
Realizing Massive-Scale Conditional Access Systems
Through Attribute-Based Cryptosystems

Patrick Traynor, Kevin Butler, William Enck and Patrick McDaniel
Systems and Internet Infrastructure Security Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University

University Park, PA 16802
{traynor, butler, enck, mcdaniel}@cse.psu.edu

Abstract

The enormous growth in the diversity of content ser-
vices such as IPtv has highlighted the inadequacy of the
accompanying content security: existing security mecha-
nisms scale poorly, require complex and often costly dedi-
cated hardware, or fail to meet basic security requirements.
New security methods are needed. In this paper, we ex-
plore the ability of attribute-based encryption (ABE) to meet
the unique performance and security requirements of con-
ditional access systems such as subscription radio and pay-
per-view television. We show through empirical study that
costs of ABE make its direct application inappropriate, but
present constructions that mitigate its incumbent costs. We
develop an extensive simulation that allows us to explore
the performance of a number of virtual hardware configu-
rations and construction parameters over workloads devel-
oped from real subscription and television audiences. These
simulations show that we can securely deliver high qual-
ity content to viewerships of the highest rated shows being
broadcast today, some in excess of 26,000,000 viewers. It is
through these experiments that we expose the viability of not
only ABE-based content delivery, but applicability of ABE
systems to large-scale distributed systems.

1 Introduction

The explosion of audio and video content diversity cou-
pled with increasing bandwidth being delivered to the home
has lead to increased options for consumers. The condi-
tional access systems providing this content predicate ac-
cess on a variety of arrangements with the user (i.e., sub-
scription vs. pay-per-view). While the security of these
systems has been studied for some time, many problems
persist. Specifically, content providers often sacrifice sim-

plicity, cost and security to scale delivery to viewerships
that may include millions of households. Through the use
of new techniques, the magnitude of these tradeoffs may be
greatly reduced.

An extension of identity based cryptography, attribute-
based systems (ABE) provide a semantically rich tool for
implementing encryption policy. Data in ABE is encrypted
under a set of identity attributes. Each user of the system
is assigned a subset of the group’s attributes by a trusted
third party. Users possessing k out of the n those attributes
can recover the plaintext, where the value of k is at the dis-
cretion of the encrypting entity. For example, one could
create a system whose attributes are the states in the United
States, and encrypt a particular data item under the states
beginning with the letter ‘A’. Assuming every person in the
United States is assigned the attribute of their home state,
only people in Alabama, Alaska, Arizona, and Arkansas
could retrieve the data. ABE systems are no longer theo-
retical cryptographic constructs, but they have been imple-
mented and their performance carefully studied [27]. Inter-
estingly, these characterizations have shown that for small
numbers of attributes, such systems can be quite efficient.

Attribute systems can address many of the problems pre-
sented by conditional access systems. In one model, the
ABE would encrypt the content such that any user with a
valid subscription or access code (in the pay-per-view case)
could recover the plaintext. This model is significantly sim-
pler than existing models, which typically involve dedicated
hardware, implement complex key management protocols,
and have limited ability to adapt to rapidly changing view-
erships. However, while promising, a naı̈ve implementation
of ABE will not work well in practice. Past studies have
shown that costs grow quickly with the number of attributes,
and thus other techniques are needed.

In this paper, we consider the use of ABE in massive-
scale conditional access systems. We begin by consider-

ing the unique requirements of current and next generation
content providers, and review a number of past attempts to
implement similar services. An in-depth performance char-
acterization is used to assess the appropriateness of ABE
to this application context. A novel ABE construction that
addresses scalability and performance requirements of mas-
sive scale groups is introduced, and its parameterization
considered. An extensive simulation study is used to de-
velop prescriptive system models used to design conditional
access systems for expected group sizes and latency bud-
gets.

The simulations confirm that the ABE can be used to im-
plement security in conditional access services. The major
findings of that study are manifold. First, we found that
adding computational power (processors) is essential to en-
during instantaneous increases in viewership (such as those
seen at the beginning of a broadcast). Such computational
power surprisingly does little to reduce latencies observed
when few membership changes can be observed. Secondly,
significant performance gains can be achieved by separat-
ing viewership into independent viewer groups, and that
such gains are sustainable to a fixed minimal group size.
Finally, our study of large-scale groups show that major
content providers such as cable companies and television
networks could easily deploy sufficient hardware to support
national audiences.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the structure and needs of conditional ac-
cess systems. Section 3 briefly describes the cryptographic
foundations of ABE systems and characterizes its perfor-
mance via empirical study. Section 4 introduces a novel
construction that mitigates the performance costs of im-
plementing massive-scale groups. Section 5 details an ex-
tended simulation study of ABE based conditional access
systems, and Section 6 concludes.

2 Conditional Access Systems

This work explores the performance of conditional ac-
cess (CA) systems1, which operate over broadcast channels
but impose access control requirements for content delivery.
There are three general models for implementing CA sys-
tems: subscription-based services, where a periodic (often
monthly) fee is paid in advance for access to service, pay-
per-view services, where a user signs up in advance for a
fixed-length program of interest, and impulse pay-per-view
services, where the user can sign up for a program without
any a priori setup required (e.g., the user has a set-top box
for cable television service, finds an event of interest and
presses a “subscribe” button on their remote control to in-
stantaneously gain access to the program). In these systems,

1The authors note the unfortunate collision between acronyms for con-
ditional access systems and certificate authorities.

subscriber management may be delegated to a trusted third
party because of the complexity of the operation, while sub-
scriber authorization is dealt with by encrypting content and
requiring a smart card capable of decryption in the recipi-
ent’s device, or a separate descrambling box. Authorized
devices will have access to the key for decrypting content,
often for a fixed amount of time [15].

The totality of subscribers of a particular system is
known as the group. These groups add members through
join operations. Members voluntarily exit the group through
leave operations. Although of minimal importance to the
following analysis, leaves are often distinguished from re-
jections (also known as revocations) in that the latter is not
voluntary. Also known as the group size and without loss
of generality, the viewership is the number of members in a
group.

