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Abstract. Applications are subject to threat from a number of attack
vectors, and limiting their attack surface is vital. By using privilege sep-
aration to constrain application access to protected resources, we can
mitigate the threats against the application. Previous examinations of
privilege separation either entailed significant manual effort or required
access to the source code. We consider a method of performing privilege
separation through black-box analysis. We consider similar applications
to the target and infer states of execution, and determine unique trigger
system calls that cause transitions. We use these for the basis of state-
based policy enforcement by leveraging the Systrace policy enforcement
mechanism. Our results show that we can infer state transitions with
a high degree of accuracy, while our modifications to Systrace result in
more granular protection by limiting system calls depending on the ap-
plication’s state. The modified Systrace increases the size of the Apache
web server’s policy file by less than 17.5%.

1 Introduction

Applications in computing environments are often insecure. Insecure applications
open the system and user data to exploitation. The number of attack vectors,
from buffer overflow attacks to worms and other malware, is large and growing.
However, the system can defend itself against attack and reduce the amount of
potential damage by limiting an application’s access to trusted system resources.

In Unix systems, an application runs at the same privilege level as that of
the user executing it. Often, this gives applications more privileges than they
need to perform their tasks. Mitigating the exposure surface of applications to
attack can be achieved by adhering to the principle of least privilege [22, 21],
restricting access to resources such that only the parts of the application that
require them are eligible to request them.

While mechanisms to control the interaction between the application and its
environment exist, they are often onerous to enact on the part of the user. For
example, virtual machines provide isolated environments but require the user
to be running within the machine and administer the virtual machine manager.
Mechanisms such as chroot and the Tripwire utility [12] provide notifications of
abnormal activity but require constant user vigilance and cognizance of these



notifications. In addition, these mechanisms are specific to a user’s particular
machine; no guarantees are made if the user moves to a different computer,
e.g., from an office to a home machine. Often, as a result, the best place to
minimize privilege is within the application itself. This is best demonstrated
through the concept of privilege separation, which refers to separating the parts
of the application that run at different privileges [18]. In a privilege-separated
application, the privileged portions of the program handle sensitive inputs, while
the other parts of the program have their access restricted to sensitive resources.
Because Unix treats different processes as protection domains, even if a less
privileged portion is compromised by a malformed input, user can’t take control
of the privileged portion. Hence, the risk of data compromise is greatly reduced.
Provos et al. manually separated the privileged part of the OpenSSH program
from the less privileged part, requiring considerable effort. Efforts to automate
the process of privilege separation include Brumley et al.’s Privtrans work [3].
However, these processes all require access to source code, which may not be
available in closed-source systems or for legacy applications.

In this paper, we consider how to automatically perform privilege separation
within applications by considering application execution as a series of states. At
differing points during the execution, different levels of resource access will be
required by the application. We examine a variety of web server applications and
show that by understanding a subset of them, we can accurately identify state
transitions common to the vast majority of web servers, thus allowing black box
analysis of software we do not possess the source to; our tests show that measured
by the number of system calls performed, our inferred transitions occur less than
170 system calls, or less than 0.5% of the total number of measured system calls,
from where they would occur if we had access to application’s source code.

We leverage the differing requirements as applications transition between
states to enforce policy at the system call level through use of the Systrace
policy enforcement framework [17]. Systrace provides simple policies for gov-
erning system call access, and enforces only application policies, unlike more
heavyweight solutions such as SELinux. There are two ways of achieving certain
security objectives with systrace: it can be run interactively, allowing a user to
allow system calls as they are invoked, or it can be run in automatic mode,
where a pre-existing policy is enforced. By using program states to determine
what system calls should and should not be allowed at various stages of a pro-
gram’s execution, we can enforce these policies with Systrace and maintain least
privilege within the application. Our modifications to Systrace, making it aware
of states and more granular in its enforcement over the course of an execution,
adds less than 17.5% to the size of the Systrace policy file for the Apache web
server.

The rest of the paper is structured as follows: Section 2 presents related
work and concepts; Section 3 introduces our methodology for examining states
and how we correctly find state transitions and validate our findings; Section
4 describes how we integrate policy semantics discovered from state transitions



into Systrace; Section 5 provides an evaluation of our modified Systrace in terms
of policy file size and performance; Section 6 concludes.

