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Abstract

Secure function evaluation (SFE) on mobile devices, such as smartphones,
allows for the creation of compelling new privacy-preserving applications. Gen-
erating garbled circuits on smartphones to allow for executing customized func-
tions, however, is infeasible for all but the most trivial problems due to the
high memory overhead incurred. We develop a new methodology of generating
garbled circuits that is memory-efficient. Using the standard language (SFDL)
for describing secure functions as input, we design a new pseudo-assembly lan-
guage (PAL) and a template-driven compiler, generating circuits that can be
evaluated with the canonical Fairplay framework. We deploy this compiler for
Android devices and demonstrate that a large new set of circuits can now be
generated on smartphones, with memory overhead to generate circuits solving
the set intersection problem reduced by 95.6% for the 2-set case. We show our
compiler’s ability to interface with other execution systems and perform mobile
phone specific optimizations on that execution system. We develop a password
vault application to show how runtime generation of circuits can be used in
practice. We also show that our circuit generation techniques can be used in
conjunction with other SFE optimizations. These results demonstrate the fea-
sibility of generating garbled circuits on mobile devices while maintaining the
convenience of high-level function specification.

1. Introduction

Mobile phones are extraordinarily popular, with rates of adoption by con-
sumers that are unprecedented in history. Smartphones have been particularly
embraced, with the number of devices shipped skyrocketing from 296 million in
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2010 [1] to over 355 million in the third quarter of 2015 alone [2]. The increasing
importance of the mobile computing environment requires functionality tailored
to the limited available resources. Concerns of portability and battery life ne-
cessitate design compromises for mobile devices compared to servers, desktops,
and even laptops. In short, mobile devices will always be resource-constrained
compared to their larger counterparts. However, through careful design and
implementation, they can provide equivalent functionality while retaining the
advantages of ubiquitous access. They have the ability to perform financial
transactions like e-commerce as long as there is cell service.

Privacy-preserving computing is particularly well suited to deployment on
mobile devices. For example, two parties may be bartering in a marketplace but
they do not want others finding out the nature of their transaction. Further-
more, they do not want to reveal unnecessary information to each other. Such
a transaction is ideally suited for secure function evaluation, or SFE. Recent
work, such as by Huang et al. [3], demonstrates the myriad applications that
may be seen through deployment of SFE on smartphones. These applications
may perform computations between two smartphones or between a smartphone
and server. An example of such an application would be a password vault per-
forming encryption under SFE. This style of application has advantages over
standard encryption techniques and is discussed in Section 6. However, because
of the computational and memory requirements associated with garbled circuit
evalution, it is infeasible to perform circuit compilation and evaluation solely
within the mobile environment. Solutions have appeared that consider server-
aided, or outsourcing methods of performing garbled circuit computation by
pushing operations to third-party servers [4, 5, 6, 7, 8]; however, strong assump-
tions are made that no collusion occurs between the powerful servers, which
may not hold true in real-world usage.

While numerous research initiatives have considered how to evaluate these
circuits more efficiently [9, 10], there has been little work in determining how
to generate the circuits in a memory-efficient manner. Two parties are often
interested in customizing functions to be evaluated based on their particular re-
quirements, but having to outsource the circuit generation to a third party can
reveal information about the computation to be performed, which can be a pri-
vacy compromise; hence, it is important to be able to perform this compilation
on devices that will also evaluate the functions. Our port of the canonical Fair-
play [11] compiler for SFE to the Android mobile operating system revealed that
because of intensive memory requirements, the majority of circuits could not be
compiled in this environment. As a result, our main contribution is a novel de-
sign to compile the high-level Secure Function Definition Language (SFDL) used
by Fairplay and other SFE environments into garbled circuits (GCs) with mini-
mal memory usage. We created Pseudo Assembly Language (PAL), a mid-level
intermediate representation (IR) compiled from SFDL, where each instruction
represents a pre-built circuit, including providing production rules for the trans-
formation of expressions. We created a Pseudo Assembly Language Compiler
(PALC), which takes in a PAL file and outputs the corresponding circuit in
Fairplay’s syntax. We then created a compiler, Fairplay Pseudo Assembly Lan-
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guage Compiler (FPPALC), to compile SFDL files into PAL and then, using
PALC, to the Secure Hardware Definition Language (SHDL) used by Fairplay
for circuit evaluation.

Using these compilation techniques, we are able to generate circuits that
were previously infeasible to create in the mobile environment. For example,
the set intersection problem with sets of size two requires 469 KB of memory
with our techniques versus over 10667 KB using a direct port of Fairplay to
Android, a reduction of 95.6%. We are able to evaluate results for the set in-
tersection problem using four and eight sets, as well as other problems such
as Levenshtein distance; none of these circuits could previously be generated
at all on mobile devices due to their memory overhead. We have also demon-
strated how our compiler can be integrated into other techniques, particularly
the pipelined execution framework developed by Huang et al. [10]. We also pro-
vide a new analysis on how runtime performance can be improved by examining
smartphone operations and developing a new memory management system for
dealing with the allocation of Java BigInteger objects used during the cre-
ation of garbled circuits. Our new approach can further reduce memory and
performance overheads. These techniques provide a new arsenal in conjunction
with improved evaluation techniques to make privacy-preserving computing on
mobile devices a feasible proposition.

In this paper, we extend the results of our preliminary work developing a
memory-efficient compiler, presented at FC’12 [12]. In this expanded version,
we provide an enlarged description of our memory-efficient technique for gener-
ating the circuits needed to perform secure function evaluation on smartphones
and also show how optimized memory usage on smartphones can affect run-
time. We include additional details about the PAL language (Backus-Naur
form (BNF) grammar, a full list of operations and operators, and many trans-
formation rules). Additionally, we implemented an interpreter to integrate PAL
with a more efficient SFE execution system [10] and then performed memory op-
timizations to improve performance of that system. We also include additional
discussion points and an impact section.

The rest of this paper is organized as follows. Section 2 provides background
on secure function evaluation and the garbled circuits used for this evaluation,
as well as the Fairplay SFE compiler. Section 3 describes the design of PAL,
our pseudo assembly language, and PALC, our compiler to convert PAL into
SHDL. We also describe FPPALC, which converts SFDL to PAL. We also com-
bined FPPALC and PAL for full translation form SFDL to SHDL. Section 4
describes our testing environment and methodology, and provides benchmarks
on memory and execution time. Section 5 lists a mobile specific optimization we
make to an execution system. Section 6 describes applications that demonstrate
circuit generation in use, while Section 8 describes related work and Section 9
concludes.
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2. Background

2.1. Secure Function Evaluation with Fairplay
The origins of SFE trace back to Yao’s pioneering work on garbled cir-

cuits [13]. While many approaches to performing SFE use Yao’s protocol, in-
cluding the Fairplay system (described below), alternative methods exist, such
as Kruger et al.’s use of ordered binary decisions diagrams [14]. SFE enables two
parties to jointly compute a function without knowing each other’s input and
without the presence of a trusted third party. More formally, given participants
Alice and Bob with input vectors ~a = a0, a1, · · · an−1 and ~b = b0, b1, · · · bm−1

respectively, they wish to compute a function f(~a,~b) without revealing any
information about the inputs that cannot be gleaned from observing the func-
tion’s output. Fundamentally, SFE is predicated on two cryptographic prim-
itives. Garbled circuits allow for the evaluation of a function without either
party gaining any information about the participants’ input or output, which
is not learned by their own output. This is possible since one party creates
the garbled circuit and the other party evaluates it without knowing what the
internal circuit values represent. Secondly, an Oblivious Transfer (OT) allows
the party executing the garbled circuit to obtain the correct garbled values for
that party’s inputs from the other party without gaining or leaking information
about the other’s input values; in particular, a 1-out-of-n OT protocol allows
Alice to learn about one piece of data without gaining any information on the
remaining n− 1 pieces.