Groups in CA systems have performance requirements
specific to their environments. Join operations need to be
near instantaneous–users desire to get content as soon as
payment is made or the channel is tuned. Conversely, leave
processing is often less urgent. Systems are willing to con-
tinue delivering content to a previously joined member for
some period, particularly if doing so allows lower latency
joins. Of course, content delivery is of paramount impor-
tance. Content playback often has real-time requirements,
and thus any noticeable latency, if even for a moment, is un-
acceptable. We consider how to meet these often stringent
performance requirements in an ABE-based secure content
delivery system through, and review past attempts at secur-
ing these systems in the next subsection.

2.1 Related Work

Cryptographic mechanisms are a natural means of man-
aging membership in large groups. In multicast systems,
for example, a number of systems have attempted to use a
public key infrastructure (PKI) [19] and secure group com-
munications [20, 32, 12, 24, 34, 35] to address access con-
trol. The MARKS [10] and Nark [11] schemes reduce the
impact of joins and leaves in the above schemes at the ex-
pense of frequently rekeying at regular intervals. Broad-
cast encryption schemes [16, 25, 9] improve over the above
mechanisms by removing the requirement of bidirectional
communication. However, such techniques have been con-
sidered limited in their ability to concurrently express mul-
tiple complex policies.

A promising new building block for creating distributed
systems is attribute-based encryption (ABE). A generaliza-
tion of identity-based cryptography [30, 8, 14], ABE sys-
tems use a collection of attributes as the basis of crypto-
graphic primitives. Using threshold constructions such as
those suggested by Sahai and Waters [28], users in pos-
session of at least k-out-of-n attributes can gain access to

encrypted content. Such primitives have been extended by
Goyal et al. [17] and Bethencourt et al. [5] to bind tree-
based access control structures directly into keys and ci-
phertexts, respectively. Others have created protocols to
limit the exposure of a principal’s attributes [2, 22]. Pir-
retti et al. [27] were the first to demonstrate that such prim-
itives were both expressible and efficient enough to use as
the basis of real systems; however, their work did not ad-
dress how the specific embodiment of policy impacts per-
formance. Without understanding the implications of such
choices, it becomes possible to build a system in which the
implementation of policy prevents a system from meeting
its performance requirements.

Many applications already rely on attributes as means
of managing users. Attribute-based access control (ABAC)
systems [7, 36] base policy decisions on the attributes as-
signed to users and resources. Attribute-based messaging
systems [6] automatically create mailing lists by reconcil-
ing system policy with sender specified attributes. Cur-
rent attribute-based systems, however, use traditional cryp-
tographic constructions and rely upon central administra-
tion of policy. These applications therefore do not scale
well to large-scale or distributed systems. Because the ap-
plication of ABE primitives may significantly expand the
flexibility of these and many other systems, we investigate
how such constructions can be most efficiently applied.

3 Attribute-Based Systems

Before discussing the construction of efficient policy, we
informally define and characterize encryption policies in an
attribute-based system. An attribute policy, or simply pol-
icy throughout, is the specification of the attributes neces-
sary to gain access to an object (e.g., file, session, etc). Be-
cause such policies are bound to associated objects using
a series of cryptographic operations, enforcement in a dis-
tributed environment is possible.

3.1 Attribute-Based Encryption

We begin our discussion of policy by offering a high
level explanation of the functionality provided by the un-
derlying cryptographic primitives. A generalization of
Identity-Based Encryption (IBE) [30, 14, 8], Attribute-
Based Encryption (ABE) allows a set of strings to describe
users. For example, a member of a basketball league with
an online forum may be represented by a set of attributes
A ={ Guard, Over 7′ Tall and Left Handed}. Those
users interested in recruiting teammates satisfying at least
k-out-of-n of these characteristics can encrypt messages to
such players using only these strings and the system’s pub-
lic parameters. Such exchanges can occur without the need
for additional per-user public key certificates.

Systems using ABE implement four high-level algo-
rithms. The first, Setup, takes a threshold value k as input
and generates a master key MK and the system’s public
parameters. To create a user, the authority runs the Key-Gen
algorithm with MK and the set of attributes S to gener-
ate a user’s secret key SK. Note that the size of the set
of attributes S = {A0, A1, · · · , Ax−1} assigned to a user
does not necessarily match k or n; rather, the universe of
attributes A can be infinite whereas the number of attributes
used in an atomic expression of policy is bound by k and
n. Users can Encrypt an object o under a set of attributes
S′ using the public parameters. Encrypted objects can then
be accessed using the Decrypt function, which ensures that
|S

⋂
S′| ≥ k before recovering o.

We rely upon a variant of the Sahai-Waters Large-
Universe construction [28] to implement our systems. This
construction computes a bilinear map e : G × G → GT

between k attributes and pieces of a private key. The perfor-
mance of encryption and decryption are therefore functions
of n and k, respectively. Note that any cryptosystem ca-
pable of providing k-out-of-n attribute threshold semantics
with resistance to collusion would be equally effective.

In order to provide additional flexibility and significantly
increase performance, our variant implements a random or-
acle construction [3, 13]. The random oracle construction
replaces the most computationally expensive component of
the Sahai-Waters construction with a hash function. As long
as the security of the hash function is sufficient, the ran-
dom oracle construction can be used to dramatically reduce
performance costs. The random oracle construction also al-
lows for n to be variable, allowing expressions in a single
cryptosystem to be expressed with as few attributes as is
necessary (i.e., no padding or “default” attributes). As was
demonstrated by Pirretti et al. [27], the combination of el-
liptic curve type and the random oracle construction can re-
duce encryption costs by more than 98%. We therefore use
this construction throughout the remainder of this work. A
more formal definition of the Sahai-Waters construction is
offered in the Appendix.

Finally, because of the expense associated with ABE,
we use these operations as a key encapsulation mechanism
(KEM). Specifically, the cryptographic primitives protect an
AES key, under which associated data is encrypted. Such
techniques are standard in most public-key systems.