2 Related Work

Running an untrusted application on a machine opens it to data and system com-
promise. As a result, application confinement is an area of sustained research.
Systems may be protected by a myriad of defenses: active measures constantly
check the application’s capability to perform certain operations, while passive
measures use resources such as like system logs and call traces to identify in-
trusion attempts. One of the traditional security tools used for these purposes
is Tripwire, which monitors critical system files and directories and identifies
changes made to them. I3FS [11] improves on Tripwire with a kernel level im-
plementation that provides real-time access checking. A parallel area of research
looks at the application-data relationship for better security. Formal methods
of preserving information integrity include the Clark-Wilson [5] and Chinese
Wall [7] models, as well as sub-operating systems [9, 19].

System calls are important to identify malicious behavior, as they are the only
way for an application to get access to the privileged kernel operations. Forrest
et al. [8] used system call monitoring to identify intrusion detection attempts
in a system, creating a system call database of normal behavior and comparing
the active system call trace to the database. Any deviation from the database
indicated ongoing intrusion. Authenticated system call mechanisms [20] augment
system calls with extra arguments that specify policy. An HMAC guarantees
integrity of the system call policy and arguments. However, this approach does
not take into account malicious user input, nor does it protect the system from an
inherently malicious application. System call interposition [10, 24] allows for the
system to intercept system calls and sandbox the application by mediating access
to the rest of the system. Sandboxing has been extensively explored through the
use of kernel modules [4], user-level OS extensions [1] and system call APIs [16].
In particular, virtual machines environments such as Xen [2] provide almost
complete isolation between processes by running on logically different platforms,
giving users the illusion of their own private machine. An exploit that targets
the virtual machine manager, however, could put all virtual machines on the
system at risk [13].

Confinement of processes is best effected through complete mediation of pro-
cesses. The Flask architecture [23] and its successor, SELinux [14], implement
a flexible policy enforcement infrastructure by assigning security identifiers to
every object, and having a security server enforcing all accesses in a reference
monitor like approach. SELinux in particular uses type enforcement and role-
based abstractions to achieve a wide range of security objectives [15], the price
being that one must run this operating system to gain these benefits. By con-
trast, the benefits of privilege separation of applications can be spread to any
platform the application executes on.



Privileged and daemon programs in UNIX are the source of most security
flaws, and the large codebase of application programs makes it difficult to iden-
tify those flaws. Fink et al. [6] use specifications against which a program is sliced
to significantly reduce the size of code that needs to be checked for flaws [6]. Simi-
larly, privilege separation creates a smaller trust base that is more easily secured.
Provos et al. [18] demonstrated that SSH could be privilege-separated through
extensive manual techniques. Brumley et al. considered automated privilege sep-
aration [3] and developed a prototype, which works on annotated source code
for an application and creates a master and a slave application. Their tool, Priv-
trans, performs inter-procedural static analysis and C-C translation to achieve
the goal. A disadvantage of this approach is that the authors of the application
must conform and identify higher privileged variables and code for the tool to
work. All of the privilege separation mechanisms discussed require access to the
program’s source code. We have built a privilege separation tool that performs
a black-box analysis on an application, with policy enforcement provided by
Systrace [17].

3 Privilege State Identification and Analysis

3.1 Introduction

Traditionally, privileges within an application were identified as either root or
non-root privileges. We extend this concept by considering the state of an ap-
plication to be its privilege level, such that every application can be described
in terms of its state machine. State analysis is an important step to analyze the
operation of applications, as understanding valid and invalid states in an appli-
cation can help the developer identify transitions leading to an error state. While
privilege separation in previous approaches was achieved by physically separat-
ing parts of application, we can achieve similar results by identifying states in an
application and by enforcing a specific application policy for each of the states.

States in an application can be identified by looking at the source code and by
identifying major steps an application takes. However, we wanted our approach
to be usable for legacy applications where source code may not be available,
such that a black-box analysis would be necessary. Hence, to identify states in
an application, we looked at the externally observable behavior of an application,
i.e., system call traces. System calls are gateways to privileged operations of the
kernel and hence can give information about the state of the application and
any child processes spawned by it.