Fairplay consists of two components. The first, a compiler, reads in a pro-
gram written in a language that describes the circuit operations. Its output
resembles a hardware description language and acts as input to the second
component, the execution system. This piece is responsible for performing the
garbled circuit protocol operations between the two parties.

2.2. Garbled Circuits
A garbled circuit is an encrypted version of the Boolean circuit representation

of the function to be evaluated. Both the gates and wires of the circuit are
garbled. The gates take in wires as input; the wires’ values are represented
by two pseudo-random fixed-length strings, which are representations of 0s or
1s. Similar to a standard Boolean gate, the garbled gate evaluates the inputs
and gives a single output, but the garbled gate’s truth table is encrypted. For
a two-input garbled gate, the truth table entries TT are computed using the
formula TTi,j = Enc(xi||yj ||g)⊕wi,j where x is one of the two input wires with
the value representing i, y is the other input wire with the value representing j,
g is the gate number, and wi,j is the non-encrypted wire representing the i, jth

value of the truth table. Given a set of input wires xi and yj and output g, wire
wi,j can be determined from the TT values.

The order of the entries in the table is permuted to prevent the order of the
truth table from leaking information. Fairplay, rather than randomly permuting
TT , permutes the truth table by using a specific bit, known as the permute
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bit, on both x and y. Given the permute bit l of x and permute bit r of y,
the permuted truth table is setup such that r ∗ 2 + l will always map to the
corresponding truth table entry.

Consequently, the only values saved for the truth table are the four encrypted
output values, TT . A two-input gate is thus represented by the four encrypted
output values. Given a set of input wires xi and yj and g, the output, wire wi,j ,
can be determined from TT by using the permute bits (to find the correct truth
table entry), and wi,j by wi,j = TTi,j ⊕ Enc(xi||yj ||g).

The garbled circuit protocol requires that both parties are able to enter input
into the circuit. If Bob creates the circuit and Alice evaluates it, Bob already
knows the wire values that map to his input; however, Alice must perform an
oblivious transfer with Bob to receive the wire values that map to her input
values. Once she knows the wire values for her input, she evaluates each gate
within the garbled circuit in order. To evaluate a gate, she uses the input values
as the key to decrypt the corresponding output value, as described above.

Once all gates are evaluated, Alice will have the garbled wire versions of both
parties’ output. To understand her own output, Alice acquires a translation
table, which is a hash of the wires within the garbled circuit corresponding to
all possible values of her output, from Bob. She then hashes her output wires
to see which wires are set. Alice sends Bob’s output in garbled form and he is
able to asynchronously interpret the wire values.

Briefly, we can describe the high-level operation of the Fairplay garbled
circuit protocol as follows:

1. Bob creates N garbled circuits and sends them to Alice.

2. Alice picks one of these garbled circuits to evaluate and informs Bob,
which circuit she will evaluate.

3. Bob sends Alice the secrets for all other circuits.

4. Using these secrets, Alice checks the correctness of these circuits and
aborts if one of those circuits was found to be incorrect.

5. Bob sends his input to Alice in garbled form.

6. Alice performs an oblivious transfer with Bob to transform her plaintext
input into garbled input so it can be entered into the garbled circuit.

7. Alice inputs both parties garbled input values into the garbled circuit and
evaluates the circuit.

8. Both parties attain their outputs. Bob sends Alice a table, which maps
her output to 1 and 0 values. Alice sends Bob his output values in its
garbled form. Bob, once he receives these values can transform them back
into its 1 or 0 values.

This protocol is an example of a cut-and-choose protocol [15, 16]. In a cut-
and-choose protocol, many circuits are created and some number of those are
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evaluated to receive an output from the SFE computation, while the remaining
circuits are checked to ensure Bob created the correct circuits. Fairplay only uses
1 evaluation circuit while more recently protocols, such as Kreuter et al. [17],
use more than 1 evaluation circuit to maximize security.

2.2.1. Oblivious Transfer
The circuit evaluation portion of Fairplay provides for the execution of the

garbled circuit protocol and uses oblivious transfer (OT) to exchange informa-
tion. Fairplay uses the 1-out-of-2 OT protocols of Bellare et al. [18] and Naor
et al. [19] which allows for Alice to pick one of two items that Bob is offering
and also prevents Bob from knowing which item she has picked. These are se-
cure in the random oracle model and secure against malicious users, as noted
in the Fairplay paper. Also noted, the OT protocol of Bing et al. [20] takes into
account other threat models, which include malicious and covert users.

2.3. Fairplay Compiler
The Fairplay compiler is the canonical tool for generating circuits for secure

function evaluation. It is notable for creating the abstraction of a high-level
language, known as SFDL, for describing secure evaluation functions, and com-
piling them to SHDL, which is written in the style of a hardware description
language such as Verilog or VHDL, which describe circuits.

Examining the compiler in more detail, Fairplay compiles each instruction
written in SFDL into a so-called multi-bit instruction. These multi-bit (e.g.,
integer) instructions are transformed to single-bit instructions (e.g., the 32 sep-
arate bits to represent that integer). From these single-bit instructions, Fairplay
then unrolls variables and then transforms the instructions into SHDL and out-
puts the file, either immediately or after further circuit optimizations.

Fairplay’s circuit generation process is very memory-intensive. We per-
formed a port of Fairplay directly to the Android mobile platform (described
further in Section 4) and found that a large number of circuits were completely
unable to be compiled. We turned to examining the results of circuit compila-
tion on a PC to determine the scope of memory requirements. From tests that
we performed on a 64-bit Windows 7 machine, we noticed Fairplay needed at
least 245 megabytes of memory to run the compilation of the keyed database
program of size 16, an example of an SFE problem where a program matches
keys with database lookups in a privacy-preserving manner (described further
in Section 4). Our first task was to analyze the memory usage of Fairplay’s
compiler.

From our analysis, Fairplay uses the most memory during the mapping op-
eration from multi-bit to single-bit instructions. During this phase, the memory
requirements increased by 7 times when the keyed database program ran. We
concluded that it would be easier to create a new system for generating the
SHDL circuit file, rather than making extensive modifications to the existing
Fairplay implementation. To accomplish this, we created an intermediate lan-
guage that we called PAL, described in detail in section 3.
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Fairplay SFDL Fairplay SHDL
Fairplay compiler

(a) Fairplay compiler process.

Fairplay SFDL Fairplay SHDL

PAL
FPPALC PALC

(b) PAL compiler process.

Figure 1: Compilation with Fairplay versus PAL.

2.4. Threat Model
There are two primary threat models in SFE literature. Protocols, which

protect against honest-but-curious adversaries and protocols that protect against
malicious adversaries. The stronger protocol (malicious) also protects against
honest-but-curious adversaries as well.

In all cases (i.e., any number of circuits), Fairplay will protect against honest-
but-curious adversaries. Honest-but-curious adversaries will obey the protocol
but may look at any intermediate data the protocol produces in an attempt
to gain additional information about the other party’s input or output. The
assumption of the honest-but-curious model is well-described by others con-
sidering secure function and secure multiparty computation, such as Kruger
et al.’s OBDD protocol [14], Pinkas et al.’s SFE optimizations [9], the tools for
Automating Secure Two-partY computations (TASTY) [21], Jha et al.’s privacy-
preserving genomics [22], Brickell et al.’s privacy-preserving classifiers [23] and
Huang et al.’s pipelined circuit execution techniques [3].