3.2 ABE Performance

In order to understand how to apply ABE to real sys-
tems, we must first characterize its performance. We use
the ABE library created by Pirretti et al. [27] and lever-
age their characterization of performance as a basis for fur-
ther exploration. We have provided extensive updates to
improve compatibility with the most recent release (0.4.9)

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
(s

)

Number of Attributes

MNT
Supersingular

Figure 1. Cost of encryption using MNT and
supersingular curves in a 1-out-of-n attribute
system.

of the Pairing-Based Cryptography (PBC) library [23] and
to streamline functionality. System characterization experi-
ments were conducted on Dell workstations with Intel Core
Duo 2 processors and 1 GB of RAM using Linux kernel
version 2.6.20. Each experiment was conducted 500 times
to ensure statistical significance.

We first validated the results from Pirretti et al.’s perfor-
mance analysis, due to the updated libraries and different
underlying computing platform (Pirretti et al. performed
experiments on Apple G5 XServe machines running Mac
OS X Server). Our experiments focus on encryption and
decryption operations specifically. Because we are inter-
ested in very large-scale cryptosystems, factors such as sys-
tem setup and key generation are less interesting, as such
operations are likely to occur infrequently. In addition, be-
cause we intend to use each attribute as a unique identifier
in massive-scale systems, we limit our discussion to strictly
on 1-out-of-n cryptosystems.

A major difference between our investigations and those
of Pirretti et al. is the scale of considered attributes. While
the original investigations considered a maximum of 32 at-
tributes, we profile ABE systems with up to 100,000 at-
tributes. It is thus necessary to determine whether the char-
acteristics found by Pirretti et al. scale.

We first examined the use of MNT versus supersingular
curves using the random oracles model. Pirretti et al. found
that MNT curves vastly outperform supersingular curves for
encryption as the number of attributes increases. We vali-
dated these results, as shown in Figure 1. To establish a
relationship between encryption time and the number of at-
tributes, we performed a least-squares regression over the
MNT data. This resulted in the following equation:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
(s

)

Number of Attributes

MNT
Supersingular

Figure 2. Cost of decryption using MNT and
supersingular curves in a 1-out-of-n attribute
system.

E = 2.2214 ∗ 10−3n + 0.01804 (1)

where E is the required encryption time and n is the number
of attributes. This equation fits the data with extremely high
correlation of r2 = 0.99999997.

Our results for decryption of n policies stand in contrast
to Pirretti et al. Decryption costs are relatively constant for
the first 1000 attributes, with supersingular curves perform-
ing comparably or slightly better to MNT curves. Recall
that performance of ABE systems decryption is a function
of k rather than n. Since we are examining a fixed 1-out-
of-n system (k = 1), decryption should theoretically re-
main constant. However, we found that as the number of at-
tributes increases past 1000, decryption cost increased pro-
portionally to n. More surprisingly, MNT curves perform
substantially faster than supersingular curves. These results
are shown in Figure 2. While Pirretti et al. demonstrated
an order of magnitude performance difference for decryp-
tion in favor of supersingular curves, these results show that
MNT curves perform better for large-scale systems. A re-
gression analysis of the data yielded the function

D = 3.5159 ∗ 10−6n + 0.033791 (2)

where D represents required decryption time and n is the
number of attributes. Correlation was very high, yielding a
value r2 = 0.9999992.

To determine the cause of linearity in the decryption
operation and to vet the accuracy of our operations, we
extensively profiled the PBC library and our code using
gprof [18] and Valgrind [26]. We found that much of the
decryption costs for a large number of attributes result from
AES decryption of the ciphertext; the operation necessitates

...

...

...

Näıve

TieredIndividual

Attributes

Group

Attributes
Content

Key

Figure 3. A comparison of the naı̈ve and tiered constructions for providing efficient access to content
keys. Because join and leave operations can be performed on groups, the tiered construction is more
efficient.

use of a for loop based on the number of attributes as part
of an HMAC calculation to validate the content before the
decryption occurs. This accounts for the non-constant time
profile. We also found that the increased performance of
MNT versus supersingular curves may be related to changes
to the PBC library that have optimized MNT curves, poten-
tially to a larger extent than with the supersingular curves.

Decryption is a much less costly operation than encryp-
tion, with even 100,000 attributes requiring less than 500
ms to decrypt and only approximately 33 ms required for
1,000 attributes or fewer. Thus, even a low-powered device
with limited computational ability, such as a mobile phone
or PDA, will be able to complete attribute-based decryp-
tions in a matter of a few seconds or less. On desktop-class
machines, the cost of decryption is virtually negligible.

Based on the data we have observed, we assume that
any large-scale attribute-based system will use MNT curves
with a random oracle model. In the next section, we con-
sider how these measurements relate to a real system that
has practical deadlines.

4 ABE-CA Access Structure

The real-time performance requirements of CA sys-
tems mandate the use of symmetric key content encryption.
Specifically, the overhead of public-key operations negates
their use as the primary protector of data. However, such
schemes are not without value. A number of content protec-
tion systems rely on public-key cryptography to distribute
symmetric keys (e.g., AACS [1]). Because ABE greatly
simplifies the management of public-keys, we seek to apply
this technique to the problem of content protection.

Naı̈vely implemented, however, the use of such crypto-

graphic primitives cannot meet even modest performance
requirements. As shown in the previous section, the linear
scaling of encryption cost with the number of attributes in
the system means that large scale operations cannot be per-
formed efficiently. For example, when encrypting an AES
content key for a system with one million users, the average
encryption time would require approximately 37 minutes.
If we wish to change the content encryption key at any time
during a half-hour broadcast, such operations would simply
not be supported by the current construction.

The linearly increasing cost of encryption motivates a
more efficient construction. Specifically, while encrypt-
ing data for enormous numbers of individuals fails to meet
performance goals, the encryption of data for a handful of
groups can be achieved within such a system. For example,
if the AES content key is to be changed once per minute,
an average encryption time of 2.24 seconds for groups of
1,000 attributes easily meets this performance target. Ac-
cordingly, the challenge to efficiently using ABE in this set-
ting becomes a problem of efficiently mapping users into
groups.

