ply copy the /etc/shadow file. If the password hashes
have not been moved to /etc/shadow, they will reside in
the world-readable /etc/passwd file, in which case an at-
tacker with normal user access to the system can simply
copy the file. However, amongst other attacks, there is
one attack in particular which allows a large number of
attackers access to the password file. The Network Infor-
mation Services, or NIS, is often used to centralize au-
thentication decisions over a large number of machines.
NIS provides a utility, ypcat, which allows users to view
portions of information about system users. We found
ypcat to be often misconfigured in a way that allows any
user on any system connected to NIS to simply ypcat
the password hash portion of each user in the system. In
this way, an attacker can gain access to the credentials
of each user on any system tied to NIS.

The actual process of guessing a user’s password is
very simple. To recover passwords from this password
file, an attacker takes candidate passwords, combines
them with the appropriate salt, which is well known, and
applies the appropriate hashing technique to this value.

The attack then checks to see if the result from hashing
his guess matches the hash value in the password file.

Kerberos

We also evaluate password cracking as it relates to mod-
ern versions of Kerberos. Kerberos, a popular single-sign-
on protocol, is widely touted today as a solution to “the
password problem.” It is used to authenticate to a va-
riety of services, including IPsec, Email, Web Services,
Directory Services, and many more. Because Kerberos is
often used as a single-sign-on service, a compromise of
Kerberos credentials is often equivalent to a compromise
of the users’ credentials to every service in the network.
Unfortunately, Kerberos, in every version, is vulnerable
to a variety of password-guessing attacks[12,34].

One of the biggest issues with Kerberos as it re-
lates to password cracking is that as opposed to most
Unix/Linux systems, where an attacker must have a valid
user account (or have compromised one), all the crack-
ing material necessary to mount an offline attack against
Kerberos credentials can be obtained either by anyone
who asks or anyone who can sniff Kerberos traffic, de-
pending on the restrictions in place. During a client’s
initial authentication In the Kerberos protocol, a client
sends an authentication request to a server in charge of
authentication for the Kerberos realm called the KDC.
If the client makes a correct request, the KDC will re-
turn a token called a ticket granting ticket (TGT). This
token can be used to obtain credentials to any Kerber-
ized service the client can access. Unfortunately, when
this TGT is given to the client, it is transmitted over the
network, encrypted with a key derived from the user’s
password. While the user’s password itself is never sent
in any form, this TGT is still vulnerable to password
guessing attacks, as described below.

An attacker has a variety of options for obtaining
cracking material (the TGT) required for this attack.
In Kerberos v4, a KDC will return a TGT to anyone
who asks for it. Thus, in this case, an attacker’s job
is completely trivial, and he can easily obtain a TGT
to crack for each user in the system by simply asking.
However, Kerberos v5 introduced the idea of preauthen-
tication. With preauthentication, a user must use the
key derived from his password (as described above) to
encrypt a timestamp, which is included in the client’s
request for TGT. The server will only return a TGT if
the timestamp received by the server decrypts correctly
with the client’s key. In this way, the server attempts to
insure that a TGT is only sent to the user to whom it
belongs.

However, an attacker attempting to crack a Kerberos
5 deployment still has a number of options for recover-
ing a TGT. First, many Kerberos deployments do not
have preauthentication required for all users. In this sit-
uation, an attacker may simply ask for TGTs as he did



Password Exhaustion: Predicting the End of Password Usefulness 13

for Kerberos v4. Many deployments, in order to ensure
backwards compatibility, still support Kerberos v4, so
an attacker may simply ask for v4 tickets for each user.
Finally, in any of these systems, the TGT itself is sent
over the network in the clear, so an attacker that can
sniff the network can trivially recover the TGT.

In order to compromise Kerberos credentials, an at-
tacker first captures the TGT using one of the aforemen-
tioned methods. Then, an attacker generates a password
guess. This guess is transformed into a key using the
Kerberos “stringToKey” function, which uses both the
password guess and information found in the TGT itself,
such as the user’s name and the name of the Kerberos
realm. Then, this key is used to decrypt the captured
TGT. Since each TGT, if decrypted correctly, contains
the string “krbtgt”, it is easy for an attacker to know
if the decryption, and therefore the candidate password,
was correct.