The authors of Fairplay also note that if either party were to deviate from
this protocol and become malicious it may allow for one of the parties to get
information from the other. Fairplay does have some defense for adversaries,
which act maliciously. However, unlike more recent work, in which the proba-
bility a malicious adversary can succeed and attain extra information is 1

2s [24],
where s is the number of circuits, in Fairplay the probability is 1

s . We do not
attempt to compare Fairplay’s definitions to more recent definitions, but note
they the probability in succeeding in breaking Fairplay is substantially higher.
We note that with some additions, the garbled circuit protocol of Fairplay may
be modified to be more secure in the presence of malicious adversaries, as shown
by Lindell et al. [25]. Other protocols, such as those proposed by Bing et al. [20],
take other threat models into account. Our proof of concept tests adhere to the
threat models as defined by Fairplay. We further discuss malicious adversaries
in Section 6.4.

We are primarily interested protecting against honest-but-curious adver-
saries. However, we also want to show our implementation (discussed later)
can also be used with more than a single circuit (as one circuit is all that is
required for honest-but-curious adversaries). To this end, we run all our test
cases with two circuits.

As with all of these protocols, we also assume the user enters in the correct
(honest) input. Fairplay is secure in the random oracle model, implemented
using the SHA-1 hash function. The oblivious transfer protocols in Fairplay (and
hence, by PAL) are those from Bellare et al. [18] and Naor et al. [19] as described
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Possible Operations
Operation Syntax Usage

Variable Declarations Variables: Must be first
Procedure Declarations Procedure: NAME May be mixed

with function
declarations

Function Declarations Function: NAME [takes May be mixed
paramName1 paramName2 with procedure
... paramNameN] [returns declarations
returnName1 returnName2
... returnNameN] end

Main Declaration Instructions: Must be last

Table 1: PAL headings

above. We assume that the generic case is that this is a programmable random
oracle model, but Fairplay (and PAL) could be implemented using the Ishai et
al. OT extensions [26] where proofs are performed against a non-programmable
random oracle; we leave this for future work.

3. Design

To overcome the intensive memory requirements of generating garbled cir-
cuits within Fairplay, we designed a pseudo assembly language, or PAL, and
a pseudo assembly language compiler called PALC. As noted in Figure 1, we
change Fairplay’s compilation model by first compiling SFDL files into PAL us-
ing our fairplay pseudo assembly language compiler or FPPALC, and generating
the SHDL file which can then be run using Fairplay’s circuit evaluator. Any
runnable SFDL program can be represented in PAL.

3.1. PAL
We first describe PAL, our memory-efficient language for garbled circuit cre-

ation. PAL resembles an assembly language where each instruction corresponds
to a pre-optimized circuit. PAL is composed of at least two parts: variable dec-
larations and instructions. PAL files may also contain functions and procedures.

The heading syntax is defined in Table 1. Variable declarations or assembly
instructions come after the headers.

Table 2 lists the set of operations that are available in PAL along with their
instruction signatures. Each operation consists of a destination, an operator,
and one to three operands. DEST, V1, V2, and COND are variables in our operation
listing. PAL also has operations not found in Fairplay, such as shift and rotate.
These two operations also take an N value, an integer, for the size of the shift or
rotation. PAL does not have multiplication or division operators as SFDL does
not have complete implementations of multiplication and division (the symbols
exist in the compiler, but it errors when you use them).
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Possible Operations
Operation Syntax
Addition DEST + V1 V2
Subtraction DEST - V1 V2
Less than DEST < V1 V2
Greater than DEST > V1 V2
Less than or Equal to DEST <= V1 V2
Greater than or Equal to DEST >= V1 V2
Equal to DEST == V1 V2
Not Equal to DEST != V1 V2
Bitwise AND DEST & V1 V2
Bitwise OR DEST | V1 V2
Bitwise XOR DEST ^ V1 V2
Bitwise NOT DEST ! V1
Shift Left DEST << N V1
Shift Right DEST >> N V1
Rotate Left DEST ROT N V1
Set Equal DEST = V1
If Conditional DEST IF COND V1 V2
Input line INPUT V1 a (or INPUT V1 b)
Output line INPUT V1 a (or INPUT V1 b)
For loop V1 FOR X (an integer) to Y (an integer)
Call a procedure V1 PROC
Call a function DEST,...,DEST = FunctionName(param, ... ,param)
Multiple Set Equals DEST,...,DEST=V,...,V

Table 2: All PAL Operations.

The IF statement assigns either V1 or V2 to the destination based upon the
rightmost bit of the COND variable. All IF operations in a high level language
can be reduced to the IF conditional. Unlike in a program which jumps if the
IF statement is not needed, in a circuit all parts of the IF statement must be
executed every evaluation.

The first part of a PAL program is the set of variable declarations. These
consist of a variable name and bit length, and the section is marked by a Vari-
ables: label. In this low-level language there are no structs or objects, only
integer variables and arrays. Each variable in a PAL file must be declared be-
fore it can be used. Array indices may be declared at any point in the variable
name. The IN and OUT operations, when used with arrays, take in full arrays
and not just a single variable so the user does not have to write out all the input
statements.

Figure 2 shows an example of variables declared in PAL. Alicekey and
Bobkey have a bit length of 6, Bobin and Aliceout have a bit length of 32, COND
is a boolean like variable and has a bit length of 1, and Array[7] is an array
of seven elements with a bit length of 5. All declared variables are initialized to
0. After variable declarations, a PAL program can have function and procedure
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Variables:
Alicekey 6
Bobin 32
Bobkey 6
Aliceout 32
COND 1
Array [7] 5

Figure 2: Example of variable decla-
rations in PAL.

Instructions:
2 Bobin IN b

Bobkey IN b
Alicekey IN a
COND == Alicekey Bobkey
Aliceout IF COND

7 Bobin Aliceout
Aliceout OUT a

Figure 3: Example of number comparison (for
keyed database problem) in PAL.

definitions preceding the Instructions:, which is the main function. After a
heading, any PAL instructions that follow it are part of that portion of the
program: be it a function, procedure, or the instructions.

Figure 3 shows the PAL instructions for comparing two keys as used in the
keyed database problem, described more fully below. The first two statements
are input retrieval for Bob, while the third retrieves input for Alice. A boolean
like variable COND is set based on a comparison and the output is set accordingly.
Note that constants are allowed in place of V1, V2, or COND in any instruction.

PAL supports loops, functions, and procedures. Like other programming
languages, a FOR loop only affects the next statement; otherwise, a procedure
that contains multiple statements is needed, which FOR can loop over. We use
FOR loops instead of goto to be consistent with SFDL. Functions are similar to
those in other languages with the exception that they can return any number
of variables. A function may only be called on the right side of a set equal
statement. To deal with the equality of structures defined in the higher level
SFDL language and with multiple returns from a function, we added the ability
of set equal statements to have multiple left and right side variables where
the corresponding leftmost variable on the left side is set to the variable on the
leftmost side of the right side of the set equal statement. Figure 4 shows the
BNF grammar for PAL.

To illustrate a full program, Figure 5 shows the keyed database problem
in PAL, where a user selects data from another user’s database without any
information given about the item selected. In this program, Bob enters 16 keys
and 16 data entries and Alice enters her key. If Alice’s key matches one of
Bob’s then Alice’s output of the program is Bob’s data entry that held the
corresponding key. The PAL program shows how each key is checked against
Alice’s key. If one of those keys matches, then the output is set.