Figure 3 provides an overview of this tiered construction.
To achieve these ends, we begin by dividing the user popu-
lation into groups of size n. Because of the linear scaling of
the cost of encryption with the number of users in the sys-
tem, such partitioning in and of itself fails to improve per-
formance (i.e., linear scaling means that 10 encryptions of
1-out-of-10 expression require the same amount of time as
a single encryption in a 1-out-of-100 cryptosystem). Each
of these groups therefore contains an encrypted “group” at-
tribute. All users capable of decrypting this new attribute
can then use it to decrypt the object containing the AES
content key. When the content key is changed by the ad-

ministrator of the system, users can continue to apply their
group attribute to efficiently access new AES keys. Because
the number of attributes n′ encrypting the content key is
much smaller than the total number of users in the system,
the cost of encrypting new keys is inexpensive.

New users gain access to content through the join opera-
tion. The system begins by finding a group with less than n
members. The group attribute corresponding to this group
is then re-encrypted using the attributes of both the new user
and current members. The new user then decrypts the group
attribute using his unique attribute and applies the group at-
tribute to decrypt the content key. Note that other members
of the group are unaffected by the addition of a new mem-
ber as the group attribute remains unchanged. At the end of
a subscription period or due to a forced revocation (e.g., il-
legally cloned device detected), the system executes a leave
operation. To prevent the leaving user from accessing fu-
ture content, the content key and group attribute are both
updated. A new group attribute, encrypted under the set of
user attributes minus the removed member, must then be
decrypted by remaining members.

The benefits to this approach are numerous. The time
required to perform a join operation (i.e., add a user to the
system) becomes a function of n and not the size of the en-
tire population. Moreover, the division of the population
into groups allows for the parallelization of joins given the
availability of multiple processors. Compared to the naı̈ve
construction, the cost of performing a leave operation is also
drastically reduced. Users in the same group as the leaving
party must decrypt a new group attribute before they can ac-
cess a new content key. Users in other groups, however, are
unaffected and can continue to apply their group attributes
to recover the new content key.

As presented thus far, our tiered structure establishes a
one-to-one mapping between groups and group attributes.
However, as the number of users in a system grows, such
a relationship may become unsustainable. While group at-
tributes can be added to support unique new groups, appli-
cation performance requirements will bound the size of n′

to maintain inexpensive rekeying. Additional groups may
therefore be required to share group attributes via pigeon-
holing. The impact of this and a number of other design
tradeoffs is investigated in greater detail in the next section.

5 ABE-Enabled Systems

We now apply the constructions defined in the previ-
ous section to massive-scale systems with real-time perfor-
mance requirements.

5.1 Simulation

The tiered ABE construction proposed in Section 4 pro-
vides various tunable parameters to meet performance re-
quirements. In this section, we use simulation to con-
sider the effects of each parameter on realistic workloads.
We simulate the server side operations for our tiered con-
struction using the encryption cost function derived in Sec-
tion 3.2. Our simulator exports the following performance
sensitive parameters:

n : The group cryptosystem size
n′ : The content cryptosystem size
D : The batch duration
P : The processor pool size
K : The content attribute key pool size
KP : The number of content attribute key

pool processors

As described in Section 4, our tiered ABE construction
breaks clients into groups of size n. The group size de-
termines both the first level encryption cost as well as the
number of groups in the system. The content cryptosystem
size n′ directly impacts content encryption, and therefore
must be kept at a minimum. As the number of groups will
commonly be greater than n′, multiple groups will map to
each attribute position in the content cryptosystem. When
a client leaves, the corresponding attribute in the content
cryptosystem must change, thereby requiring all groups cor-
responding to that attribute position to encrypt a new key.

Client join and leave operations result in new group
tasks. Task execution may be postponed with a batch du-
ration, D. Tasks are queued for each group and ultimately
scheduled on one of the P processors in the processor
pool; more processors allows more tasks to execute in par-
allel. When a group acquires a processor, all queued tasks
are aggregated and the group’s content attribute key is re-
encrypted for the current membership. Finally, on client
leave, a new content attribute key is obtained from the con-
tent attribute key pool (initially of size K), which is main-
tained by KP separate processors. Unless otherwise noted,
we use K= 1000 and KP= 1.

The remainder of this section analyzes the performance
of our tiered ABE construction. We begin by describing the
realistic workloads used as simulation inputs. We then in-
vestigate the comparatively simpler “join-only” workloads,
which do not require revocation. Then, we incorporate
workloads with leave operations. Finally, we incorporate
our findings and consider a high-demand, performance sen-
sitive workload.

5.2 Modeling Workloads

To profile massive-scale group management systems, we
create four classes of system behavior: Impulse Pay-Per-

 40000

 45000

 50000

 55000

 60000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20
M

em
be

rs
hi

p
Si

ze

Nu
m

be
r J

oi
ns

 (p
er

/s
ec

on
d)

Time (seconds)

Pay-per-view Impulse (steady state vieweship 50,000)

Group Size
Joins

 380000
 400000
 420000
 440000
 460000
 480000
 500000

 0 500 1000 1500 2000 2500 3000 3500
 0
 20
 40
 60
 80
 100

M
em

be
rs

hi
p

Si
ze

Nu
m

be
r J

oi
ns

 (p
er

/s
ec

on
d)

Time (seconds)

Pay-per-view Pre-pay (steady state vieweship 400,000)

Group Size
Joins

 5.9e+06

 5.95e+06

 6e+06

 6.05e+06

 6.1e+06

 0 500 1000 1500 2000 2500 3000 3500
 0
 2
 4
 6
 8
 10

M
em

be
rs

hi
p

Si
ze

Nu
m

be
r J

oi
ns

/L
ea

ve
s

(p
er

/s
ec

on
d)

Time (seconds)

Radio (steady state vieweship 6,000,000)

Group Size
Leaves

Joins

 5.12e+06
 5.14e+06
 5.16e+06
 5.18e+06

 5.2e+06

 0 500 1000 1500 2000 2500 3000 3500
 0
 100
 200
 300
 400
 500

M
em

be
rs

hi
p

Si
ze

Nu
m

be
r J

oi
ns

/L
ea

ve
s

(p
er

/s
ec

on
d)

Time (seconds)

Set-top (steady state vieweship 5,200,000)

Group Size
Leaves

Joins

Figure 4. Sample traffic patterns (from top to bottom) Impulse Pay-Per-View, Prepaid Pay-Per-View,
Radio and Set-Top Box scenarios.