3.2 Environment

To collect system call traces, we used a Linux machine running the Debian/GNU
2.4.27 distribution. System call traces were generated with the strace utility
found in Linux, which intercepts and records the system calls and signals re-
spectively called by and received by an executing process. We selected a set of



Table 1. Web server: Number of unique system calls per state

Application Start Listen Accept

Apache 64 11 12

Caudium 134 33 16

dhttpd 8 29 7

lighttpd 21 5 7

luahttpd 50 0 11

nullhttpd 16 4 16

thttpd 49 18 8

xshttpd 25 1 29

web server applications to perform system call analysis on because of their wide
usage and the ability to easily differentiate sets of distinct states, simplifying the
state analysis. The list of web servers examined can be found in Table 1, and
represent a diversity in functionality, from the lightweight, simple functionality
of lighttpd to the full-featured Apache server.

We generated traces of server executions under a variety of configurations,
and used Perl scripts to collect and analyze the trace data. Systems calls of
similar functionality were grouped for identification purposes (e.g., the lstat,
stat, and read calls were mapped to the fsread system call). We found that
system call traces were largely independent of changes in server configuration
by changing numerous variables such as timeout period, maximum number of
child processes, listening port, and password-protecting some files. Our results
showed that 93% of system calls remained the same for Apache Web server while
92% remained the same for the Caudium Web server. While system call traces
will vary with the kind of workload1 run on the Web server, our representative
workloads capture all system calls made by the server (we explain issues relating
to coverage in Section 4).

3.3 Observations

To identify states, we first looked to find system calls that can be used to indicate
that state transitions have occurred; we term these system calls triggers. We
attempted to find individual system calls rather than a sequence of system calls
to act as trigger. We also do not consider arguments to the system call for
simplicity. Certain system calls occur rarely during the Web server’s execution.
For example, in the Apache Web server, the listen system call occurs only once.
Since it is a significant event and can be related to the operation of Web server,
it can be considered a trigger. We identified system calls that were rarely called
during application execution, and used this set of calls to form an initial set for
determining triggers.

1 A web server’s workload refers to factors such as the number of requests and amount
of data served, and how frequently these requests occur.
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Fig. 1. Cumulative number of bind system calls for variety of Web servers.

Fig. 2. Cumulative number of accept system calls for variety of Web servers.

Even if a system call is only rarely called, it may not be a good indicator
of a state transition if it occurs throughout the server’s execution. An impor-
tant factor in determining whether a system call is a trigger is the point in the
application’s execution where the call occurs, and whether it repeats (i.e., the
locality of the call relative to application execution). To further investigate this,
we collected system call traces of multiple web servers given the workload of
a single user browsing a variety of web pages. We divided the execution trace
into ten equal stages to simplify discussion about where state transitions occur.
Figures 1 and 2 show when during execution the bind and accept system calls
respectively occur. Note that the large number of accept calls and the variance
of this number between web servers requires Figure 2 to be shown on a log scale,
reflecting the diverse implementations and methods of responding to requests
between web servers. Of equal interest is noting where in the trace the calls
occur. For the accept system call, the first calls happen early in the trace with



lighttpd and thttpd, while they do not occur until sections 4 and 7 for Apache
and Caudium, respectively. In particular, note that unlike other applications,
lighttpd calls accept in the first section of the trace; this may be a function of
its quick startup time, whereas with larger servers such as Apache, many library
calls and other startup procedures must occur before it is ready to accept con-
nections. By contrast, bind system calls start early in the execution trace for
most web servers. Both system calls are distinctive and are good candidates for
a trigger.

There are other system calls that can act as a trigger. Some of them are not
uniform throughout the Web server class of applications, e.g., select. Some of
them occur too close to one another to create a distinguishable state, i.e., bind
and listen occur in tandem. Applications can also use different system calls to
execute similar functionality, e.g., send, sendto and sendfile are all used to
send the requested Web page to the client. Some system calls, e.g., socket, do not
provide sufficient information unless arguments to the call are also considered.
As a result, much of the necessary information can only be inferred by studying
a variety of applications of the same class. We inferred web server states by
examining the applications identified in Table 1.