3.2. PALC
Circuits generated by our PALC compiler, which generates SHDL files from

PAL, are created using a database of pre-generated circuits matching instruc-
tions to their circuit representations. These circuits, with the exception of equal-
ity, were generated using simple Fairplay programs that represent an equivalent
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<S> := <Var> <FP> <Main>
<Var> := <DeclareIdentifier> <Bitlength> <Var> | ε
<FP> := <Function> <FP> | <Procedure> <FP> | ε
<Function> := Function: <Identifier> <Takes> <Returns> end
<AssemblyLines>
<Procedure> := Procedure: <Identifier> <AssemblyLines>
<Main> := Instructions: <InputLines> <AssemblyLines> <OutputLines>
<AssemblyLines>:= <AssemblyLine> <AssemblyLines> | ε
<AssemblyLine> := <BinaryOp> | <MonoOp> | <If> | <For> | <FunctionCall> |
<ProcedureCall>

<InputLines> := <InputLine> <InputLines> | ε
<InputLine> := <Identifier> IN a | <Identifier> IN b
<OutputLines> := <OutputLine> <OutputLines> | ε
<OutputLine> := <Identifier> OUT a | <Identifier> OUT b

<BinaryOp> := <Identifier> <BinaryOperator> <Identifier> <Identifier>
<MonoOp> := <Identifier> <MonoOperator> <Identifier>
<If> :=<Identifier> IF <Identifier> <Identifier> <Identifier>
<For> := <Identifier> FOR <Number> <Number>
<FunctionCall>:= <IdentifierList> = <Identifier>(<Params>)
<ProcedureCall> := <Identifier> PROC
<BinaryOperator> := + | - | > | >= | < | <= | == | != | && | & | ’|’ ’|’ | ’|’ | ˆ
<MonoOperator> := = | ! | « | » | ROT

<DeclareIdentifier> := <Letter><DeclareName>
<DeclareName> := <DeclareArrayName> | <DeclareNotArray> | .<DeclareIdenti-
fier>
<DeclareArrayName> := [<Number>]<DeclareName>
<DeclareNotArray> := <String><DeclareName> | <String> | ε

<IdentifierList> := <Identifier> | <Identifier>,<IdentifierList>
<Takes> := takes <SymbolList> | ε
<Returns> := returns <SymbolList> | ε
<SymbolList> := <StringStart> <SymbolList> | <StringStart>
<Params> := <ParameterList> | ε
<ParameterList> := <Identifier> | <Identifier>,<ParameterList>
<Identifier>:= <Letter><Name>
<Name> := <ArrayName> | <NotArray> | .<Identifier> | ε
<ArrayName> := [<StringStart>]<Name> | [<Number>]<Name>
<NotArray> := <String><Name>
<StringStart> := <Letter><String>
<String> := <Letter><String> | <Digit><String> | ε
<Bitlength> := <Digit><Number>
<Number>:= <Digit><Number>| ε
<Digit> := 0|1|2|3|4|5|6|7|8|9
<Letter> := a|b|...|z|A|...|Y|Z|$

Figure 4: BNF rules for PAL. For the | (or) symbol, literal uses are contained in ’ ’. White
space is omitted from the above grammar, but required between words and symbols.
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Variables:
i 6
in.a 6
in.b[16]. data 24
in.b[16]. key 6
out.a 24
$c0 1
$t0 1
DBsize 64

Procedure: $p0
$t0 == in.a in.b[i].key

$c0 = $t0
out.a IF $c0 in.b[i].data out.a

Instructions:
in.b[16]. data IN b
in.b[16]. key IN b
in.a IN a
DBsize = 16
i FOR 0 15
$p0 PROC
out.a OUT a

Figure 5: Representation of keyed database program in PAL.

functionality. We made our own optimized equality circuit. Variables hold in-
tegers signifying what gate they currently point to, meaning no gates need to
be generated to represent them. Any operation that does not actually generate
a gate is considered a free operation. Assignments, shifts, and rotates are free.

Variables in PALC have two possible states: they are either specified by a
list of gate positions or they have a real numerical value. If an operation is
performed on real value variables, the result is stored in the real value of the
destination. These real value operations do not need a circuit to be created and
are thus free.

When variables of two different sizes are used, the size of the operation is
determined by the destination. If the destination is 24 bits and the operands
are 32 bits, the operation will be done assuming the operands are 24 bits. This
will not cause an error but may yield incorrect results if false assumptions are
made.

Currently there are a number of known optimizations, such as removing
static gates, which are not implemented inside PALC; these optimization tech-
niques are a subject of future work. We did, however, add an optimization for
dealing with arrays. When accessing an array variable where the index is based
on user input the program must use equality statements to determine what value
the index holds. This means that an array of size 16 requires 16 equals state-
ments and 16 IF statements to determine which array index should be accessed.
If the same variable is used twice in a statement then, naively, it requires 32
equal statements and 32 IF statements. If one of the pairs is the destination,
then instead of 32 equal statements and 32 IF statements, each instruction is
instead performed on the single array, resulting in 16 equals statements, 16 IF
statements, and 16 operation statements.

3.3. FPPALC
To demonstrate that it is feasible to compile non-trivial programs on a phone,

we modified Fairplay’s SFDL compiler to compile into PAL and then run PALC
to compile to SHDL. This compiler is called FPPALC. Compiling in steps greatly
reduces the amount of memory that is required for circuit generation.
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Assembly; JV 1 V 2 +K ⇒ Assembly, ($ti + V 1 V 2); $ti
Assembly; JV 1 V 2 −K ⇒ Assembly, ($ti − V 1 V 2); $ti
Assembly; JV 1 V 2 &K ⇒ Assembly, ($ti & V 1 V 2); $ti
Assembly; JV 1 V 2 |K ⇒ Assembly, ($ti | V 1 V 2); $ti
Assembly; JV 1 V 2 ^K ⇒ Assembly, ($ti ^ V 1 V 2); $ti

Assembly; JV 1 V 2 ==K ⇒ Assembly, ($ti == V 1 V 2); $ti
Assembly; JV 1 V 2 ! =K ⇒ Assembly, ($ti ! = V 1 V 2); $ti
Assembly; JV 1 V 2 >=K ⇒ Assembly, ($ti >= V 1 V 2); $ti
Assembly; JV 1 V 2 <=K ⇒ Assembly, ($ti <= V 1 V 2); $ti

Assembly; JV 1 ∼K ⇒ Assembly, ($ti ! V 1); $ti
Assembly; JV 1 −K(unary minus) ⇒ Assembly, ($ti − 0 V 1); $ti

Figure 6: Production rules transforming SFDL postfix expressions to PAL.

Assembly; JFor(i = x to y) StatementK⇒
(Procedure : $pi), JStatmentK, Assembly, (i FOR x to y), ($piPROC);

Figure 7: Rules for transforming FOR Loops from SFDL to PAL.

Assembly; Jif(expression) Statement [else StatementOfElse]K⇒
Assembly, ($ci = expression result), JStatement[X = Y := X IF $ci Y X]K;

[Else, if needed] Assembly, ($ci =! expression result), JStatementOfElse[X =

Y := X IF $ci Y X]K;

Figure 8: Rules for transforming IF statements from SFDL to PAL.

We now describe our circuit transformation protocol for expressions and
other operations. First, using the predefined order of operations in Fairplay, we
represent the expression in postfix notation. As we consume the expression, we
find the first operator and create the corresponding PAL based on the produc-
tion rules shown in Figure 6. In the figure, Assembly represents the expression
produced in PAL. We concatenate the new PAL instruction onto the end of the
existing expression denoted by Assembly. We also note the transformations for
the FOR and IF statements and for functions in Figures 7, 8, and 9 respectively.
To transform the PAL to SHDL we use a case statements with prebuilt cir-
cuits. Parentheses () denote new assembly statements while brackets JK denote
statements yet to be translated.

We note our compiler will not yield the same functionality as Fairplay’s com-
piler in two cases, which we believe demonstrate erroneous behavior in Fairplay.
In these instances, Fairplay’s circuit evaluator will crash or yield erroneous re-
sults. They are as follow: (1) when a user leaves a constant in the SFDL file
and not does not optimize or tries to output a constant, which caused a crash
of the evaluator, and (2) when the program consists of a single IF statement
with a single assignment inside it. The SFDL specfication calls for all variables
to be initialized to zero so that program output where the guard is false should
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Function Definitions:

Assembly; Jtype functionName(param1...paramn) StatementK⇒
(Function : functionName takes param1...paramn returns V ar1...V arm), JStatementK, Assembly;

Function Calls:

Case 1: single equals statement:

Assembly; JstructV ar = function(param1...paramn)K⇒
Assembly, (funcV ar1...funcV arm = functionName(param1...paramm);

Case 2: in an expression:

Assembly; Jfunction(param1...paramn)K⇒
Assembly, ($ti = functionName(param1...paramm); $ti

Figure 9: Rules for transformation of functions from SFDL to PAL: definition and calls

be 0 for all variables modified inside of the IF statement. However, even if the
guard is false they are modified inside the IF statement. We implemented our
compiler to ensure all variables are initialized to 0 as per the specification. An
example program of this error is found in the appendix.