View, Prepaid Pay-Per View, Radio and Set-Top Box. Each
of these usage patterns, which are profiled in Figure 4, are
described in detail below.

Impulse Pay-Per-View: Users may decide to purchase
certain types of content on impulse. For example, consump-
tion of content by guests at a nation-wide hotel chain is
unlikely to planned far in advance. For some initial mean
number of viewers, we model such behavior for an hour
long stream as follows: 50% of users join the system in the
first minute; 90% of users join within the first five minutes;
100% of the mean have joined within the first ten minutes.
Throughout the remainder of the hour, the number of users
grows by 2%. Because such access is sold on a per-program
basis, no users leave the system during the duration of the
simulation. We investigate such systems with a mean of
50k, 100k and 500k viewers.

Prepaid Pay-Per-View: The purchase of other types
of pay-per-view content is more predictable. For exam-
ple, sporting events such as boxing or concerts typically
see the majority of viewers subscribe well before the start
of an event. We model this behavior as follows: 95% of
the viewership attempts to join within the first five minutes.
Throughout the remainder of the hour, the number of view-
ers continues to grow by 2%. Like the impulse pay-per-
view case, we assume that access is sold on a per-program
basis and that leaves all occur after the simulation. We use
both average pay-per-view boxing ratings (400,000 view-
ers [21]) and the most popular pay-per-view event (Tyson
vs Holyfield II: 1.99 million viewers [21]) to characterize

such systems.
Radio: A number of subscriber-based systems operate

over longer periods of time. Satellite-radio subscriptions,
for instance, can be purchased for intervals of months or
years. Accordingly, such systems present an interesting
case for steady state analysis as they do not exhibit the ini-
tial spikes seen in the previous examples. We use subscriber
data from Sirius Satellite Radio [31] as the basis for mod-
eling long-term subscription services. Specifically, we as-
sume a mean of six million users with a 2.8% join rate and
a 2% leave rate.

Set-top Boxes: In our final model, we examine the “Pay
Per Channel” subscription approach. In this model, view-
ers are only charged for the channels they watch. From the
perspective of the set-top box, each change of a channel be-
comes equivalent to a join operation. Accordingly, such a
model would need to support an extremely large number of
users. We characterize this model by using recent Nielsen
ratings for average (The Tonight Show: 5.22 million view-
ers [4]) and extremely popular (American Idol: 26.9 million
viewers [33]) broadcast numbers. We assume that 100% of
the mean number of users tune in to such shows uniformly
over the first five minutes and that joins and leaves occur
evenly at a rate of 2% throughout.

5.3 “Join-only” Systems

The join-only philosophy allows for the creation of sys-
tems with simple billing policies. Users are charged for the
duration of a program, regardless the actual amount of con-

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

A
ve

ra
ge

 O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join - 1
Join - 5

Join - 10
Join - 15

Figure 5. The approach toward steady state
for a varying number of processors. Once all
groups reach steady state, the extra proces-
sors used to decrease quiescence time re-
main idle.

tent consumed. For instance, a hotel patron purchasing a
movie is charged for the entire program whether or not they
watch it in its entirety. Accordingly, users in such a system
perform join but not leave operations during content distri-
bution. Both the Impulse and Prepaid Pay-Per-View models
described in the previous subsection fall into this category.

We begin with an analysis of the latency caused by the
initial burst of joins in the system. Because the vast ma-
jority of viewers enter within the first few minutes of oper-
ation, resource allocation for such systems must minimize
join latency. Figure 5 shows the time required to reach qui-
escence (i.e., steady state) as a function of the number of
processors in the system. Because the number of users join-
ing far exceeds the number of processors, nearly all requests
are initially queued in the system. This initial queuing has
a number of significant repercussions on the system. For
instance, changing the number of users in each user-layer
expression has no measurable initial impact on system per-
formance given a fixed number of processors. Because of
the linear cost of encryption discussed in Section 3.2, the
time required to encrypt the initial rush of users is the same
for a single large group or a number of smaller subgroups.
As the number of processors is increase, so too does the
speed with which the system reaches quiescence.

Batching, as described in the previous section, also has
no measurable benefit to the system. In the presence of
multiple processors, batching in fact degrades performance.
This phenomenon is a result of the inherent batching that
occurs while waiting for a free processor. When a proces-
sor becomes available, the size of the initial burst ensures
that at least n users are waiting to join the system. Accord-

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join - 1,000
Join - 5,000

Figure 6. The cost of a user join at steady
state for n = 1000 and n = 5000. The saw-like
pattern is the result of the group growing from
1 to n, after which a new group is created.

ingly, pausing for s seconds simply adds s extra seconds to
join latency.

While the addition of processors dramatically reduces
time to quiescence, the presence of additional processors
does not necessarily benefit a system in steady state. As is
shown in Figure 5, the low join rate throughout the remain-
der of a program can often typically be handled by a single
processor. As derived from our performance evaluation, if
the number of steady state joins is less than 435 per minute,
the additional processors added to reduce the initial rush
simply lay idle for the remainder of a program. A system
designer must therefore decide between high latency using
a small number of processors and low utilization when us-
ing more than one. If the start of programs can be offset
(i.e., movies begin every 15 minutes), a compromise be-
tween these two extremes can be achieved.

While the size of user-layer groups does not affect the
network behavior before quiescence, its impact on join la-
tency becomes apparent during steady state operation. Fig-
ure 6 compares the joins for n = 1000 and n = 5000.
Accordingly, in systems where mid-program leaves are un-
likely or impossible, there is no clear advantage to using
large groups.

5.4 “Join and Leave” Systems

Leave operations are computationally expensive. As dis-
cussed in Section 4, a system leave requires every group
containing that attribute to re-encrypt (i.e., if 100 groups
contain the attribute, 100 re-encryptions are necessary). We
consider the effect of leaves and methods of minimizing
their impact as part of our exploration into the radio and

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1500 2000 2500 3000 3500 4000

Av
er

ag
e

O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join
Leave

Figure 7. A satellite radio subscription model
for 6 million users. With 10 processors ded-
icated to computation, there is insufficient
ability to process all requests for a reason-
able deadline.

set-top box models.
Radio Model: Recall that in our satellite radio model, we
consider a monthly subscriber to the system. We assume
that joins and leaves, corresponding to new subscriptions
and account cancellations, are uniformly distributed. To
model this steady state behavior we “warm” the system by
simulating the initial addition of the 6 million users into the
system. We wait until the system quiesces to steady state
behavior before performing measurements. Figure 7 shows
that given 10 processors and the same assumptions as pre-
viously considered for the pay-per-view situations, the sys-
tem is not stable. Regardless of the number of subgroups,
because the cost of leaving the system is so high, the la-
tency to join the system spikes to intolerable levels, over
20 minutes in some cases. We can mitigate this behavior
by adding extra processors into the system; Figure 8 shows
that a ten-fold increase of processors to 100 brings the la-
tency bounds down considerably. Joins in this case require
less than 40 seconds even when considerable load exists on
the system, while a user is fully revoked from the system in
less than one minute. Given that these are essentially one-
time operations from the point of view of the user (i.e., the
user’s subscription becomes active), an activation time of
less than one minute should be within a user’s expectations
for product activation.

To minimize the reliance on extra processors, an alter-
nate method of maintaining a latency budget is to increase
the size of n′, the number of attributes in the content cryp-
tosystem. To minimize the cost of decryption to the user, we
have used n′ = 10 in our simulations to this point; as dis-
cussed in Section 3.2, this entails a cost of under 34 ms on

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1500 2000 2500 3000 3500 4000

Av
er

ag
e

O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join
Leave

Figure 8. The satellite radio model with 100
processors deployed. The costs of joining
and leaving the system are now under one
minute.

a desktop-class machine. By increasing n′ to 100, the cost
of a decryption increases by less than 1 ms. Simply put,
decryption costs on even consumer equipment will be mini-
mal. 2 Figure 9 shows that increasing n′ provides a similar
performance benefit to increasing processors; even under
load, joins will occur in under 40 seconds, while leaves will
occur in less than 50 seconds.

If even more stringent performance requirements are
mandated, we can combine the optimizations of increasing
processors and increasing the size of the content cryptosys-
tem. As shown in Figure 10, the time required for joins and
leaves is reduced by a factor of more than 10 over either
solution used singly. While the previous solutions may be
feasible for solutions where up to a minute in latency is ac-
ceptable, this optimization allows for tight latency budgets.

Set-Top Box Model: In contrast to satellite radio with its
relatively few joins and leaves, our proposed model for set-
top box usage has millions of user joins in the first few min-
utes of a program’s commencement, and additional joins
and leaves throughout the broadcast. Thus, this model is
much more resource-intensive than any previously consid-
ered situation. Both optimizations from the satellite radio
model are required; Figure 11 demonstrates that for a broad-
cast of with 5.2 million users, both an increase in n′ to 1000
and an increase in the number of deployed processors to
1000 are required to ensure that joins and leaves achieve a
tolerable latency.

Our largest dataset involved modeling the viewership of

2Satellite radio receivers already perform buffering to ensure a constant
stream of content to the user; these buffers may also be used to mask any
decryption costs incurred by the receiver.

 0

 10

 20

 30

 40

 50

 60

 1500 2000 2500 3000 3500 4000

Av
er

ag
e

O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join
Leave

Figure 9. Increasing the size of n′, the number
of attributes in the content cryptosystem, re-
duces peak latency from minutes to seconds
in the satellite radio model while incurring a
nominal increase in decryption costs.

“American Idol”, with 26.9 million viewers.3 To provide
similar latency results necessitated increasing the number
of processors to 5000, as shown in Figure 12. Interestingly,
this increased user base is slightly more than 5 times as large
as the previous 5.2 million user case, and increasing the
number of processors by a factor of 5 results in latencies
that are similar, if slightly higher. This attests to the overall
relative linearity between the addition of processors and a
decrease in latency for systems under high load.

An additional factor that required consideration for this
model is the size of the available key pool. Because of the
tremendous number of users joining the system, during our
simulations, we ran into issues of key exhaustion. One key
processor is capable of generating a key every 46.3 ms (a
value obtained during the ABE performance characteriza-
tion in Section 3.2) until the key pool is filled. Up until this
set of experiments, designating one server to be the key pro-
cessor was sufficient; in this case, however, the key pool was
depleted so rapidly that the key processor could not generate
additional keys in time. As a result, we delegated 100 key
pool processors for this experiment to prevent exhaustion.
Determining an exact number of required key pool proces-
sors is a situationally-dependent optimization that we defer
for future work.

3We make the simplifying assumption that each viewer has their own
set-top box. This represents an upper-bound on the particular broadcast,
but for special events, this number of set-top boxes tuned to an special
event is certainly feasible.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1500 2000 2500 3000 3500 4000

Av
er

ag
e

O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join
Leave

Figure 10. Combining the optimizations of in-
creased processors and increased content
cryptosystem attributes in the satellite radio
model allows operations to be bounded by
tight latency requirements.

5.5 Summary

Based on our experiences understanding the operation of
ABE-based CA systems across many hundreds of tests, we
have determined a set of guiding principles to assist system
architects with implementing a performance solution opti-
mized for their unique constraints.