Apart from these small differences, the functionality of the two circuits is
equivalent. Both approaches of circuit generation rely on an equivalent SFDL
specification. Since both approaches generate the circuit from the SFDL speci-
fication, FPPALC’s corresponding output circuit has the same functionality as
the Fairplay circuit.

For our implementation of the SFDL to PAL compiler we took the original
Fairplay compiler and modified it to produce the PAL output by removing all
elements other than the parser. From the parser we built our own type system,
before building support for basic expressions, assignment statements, and finally
IF statements and FOR loops. All variables are represented as unsigned variables
in the output but input and other operations treat them as signed variables. Our
implementation of FPPALC and PALC, which compile SFDL to PAL and PAL
to SHDL respectively, comprises over 7500 lines of Java code.

3.4. Garbled Circuit Security
A major question posed about our work is the following: Does using an in-

termediate metalanguage with precompiled circuit templates change the security
guarantees compared to circuits generated completely within Fairplay? The sim-
ple answer to this question is no: we believe that the security guarantees offered
by the circuits that we compile with PAL are equivalent to those from Fairplay.

Because there are no preconditions about the design of the circuit in the
description of our garbled circuit protocol, any circuit that generates a given
result will work: there are often multiple ways of building a circuit with equiv-
alent functionality. Additionally, the circuit construction is a composition of
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Memory (KB) Time (ms)
Program Initial SFDL→PAL PAL→SHDL SFDL→PAL PAL→SHDL Total

Millionaires 4931 5200 5227 90 29 119
Billionaires 4924 5214 5365 152 54 206
CoinFlip 5042 5379 5426 139 122 261
KeyedDB 4971 5365 5659 142 220 362
SetInter 2 5064 5393 5533 161 305 466
SetInter 4 5078 5437 5600 135 1074 1209
SetInter 8 5122 5542 5739 170 6659 6829

Levenshtein 2 5184 5431 5576 183 336 519
Levenshtein 4 5233 5436 5638 190 622 802
Levenshtein 8 5264 5473 5693 189 2987 3172

Table 3: FPPALC on Android: total memory application was using at end of stages and the
time it took.

existing circuit templates that were themselves generated through Fairplay-like
constructions. Note that the security of Fairplay does not rely on the way the
circuits are created but on the way garbled circuit constructs work. There-
fore, our circuits will provide similar security guarantees since our circuits also
rely on using the garbled circuit protocol. We also note that Huang et al. [10]
considered circuit templates in the evaluator for further composition, including
adders, muxers, and other broad functions.

A second question which can be asked of our system is Can we guarantee the
same program will be executed with a different compiler? Given the transfor-
mation rules shown previously in Figures 6, 7, 8, and 9, we know the circuits
generated will be semantically the same to the specification of SFDL. Thus we
know the circuits we generate will produce circuits which are correct.

4. Evaluation

In this section, we demonstrate the performance of our circuit generator to
show its feasibility for use on mobile devices. We targeted the Android platform
for our implementation, with HTC Thunderbolt smartphones as a deployment
platform. These smartphones contain a 1 GHz Qualcomm Snapdragon processor
and 768 MB of RAM, with each Android application limited to a 24 MB heap.

4.1. Testing Methodology
We benchmarked compile-time resource usage with and without intermediate

compilation to the PAL language. We tested on the Thunderbolts; all results
reported are from these devices. Memory usage on the phones was measured
by looking at the PSS metric, which measures pages that have memory from
multiple processes. The PSS metric is an approximation of the number of pages
used combined with how many processes are using a specific page of memory.
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Several SFDL programs, of varying complexity, were used for benchmarking.
Each program is described below. We use the SFDL programs representing the
Millionaires, Billionaires, and Keyed Database problems as presented in Fair-
play [11]. The other SFDL files, written by us, are presented in the appendix.
We describe these below in more detail.

The Millionaire’s problem describes two users who want to determine which
has more money without either revealing their inputs. We used a 4-bit integer
input for this problem. The Billionaire’s problem is identical in structure but
uses 32-bit inputs instead. The CoinFlip problem models a trusted coin flip
where neither party can determine the program’s outcome deterministically. It
takes two inputs of 24-bit inputs per party. In the Keyed database program, a
user performs a lookup in another user’s database and returns a value without
the owner being aware of which part of the database is looked up - we use a
database of size 16. The keys are 6-bits and the data members are 24-bits. The
Set intersection problem determines elements two users have in common, e.g.,
friends in a social network. We measured with sets of size 2, 4, and 8 where 24-
bit input was used. Finally, we examined Levenshtein distance, which measures
edit distance between two strings. This program takes in 8-bit inputs.

4.2. Results
Below the results of the compile-time tests performed on the HTC Thun-

derbolts are presented. We measured memory allocation and amount of time
required to compile, for both the Fairplay and PAL compilers. In the latter
case, we have data for compiling to and from the PAL language. Our complete
compiler is referred to as FPPALC in this section.

4.2.1. Memory Usage & Compilation Time
Table 3 provides memory and execution benchmarks for circuit generation,

taken over at least 10 trials per circuit. We measure the initial amount of mem-
ory used by the application as an SFDL file is loaded, the amount of memory
consumed during the SFDL to PAL compilation, and memory consumed at the
end of the PAL to SHDL compilation.

As an example of the advantages of our approach, we successfully compiled
a set intersection of size 90 that had 33,000,000 gates on the phone. The output
file was greater than 2.5 GB. Android has a limit of 4 GB per file and if this was
not the case we believe we could have compiled a file of the size of the memory
card (30 GB). This is because the operations are serialized and the circuit never
has to fully remain in memory.

Although we did not focus on speed, Table 3 gives a clear indication of
where the most time is used per compilation: the PAL to SHDL phase, where
the circuit is output. The speed of this phase is directly related to the size of the
program that is being output, while the speed of the SFDL to PAL compilation
is based on how many individual instructions exist.
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Memory (KB)
Program Fairplay FPPALC

Millionaires 658 296
Billionaires 1188 441
CoinFlip 1488 384

KeyedDB 16 NA 688
SetInter 2 10667 469
SetInter 4 NA 522
SetInter 8 NA 617

Levenshtein Dist 2 NA 392
Levenshtein Dist 4 NA 405
Levenshtein Dist 8 NA 429

Table 4: Comparison of memory increase by Fairplay and FPPALC during circuit generation.

4.2.2. Comparison to Fairplay
Table 4 shows the comparison of the Fairplay compiler and FPPALC. Where

results are not present for Fairplay are situations where it was unable to compile
these programs on the phone. For the set intersection problem with set 2,
FPPALC uses 469 KB of memory versus 10667 KB by Fairplay, a reduction of
95.6%. Testing showed that the largest version of the keyed database problem
that Fairplay could handle is with a database of size 10, while we easily compiled
the circuit with a database of size 16 using FPPALC.

To determine just how large the programs we could compile were, we deter-
mined the maximum program size that the Fairplay compiler can compile on a
phone. We used a program that adds single numbers together. We found we
were able to have 342 addition operations when adding the constant 1. This
compilation had about 20,000 gates. We should note this is the most generous
possible program that could be constructed for Fairplay. Programs with array
accesses (which the above did not have) require enormous amounts of memory,
e.g. the keyed database, size 10 of which was able to successfully compile on the
phone had 571 gates. Fairplay could not compile size 11 on the phone which
had 629 gates.

4.2.3. Circuit Evaluation
Table 5 depicts the memory and time of the evaluator running the programs

compiled by FPPALC. Consider again the two parties Bob and Alice, who create
and receive the circuit respectively in the garbled circuit protocol. This table is
from Bob’s perspective, who has a slightly higher memory usage and a slightly
lower run time than Alice. We present the time required to open the circuit
file for evaluation and to perform the evaluation, or all operations other than
the time it takes to load the initial non-garbled circuit into memory, using two
different oblivious transfer protocols. As we describe in more detail below, we
used both Fairplay’s evaluator and an improved oblivious transfer (OT) protocol
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Memory (KB) Time (ms)
Program Initial Open File End Open File Fairplay Nipane

Millionaires 5466 5556 5952 197 533 406
Billionaires 5451 5894 6287 579 1291 981
CoinFlip 5461 5933 6426 789 1795 1320

KeyedDB 16 5315 6197 7667 1600 1678 1593
SetInter 2 5423 5993 6932 1511 2088 1719
SetInter 4 5414 7435 11711 8619 7714 7146

Levenshtein Dist 2 5617 6134 7162 1799 2220 2004
Levenshtein Dist 4 5615 7215 10787 7448 6538 6150
Levenshtein Dist 8 5537 12209 20162 29230 29373 27925

Table 5: Evaluating FPPALC circuits on Fairplay’s evaluator with both Nipane et al.’s OT
and the suggested Fairplay OT.

Memory (KB) Time (ms)
Program Initial After File Opening End File Opening Evaluating

Millionaires 5640 5733 5995 194 302
Billionaires 5536 5885 6303 631 958
+CoinFlip 5528 5796 6280 428 1062
KeyedDB 16 5551 6255 7848 2252 1955
SetInter 2 5439 6018 7047 1663 2131
SetInter 4 5553 7708 13507 10540 9555

+Levenshtein Dist 2 5568 5872 6316 529 781
+Levenshtein Dist 4 5577 6088 7178 1704 2213
Levenshtein Dist 8 5488 7670 13011 9745 8662

Table 6: Results from programs compiled with Fairplay on a PC evaluated with Nipane et
al.’s OT.

developed by Nipane et al. [27]. Note that Fairplay’s evaluator was unable to
evaluate programs with around 20,000 mixed two and three input gates on the
phone. This translates to 209 32-bit addition operations for our compiler.

Since the circuits that we generate are not optimized in the same manner
as Fairplay’s circuits, we wanted to ensure that their execution time would still
be competitive against circuits generated by Fairplay. Because of the limits of
generating Fairplay circuits on the phone, we compiled them using Fairplay on a
PC, then used these circuits to compare evaluation times on the phone. Table 6
shows the results of this evaluation. Programs denoted with a + required edits
to the SHDL to run in the evaluator to prevent their crashing due to the issues
described in Section 3.3. By comparing the results in the Fairplay column of
Table 5 and the Evaluating column of Table 6 we show the difference between the
time Fairplay and FPPALC circuits took to evaluate. In many cases, evaluating
the circuit generated by FPPALC resulted in faster evaluation. One anomaly to
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this trend was Levenshtein distance, which ran about three times slower using
FPPALC. We speculate this is due to the optimization of constant addition
operations. For instance, the optimizer knows if it is not possible for a specific
variable’s value will be over five then it does not need a full addition circuit
and it can optimize the operation into a smaller circuit. Note, however, that
these circuits are incapable of being generated on the phone and require pre-
compilation. The size difference of the circuits can be extrapolated from the
Tables by looking at time difference between Fairplay and FPPALC - since the
amount of time a program takes is directly proportional to the circuit size.

4.3. Interoperability
To show that our circuit generation protocol can be easily used with other

improved components for SFE, we used the faster oblivious transfer protocol
of Nipane et al. [27], who replace the OT operation in Fairplay with 1-out-of-2
OT scheme based on a two-lock RSA cryptosystem. Shown in Table 6, this
provides a speedup of over 24% for the Billionaire’s problem mechanisms and
26% for the Coin Flip protocol. On average, there was a 13% speedup in eval-
uation time across all problems. with larger programs having a 5% reduction
in evaluation time. For the Millionaires, Billionaires, and CoinFlip programs
we disabled Nagle’s algorithm as described by Nipane et al., leading to better
performance on these problems. The magnitude of improvement decreased as
circuits increased in size, a situation we continue to investigate. Our main find-
ings, however, are that our memory-efficient circuit generation is complementary
to other approaches that focus on improving execution time and can be easily
integrated.

We speculate that the reason our findings for Nipane et al.’s oblivious trans-
fer were not the results they achieved is due to the fact the bottlenecks on a
mobile device are different from the bottlenecks on a desktop PC. In Section 5
we show how memory allocation and deallocation is much slower in propor-
tion to a standard addition operation on a Phone as one example of different
bottlenecks.

4.4. Pipelined Execution
To further extend the ability of our circuit creation scheme we created an

interpreter to use the execution system of Huang et al. [10] with our language.
Their system uses a pipelined execution which does not need the complete circuit
to be stored in memory at the same time during the execution process. However
they did not provide a way to generate circuits dynamically from a generalized
language. It is possible to change the sizes of programs at runtime but once
the program was compiled, using Java’s compiler, it could not be structurally
changed. We combined our compiler with their execution system. We were able
to execute larger circuits on the phone which previously ran out of memory
when executed with Fairplay.

While circuits are claimed to be created at runtime with the pipelined ex-
ecution scheme, we found that the actual circuit generation worked differently.
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Exec. time (ns) Proportion
Program PC Phone PC Phone

Simple recursion of depth 200 16260 72297 903.4X 556.1X
1 addition 18 130 1.0X 1.0X

1 multiplication 18 154 1.0X 1.1X
1 string addition of two characters 2570 13183 142.8X 101.4X

Allocation of 1024 bytes 859 84618 47.8X 651.0X
Allocation of 10240 bytes 6044 571684 335.8X 4397.6X
Allocation of 8 bytes 97 2449 5.4X 18.8X

Creation of an 80 bit BigInteger 4946 44717 274.8X 344.0X

Table 7: Compares the time memory operations take on the phone compared to a PC and
then compared with how many times slower that instruction is compared with an addition on
the corresponding device.

Although the circuits are instantiated (i.e., read and allocated into memory),
the actual circuit structure is hand coded and hand-optimized into the Java
program. Our solution, FPPALC, is different; given a source file our interpreter
does not need the Java compiler to execute the program, nor a reinstallation
of the application as would be necessary on a mobile device. Additionally, our
interpreter allows a user to write a program and execute it without examining
the circuit level program.

5. MobileMem

We studied the runtime performance incurred by Java on our test phones by
comparing the proportion which instructions took to execute on a PC vs a phone.
We found that memory allocation and deallocation was several times slower on
a phone than it was on a PC. The pipelined execution system uses BigIntegers
to hold the numerical values. Since the BigInteger class is immutable most
operations must allocate memory. We examined the time memory allocation
and deallocation takes on the PC and phone.