Adding processors helps get to steady-state, but no fur-
ther. The addition of processors decreases the amount
of time required for a system to quiesce after a large se-
ries of joins (e.g., the pay-per-view case), and is neces-
sary to augment a system that cannot manage its load.
Once steady state is reached, however, extra processors
do not provide any additional benefit above what is
necessary for maintaining the steady state. The upshot
is that deploying large amounts of hardware will not
garner additional gains, and a system designer should
be cognizant of offered and potential loads before mak-
ing large-scale hardware purchases.

Increasing n′ gives the same benefit as adding pro-
cessors. The radio and set-top models illustrate that
while leaves exact a computational load on the sys-
tem, this can be mitigated by increasing n′, the num-
ber of attributes in the content cryptosystem. A 10-
fold increase in n′ provides similar results to a factor
of 10 increase in the number of processors deployed
in the system. The cost of this optimization is a corre-
sponding increase in attribute decryption time by the
client. However, as we previously showed in sec-
tion 3.2, the costs of decryption are sufficiently small

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join
Leave

Figure 11. Set-top box model with 5.2 million
users. 1000 processors and an increase in n′

are necessary to minimize latency.

that we can safely increase n′ to any value less than
or equal to 1,000 without any meaningful noticeable
effect on client performance.

National audiences can be supported by major content
providers. Our large-scale simulations show that a
system capable of supporting tens of millions of users
is easily deployable by major providers such as ca-
ble companies and television networks. The costs of
adding users is often front-loaded at the beginning of
a program, and the corresponding costs in hardware
incurred by major providers is amortized by reusing
processors for multiple programs. A number of server
racks in a data center to support a massive scale audi-
ence is a feasible assumption for back-end computa-
tional power.

We determined some secondary results as well during
the course of our investigations. They can be summarized
as follows.

Be aware of key exhaustion for massive systems. It is
important that the key pool not be exhausted due to a
high rate of user leaves from a system. If this behavior
among users is expected in a short time period, we
recommend additional investment in dedicated key
pool processors.

Let the system do the batching. Our initial intuition indi-
cated that adding batching delays would be beneficial,
as less overall computation would result. As we dis-
covered, the system performs its own implicit batch-
ing due to processors being unavailable during their
encryption cycle; when they return, they process the

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 O
pe

ra
tio

n
La

te
nc

y
(s

ec
on

ds
)

Time (seconds)

Join
Leave

Figure 12. Set-top box model with 26.9 million
users. To achieve similar latency bounds to
the 5.2 million user case, 5000 processors are
necessary.

batch of requests that have been queued. Adding ex-
plicit batch delays only caused the system to perform
more slowly when it reaches steady state.

Optimize groups for increased benefit. Our solutions of-
ten modeled a worst-case scenario, as we did not at-
tempt to optimize group membership. For example,
we can mitigate the effect of leaves by ensuring that,
for example, users who have monthly subscriptions are
binned into different groups than those who have an-
nual subscriptions. This strategy allows for a minimal
number of groups to be affected. We defer an analysis
of group scheduling strategies for future work.

6 Conclusion

In this paper, we have explored the ability of ABE to
meet the unique requirements of conditional access sys-
tems. Such an investigation would seem to be doomed from
the start: ABE systems employ heavyweight constructions
that appear at odds with the enormous and often fluid view-
erships of the target content groups. Quite in contrast, our
simulations of realistic, massive-scale programming shows
that through novel constructions, we can meet this challenge
using inexpensive commodity hardware.

What remains is a more direct investigation. We have al-
ready built prototype interfaces of ABE systems, and have
begun the process of integrating these systems with content
delivery services. It is through these latter experiments that
we hope to further establish the viability of not only con-
ditional content systems, but promote the use of ABE to
implement massive scale distributed systems.

References

[1] Advanced Access Content System. Advance Access Con-
tent System Home. http://www.aacsla.com/home,
2007.

[2] G. Antenise, M. Blanton, and J. Kirsch. Secret Handshakes
with Dynamic and Fuzzy Matching. In Proceedings of the
ISOC Network & Distributed System Security Symposium
(NDSS), 2007.

[3] M. Bellare and P. Rogaway. Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols. In Proceed-
ings of the ACM Conference on Computer and Communica-
tions Security (CCS), pages 62–73, 1993.

[4] M. Berman. The Programming Insider.
www.mediaweek.com/mw/newsletters/
proginsider/index.jsp, Accessed May 4th,
2007.

[5] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy
Attribute-Based Encryption. In Proceedings of the IEEE
Symposium on Security & Privacy (S&P), 2007.

[6] R. Bobba, O. Fatemieh, F. Khan, C. A. Gunter, and H. Khu-
rana. Using Attribute-Based Access Control to Enable
Attribute-Based Messaging. In Annual Computer Security
Applications Conference (ACSAC), 2006.

[7] P. A. Bonatti and P. Samarati. A uniform framework for reg-
ulating service access and information release on the web.
Journal of Computer Security, 10(3), 2002.

[8] D. Boneh and M. K. Franklin. Identity-based encryption
from the Weil pairing. In Proceedings of Advances in Cryp-
tology (CRYPTO), 2001.

[9] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant
Broadcast Encryption With Short Ciphertexts and Private
Keys. In Proceedings of Advances in Cryptology (CRYPTO),
2005.

[10] B. Briscoe. MARKS: Zero Side Effect Multicast Key Man-
agement Using Arbitrarily Revealed Key Sequences. In
Proceedings of the International Workshop on Networked
Group Communication, 1999.

[11] B. Briscoe and I. Fairman. Nark: Receiver-Based Multicast
Non-Repudiation and Key Management. In Proceedings of
the ACM conference on Electronic commerce, 1999.

[12] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast security: A taxonomy and some effi-
cient constructions. In Proceedings of IEEE INFOCOM’99,
1999.

[13] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle
Methodology, Revisited (Preliminary Version). In STOC,
pages 209–218, 1998.

[14] C. Cocks. An identity based encryption scheme based on
quadratic residues. In IMA Int. Conf., pages 360–363, 2001.

[15] EBU Project Group B/C/A. Functional model of a condi-
tional access system. EBU Technical Review, (266):64–77,
Winter 1995.

[16] A. Fiat and M. Naor. Broadcast Encryption. In Proceedings
of Advances in Cryptology (CRYPTO), 1993.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-
Based Encryption for Fine-Grained Access Control of En-
crypted Data. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2006.

[18] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A
Call Graph Execution Profiler. In Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction, Boston,
MA, USA, June 1982.

[19] T. Hardjono and B. Weis. The Multicast Group Security
Architecture. RFC 3740 (Informational), Mar. 2004.

[20] H. Harney and C. Muckenhirn. RFC 2093: Group Key Man-
agement Protocol (GKMP) Specification. http://www.
faqs.org/rfcs/rfc2093.html, 1997.

[21] C. Jay. Can De La Hoya-Mayweather fix boxing’s
ills? http://msn.foxsports.com/boxing/
story/6772742, 2007.

[22] A. Kapadia, P. P. Tsang, and S. W. Smith. Attribute-Based
Publishing with Hidden Credentials and Hidden Policies. In
Proceedings of the ISOC Network & Distributed System Se-
curity Symposium (NDSS), 2007.

[23] B. Lynn. PBC library. http://rooster.stanford.edu/˜ben/pbc/,
2007.

[24] P. McDaniel, A. Prakash, and P. Honeyman. A flexible
framework for secure group communication. In USENIX
Security Symposium, pages 99–114, 1999.

[25] D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing
Schemes for Stateless Receivers. 2001.

[26] N. Nethercote and J. Seward. Valgrind: A Program Supervi-
sion Framework. Electronic Notes in Theoretical Computer
Science, 89(2):44–66, Oct. 2003.

[27] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure
Attribute-Based Systems. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS),
2006.

[28] A. Sahai and B. Waters. Fuzzy identity based encryption. In
Proceedings of International Cryptology Conference (Euro-
crypt), 2005.

[29] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[30] A. Shamir. Identity-based cryptosystems and signature
schemes. In Proceedings of Advances in Cryptology
(CRYPTO), 1985.

[31] SIRIUS, Inc. SIRIUS Satellite Radio Reports Strong First
Quarter 2007 Results. http://investor.sirius.
com/ReleaseDetail.cfm?ReleaseID=240128,
2007.

[32] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman Key
Distribution Extended to Group Communication. In Pro-
ceedings of the ACM Conference on Computer and Commu-
nications Security (CCS), 1996.

[33] USA TODAY. Nielsens ratings for April 23 –
April 29. http://www.usatoday.com/life/
television/news/nielsens-charts.htm, 2007.

[34] D. M. Wallner, E. J. Harder, and R. C. Agee. RFC 2627: Key
management for multicast: Issues and architectures. http:
//www.faqs.org/rfcs/rfc2627.html, 1997.

[35] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure Group
Communications Using Key Graphs. In Proceedings of the
ACM SIGCOMM Conference on Applications, technologies,
architectures, and protocols for computer communication,
1998.

[36] T. Yu, M. Winslett, and K. E. Seamons. Supporting struc-
tured credentials and sensitive policies through interoperable
strategies for automated trust negotiation. ACM Trans. Inf.
Syst. Secur., 6(1):1–42, 2003.

Appendix

The Sahai-Waters construction [28] computes a bilinear
map between k components of the ciphertext with corre-
sponding pieces of the private key. The resulting key is
derived by interpolation over these pieces using Shamir’s
secret sharing. Lagrangian coefficients are computed in the
domain Zp using:

∆i,S(X) =
∏

j∈S,j $=i

x− j

i− j
.

Additionally, we assume all systems will work in some pre-
determined bilinear group G of appropriate size.

The operations performed by a cryptosystem are:
Setup(k): The setup algorithm chooses a random expo-

nent y ∈ Zp, creates a public parameter Y = e(g, g)y and
sets the threshold value k. The public key and the secret
exponent y become the master key.

Key-Gen(S, MK): Let H : {0, 1}∗ → Zp be a collision-
resistant hash function and let T : Zp → G be a function
that we will model as a random oracle [3].

We define Γ =
⋃

s∈S H(s) as the set of all hashed at-
tributes assigned to the user. The authority then generates
a new random polynomial q(x) with degree k − 1 over Zp

such that q(0) = y. For all i ∈ Γ, the authority selects a
random ri, yielding the private keys components:

Di = gq(i)T (i)ri , di = gri

Encrypt(M,S′,PK): The encryption algorithm begins
by computing the set of hashes for the attributes over which
encryption will occur (Γ′ =

⋃
s∈S′ H(s)). The algorithm

then selects a random exponent t ∈ Zp. The ciphertext is
output as:

C =
(
C ′ = MY t, C ′′ = gt, {Ci = T (i)t : i ∈ Γ′}

)

, where T (i) is defined as:

T (i) = gxi
n+1∏

j=1

t
∆j,N (i)
j

where N is the set {1, . . . , n+1}. Note that T (i) is replaced
by the random oracle construction (i.e., hash function) in
this work for reasons of performance.

Decrypt(C,S′, S,SK): Like the encryption algorithm,
the decryption algorithm begins by computing sets of
hashes for the ciphertext (Γ′) and the client attempting to

access the encrypted content (Γ). If |Γ
⋃

Γ′| ≥ k, the al-
gorithm possesses a sufficient number of attributes to de-
crypt the ciphertext. For each attribute i in the shared set
of attributes U , where |U | = k, the algorithm computes a
temporary value:

Ai =
e(Di, C ′′)
e(di, Ci)

=
e(gq(i)T (i)ri , gt)

e(gri , T (i)t)
= e(g, g)tq(i).

This computation gives k shares of the polynomial tq(i)
in the exponent. Using polynomial interpolation [29], the
algorithm recovers the blinding value e(g, g)yt and divides
it out by computing:

M = C ′/
(
A

∆i,U (0)
i

)
= C ′/e(g, g)tq(0) = C ′/e(g, g)ty = M.

Because a new random polynomial is chosen for each
private key, the system is secure against attempts to collude
and pool the attributes of different adversaries.