Table 7 shows elapsed execution time for instructions on a phone and a
PC over 100,000 instructions. Note that while certain operations take approxi-
mately the same amount of time between a phone and a PC, certain instructions
such as memory allocation are considerably slower on the mobile device - note
that allocation of 10,240 bytes incurs a slowdown of almost 4,400X compared to
the simple instructions. This demonstrates to us that there are opportunities
to significantly improve performance in the mobile environment. As described
below, we implemented a new memory allocation scheme for the mobile envi-
ronment, called MobileMem. We created our own custom class rather than
reusing a built-in mutable class. Our class performs exactly the operations it
needs and no more, which is important as we desire efficiency.
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Execution time (ms)
Program Huang et al. MMints Reduction

Millionaires 70 40 57.7%
Billionaires 314 83 26.5%
CoinFlip 335 193 57.7%

KeyedDB 16 2135 691 32.3%
SetInter 2 1576 600 38.1%
SetInter 4 10375 2907 28.0%
SetInter 8 72058 18521 25.7%
SetInter 16 536565 129050 24.1%

Levenshtein 2 898 360 40.1%
Levenshtein 4 7105 2340 33.9%
Levenshtein 8 43999 11774 26.8%
Levenshtein 16 194067 48152 24.8%

Table 8: Comparison of the Huang et al.’s original execution phase and our own execution
phase. Both execution systems use our interpreter.

5.1. Design
The MobileMem system comprises a customized buffer pool and system for

handling large integers, removing the need for using the Java BigInteger class by
replacing them with our own representations called MMints. MobileMemis
primarily a large integer array for addressing memory. A circular queue to
keep track of which spots in the memory are free. Each variable previously
represented as a Java BigInteger is now an integer pointing to its corresponding
MMint in memory. MMint operations use a set of integers as input and
execute on the set of corresponding MMints in memory.

A form of deallocation also appears in MobileMem, but rather than per-
forming the actual memory deallocation during a delete, we keep the MMint struc-
ture in place in the buffer pool. This allows us to reuse the memory without
a need for another allocation. We created functions for operations over both
immutable and mutable variables.

A limitation to MobileMem is that MMints are fixed in length. However,
we designed a modification to allow dynamically increasing the length of digits.
We use a second pool of memory containing a set of nodes, and link multiple
nodes together, similar to indirect inode access in a file system.

We also applied other memory optimizations during conversion from Big-
Integers to MMint. Using MobileMem, we could optimize memory used for
operations such as send and receive for network transmissions. Our solution
was only applied to the circuit garbling and execution phase of the two-party
computation, not to oblivious transfers.

Table 8 shows the results of our MobileMem system applied to the Huang
et al. system with the corresponding execution system. In the execution phase,
there was a speedup of up to 4X in larger programs. When we compared our
interpreter to the custom circuits of Huang et al. we found even our optimized
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(a) (b)

Figure 10: Screenshots of the GUI and password vault applications.

execution system was still slower than custom circuits by a factor of 2 for the
Levenshtein distance problem. However, this does not diminish the value of
our optimizations since many users, if not most, will not write the circuit level
optimizations required for the improved efficiency. We could also apply our
MobileMem system to the hand created circuits and get a speedup since they
may also benefit from a better memory management strategy.

A particularly revealing result was desktop execution speed. The Mobile-
Mem system on a PC was negligibly faster or even slightly slower depending
upon the input size used, showing that optimizations benefiting the mobile en-
vironment can differ considerably from those for desktops and servers.

6. Discussion

To demonstrate how our memory-efficient compiler can be used in practice,
we developed Android apps capable of generating circuits at runtime. We de-
scribe these below.

6.1. GUI Based Editor
To allow use of the compiler on a phone we have to address one large problem.

Our experience porting Fairplay to Android port showed the difficulty of writing
a program on the phone. Figure 10 (a) shows an example of a GUI front-end for
picking and compiling given programs based on parameters. A list of programs
is given to the user who can then pick and choose which program they wish to
run. For some of the programs there is a size variable that can also be changed.
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6.2. Password Vault Application
We designed an Android application that introduces SFE as a mechanism

to provide secure digital deposit boxes for passwords. In brief, this “password
vault” can work in a decentralized fashion without reliance on the cloud or any
third parties. If Alice fears that her phone may go missing and wants Bob to
have a copy of her passwords, she and Bob can use their “master” passwords,
as input to a pseudorandom generators. These master inputs are not revealed
to either party, nor is the output of the generators, which is used to encrypt
the password. If the passwords are ever lost, Alice can call Bob and jointly
recover the passwords; both must present their master passwords to decrypt
the password file, ensuring that neither can be individually coerced to retrieve
the contents. This application also allows us to not need the cloud to store the
information. Figure 10(b) shows a screenshot of this application.

Our evaluation shows that compiling the password SFDL program requires
915 KB of memory and approximately 505 ms, with 60% of that time is the PAL
to SHDL conversion. Evaluating the circuit is more time intensive. Opening
the file takes 2 seconds, and performing the OTs and gate evaluation takes 6.5
seconds. We are exploring efficiencies to reduce execution time.

The security of the password vault application is dependent upon whether
the output of the pseudorandom number generator can be guessed. The keys are
incremented for each password used to prevent same key attacks. The maximum
length for a password in our program is 24 characters.

6.3. Experiences with Circuit Generation
One of the most important lessons from our implementation efforts was

observing the large burden on mobile devices caused when complete circuits
must be kept in memory. Better solutions only use small amounts of memory
to direct the actual computation, for instance, one copy of each circuit instead
of N for N of the same type of statement.

The largest difficulty of the full circuit approach is the need for the full circuit
to be created. Circuits for O(n2) algorithms and beyond scale extremely poorly.
A different approach is needed for larger scalability. For instance, doubling
the Levenshtien distance parameter n increased the circuit size by a factor of
about 4.5 (decreasing as n increases). For n of value 8, there are 11,268 gates;
corresponding, n of size 16 yields 51,348 gates, n = 32 yields 218,676 gates, and
n = 64 yields 902,004 gates.

In our first iteration of developing PAL, the compiler was limited in scala-
bility, since it did not have loops, arrays, procedures, or functions. Once those
programming structures were added, the length of PAL circuit files decreased
dramatically. The resulting circuits generated from our improved version of PAL
were syntactically similar to the original circuits and semantically equivalent.

6.4. Malicious Model
Increasingly, SFE proposals have shown their security in not only the semi-

honest adversarial model, but also the rigirous standards of the modern ma-
licious model. As an example, Huang et al. [28] implemented a process to

23



achieve near malicious model security in SFE with only minimal changes. This
is achieved by preforming the execution twice and then preforming a secure
equality. For the second execution both parties switch their roles; the creator
is now the evaluator and the evaluator is now the creator. The process incurs
a minimal throughput decrease when the execution is preformed on dual core
machine. Most phones are not currently dual core but it is expected to be more
prevalent as technology is used more for power constrained devices.

This enhancement to security was implemented in the pipelined system we
have already adapted. Since we already adapted this implementation to our
compiler we know it is possible to adapt their new execution system to work
with our language. The one downside to this approach is that this is a ‘’near”
malicious model of security, instead of a complete malicious model of security.
A party may gain a single bit of information they should not attain.

We note Fairplay’s protocol does not achieve this with two circuits, and
instead, if there is a cheater, reveals all secret information if the incorrect circuit
is used during the circuit evaluation phase.

7. Impact of PAL

Since the original publication of this work, the authors are aware of two
works that were directly affected by it: the PCF [29] and Frigate [30] compilers.
The PCF compiler used templates to generate its sub-circuits, but then applied
simplification rules to the circuit during SFE evaluation that allowed the circuit
size to be substantially reduced. Unlike PAL, PCF used a technique to reduce
the size of the output circuit by including jumps in the output format, which
allowed PCF to not to have to unroll loops as in PAL.

The Frigate compiler was a direct result of this work. It functions very
similarly to the PAL compiler; it uses templates and does not attempt to perform
any global optimizations. In contrast to this work, Frigate uses the simplification
rules from PCF to reduce the size of the circuit output at runtime.

The Frigate work incorporated an SFE evaluation system (a modified version
of Kreuter et al. [17]) for testing the Frigate circuits. During the creation of
the Frigate execution system, they, aware of this work, hand optimized the
execution system’s treatment of SFE values in many of the same way as we did
in order to improve the performance of the Kreuter et al. [17] system.

The Frigate work also noted an error from the original PAL compiler where
structs did not work. This error has since been fixed.

8. Related work

Current research has primarily focused on optimizing the actual transaction
or generation of smaller circuits for SFE, while we focus on creating a memory
efficient compiler. Kolesnikov et al. [31] demonstrated a “free XOR” evaluation
technique to improve execution speed, while Pinkas et al. [9] implement tech-
niques to reduce circuit size of the circuits and computation length. We plan to
implement these enhancements in the next version of the circuit evaluator.
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Huang et al. [10] have similarly focused on optimizing secure function evalua-
tion, focusing on execution in resource-constrained environments. The approach
differs considerably from ours in that users build their own functions directly at
the circuit level rather than using high-level abstractions such as SFDL. While
the resulting circuit may execute more quickly, there is a burden on the user
to correctly generate these circuits, and because input files are generated at
the circuit level in Java, compiling on the phone would require a full-scale Java
compiler rather than the smaller-scale SFDL compiler that we use.

Another way to increase the speed of SFE has been to focus on leverag-
ing the hardware of devices. Pu et al. [32] have considered leveraging Nvidia’s
CUDA-based GPU architecture to increase the speed of SFE. We have con-
ducted preliminary investigations into leveraging vector processing capabilities
on smartphones, specifically single-instruction multiple-data units available on
the ARM Cortex processing cores found within many modern smartphones, as
a means of providing better service for certain cryptographic functionality.

Kruger et al. [14] described a way to use ordered binary decision diagrams
(OBDDs) to evaluate SFE, which can provide faster execution for certain prob-
lems. Our future work may include determining whether the process of creating
the OBDDs can benefit from our memory-efficient techniques. TASTY [21] also
uses different methods of privacy-preserving computation, namely homomor-
phic encryption (HE) as well as garbled circuits, based on user choices. This
approach requires the user to explicitly choose the computation style, but may
also benefit from our generation techniques for both circuits and the homomor-
phic constructions.

FairplayMP [33] showed a method of secure multiparty computation. We
are examining how to extend our compiler to become multiparty capable. More
recently an intermediate language using a pipelined execution model has been
developed [34], but does not include the program control structures that we
have developed, nor the ability to compile from a higher level language to it.

There have been multiple other implementations since, in both semi-honest [35,
36, 37, 38, 39] and malicious settings [29, 40].

Optimizations for garbled circuits include the free-XOR technique [41], gar-
bled row reduction [42], rewriting computations to minimize SFE [43], and
pipelining [44]. Pipelining allows the evaluator to proceed with the computation
while the generator is creating gates.

Kreuter et al. [17] included both an optimizing compiler and an efficient
run-time system using a parallelized implementation of SFE in the malicious
model from [40].

9. Conclusion and Future Research

We introduced a memory efficient means for creating garbled circuits for
making SFE tractable on the mobile platform. We created PAL, an interme-
diate language, between SFDL and SHDL programs and showed by using pre-
generated circuit templates that we could make previously intractable circuits
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compile on a smartphone, reducing memory requirements for the set intersec-
tion circuit by 95.6%. We demonstrate the compiler’s practicaliy through two
smartphone applications. Our compiler with other execution systems and can
be optimized to that specific system and mobile platform.

The creation of circuits for SFE in a fast and efficient manner is one of the
central problems in the area. Previous compilers, from Fairplay to Kreuter et
al. [17], were based on the concept of creating a complete circuit and then op-
timizing it. PAL represents the first system to use a simple template circuit,
reducing memory usage by orders of magnitude. This has spurred additional
substantial work in how to create better representations, including PCF [29],
which built from this and used a more advanced representation to reduce the
disk space used and has become an important artifact in the SFE community.
More recently, we used the lessons learned from PAL in the design of Frigate [45],
which provide both optimized representation and a validated platform for com-
piler design. PAL thus represents an important milestone in SFE compilers and
has many design decisions and lessons that are valuable for current and future
researchers in the privacy-preserving computation area.
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APPENDIX

Keyed Database program
program Keyed_DB_Search {

const DBsize = 16;
type Key = Int<6>;
type Data = Int<24>;
type Pair = struct {Key key, Data data};
type AliceInput = Key;
type BobInput = Pair[DBsize];
type AliceOutput = Data;
type Output = struct {AliceOutput alice,

BobOutput bob);
type Input = struct {AliceInput alice,

BobInput bob};

function Output output(Input input) {
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var Key i ;
for (i = 0 to DBsize-1)

if (input.alice == input.bob[i].key)
output.alice = input.bob[i].data;

}
}

Coin Flip program
program Coin {

const InputSize = 2;
type Data = Int<24>;
type AliceInput = Data[InputSize];
type BobInput = Data[InputSize];
type AliceOutput = Data;
type BobOutput = Data;
type Output = struct {AliceOutput alice,

BobOutput bob};
type Input = struct {AliceInput alice,

BobInput bob};

function Output output(Input input)
{

var Data temp;
temp = input.alice[0] ^ input.bob[0];
temp = temp ^ input.bob[1];
temp = temp&1;
if(temp== (input.alice[1] & 1))
{

output.alice = 1;
output.bob = 0;

}
else
{

output.alice = 0;
output.bob = 1;

}
}

}

Set Intersection program
program SetIntersetion {

const Size = 8;
type Key = Int<10>;
type Data = Int<24>;
type AliceInput = Data[Size];
type BobInput = Data[Size];
type AliceOutput = Data[Size];
type Output = struct {AliceOutput alice,

BobOutput bob};
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type Input = struct {AliceInput alice, BobInput bob};
function Output output(Input input)
{

var Key i,k,j,index ; index=0;
for (i = 0 to Size-1)
{

for (k = 0 to Size-1)
{

if (input.bob[i] == input.alice[k] )
{

for (j = 0 to Size-1)
{

if (index == j )
{

output.alice[j]= input.alice[k];
}

}
index= index+1;

}
}

}
}

}

Levenshtein Distance program
program LevenshteinDistance {

const bit = 1;
const size = 8;
const inputsize = 2;
const Asize = inputsize+1;
type Num = Int<size>;
type Bit = Int<bit>;
type AliceInput = Num[inputsize];
type BobInput = Num[inputsize];
type AliceOutput = Num;
type BobOutput = Num;
type Input = struct {AliceInput alice,BobInput bob};
type Output = struct {AliceOutput alice,

BobOutput bob};
function Output output(Input input)
{

var Num i,k,j;
var Num temp1,temp2,temp3, result;
var Bit answer;
var Num[Asize][Asize] D;
for (k=0 to Asize-1)
{

D[k][0] = k;
D[0][k] = k;
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}
for (i=1 to Asize-1)
{

for (j=1 to Asize -1)
{

if(input.alice[j-1] == input.bob[i-1])
{

D[i][j] = D[i-1][j-1];
}
else
{

temp1 = D[i-1][j] + 1;
temp2 = D[i][j-1] + 1;
temp3 = D[i-1][j-1] + 1;
answer = temp2 < temp3;
result = temp1;
if ((temp2 < temp1)&answer)

result = temp2;
if((temp3 < temp1)& (temp3<temp2))

result = temp3;
D[i][j] = result;

}
}

}
output.alice = D[Asize-1][Asize-1];
output.bob = D[Asize-1][Asize-1];

}
}

Fairplay error example program
program FairplayError {

const N=8;
type Byte = Int<N>;
type AliceInput = Byte;
type BobInput = Byte;
type AliceOutput = Byte;
type BobOutput = Byte;
type Input = struct {AliceInput alice, BobInput bob};
type Output = struct {AliceOutput alice,

BobOutput bob};
function Output output(Input input)
{

if(input.bob>input.alice)
{

output.alice = input.bob & input.alice;
output.bob = input.bob ^ input.alice;

}
}

}
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