3.4 State Analysis

States of an application should possess features that distinguish them from neigh-
boring states. States may differ in ways that include the types of resources ac-
cessed, type of user interface presented, amount of resources accessed, amount
of network activity, or the type and number of system calls called. These unique
characteristics support the idea that each state in the application is a privilege
level.

We identified three states for Web servers: start, listen, and accept. We
also identified the following three rules of the state transition:

1. Application starts in Start state.
2. if (state == ’start’) and if (systemCall == listen) then state = ’listen’
3. if (state == ’listen’) and if (systemCall == accept) then state = ’accept’

This choice of states was justified by our discovery of many system calls
occurring in these states that do not occur in any other state of the application.

After identifying state from the system call trace, we separated system calls
made in each state and determined the number of system calls that unique to
each state of the application. Table 1 shows number of unique system calls per
state for the applications we tested. We consider a system call to be unique
if using the Systrace utility, a new policy is created for the call in automatic
policy generation mode. As previously mentioned, we correlated system calls
with similar functionality and only counted them once to eliminate redundancy
(e.g., lstat6 and stat64 are both mapped to fread in Systrace and hence, are
only counted once). In addition, individual file accesses on the web server are
mapped to one system call that accesses the root of the website.



Table 2. Difference (in number of system calls) between our inferred state transition
and where the transition actually occurs in code.

Web server tclhttpd Abyss Boa Cherokee

Listen 0 4 0 11

Accept 24 0 21 126

Unique system calls do not provide information about the size of the state.
For example, while applications spend most of their time in the accept state,
more unique system calls are called from the start state. A large number of
policy statements exist for start because of the number of library file accessed
in this state: unique system calls are generated for every path location examined
by the application. Applications spend the least amount of time in the listen
state, and for servers that do not create multiple child processes for servicing
requests, the number of system calls is very low in this state.

3.5 Verification

We verified the inferred state engine on a different set of web servers, as shown
in Table 2. The listen transition occurs when the application has loaded all
of its libraries and is opening a socket to listen for incoming connections. An
accept state transition coincides with the server entering an unbounded loop
where it handles incoming HTTP requests. We inserted dummy system calls in
the code for the two new web servers where server initialization is performed
and where the server begins its loop of accepting connections, to determine how
close our state identification came to the transition in the code itself. Table 2
describes the offset (in the number of system calls) between where we inferred a
state identification and where the code transition occurred. The transition into
the listen state is detected at the same time it occurs in code. Detection of
the accept state is more variable, but the offset is still less than 0.5% of the
total system calls observed in the trace. Thus, there is a high correlation be-
tween our inferred state transitions and their actual occurrence in code, making
black-box analysis possible. In the next section, we use these state transitions to
demonstrate how policy enforcement can be implemented.

4 Implementation

Having described how to identify states in an application, we are interested in us-
ing these as part of a policy enforcement infrastructure. We leverage the Systrace
policy enforcement framework, which we use because of its clean policy seman-
tics. Systrace policies describe the desired behavior of user applications on the
system call level, which are enforced to prevent operations that are not explicitly
permitted. Our prototype only modifies the policy semantics of Systrace while
keeping the enforcement infrastructure intact.



While policy creation is usually relegated to the user, Systrace is capable of
creating policies automatically and interactively. Policy is created by enumerat-
ing all possible actions that an application will need for its correct execution.
Each policy statement can be evaluated by itself; thus, it is possible to extend
the policy just by appending new statements. In automatic mode, policy is cre-
ated by running an application and recording the system calls that it executes.
Systrace checks the existing policy; if none exists then one is created. If a policy
exists and the system call is not covered by any of the existing policy statements,
a new policy statement that allows the system call is appended to the policy.
Automatic mode creates a comprehensive policy only if all execution paths are
covered in the training run. Interactive mode of operation asks the user for the
policy decision for every system call for which a policy statement can’t be found
in Systrace policy. This mode is useful if the user doesn’t trust the source of the
application and wants to check the access to the system resources before any
harm is done; it is also useful for ensuring complete code coverage. Once a secu-
rity policy for an application has been finalized, policy enforcement is employed.
When an application attempts to execute a system call, the user is not asked for
a policy decision. If Systrace can find a policy statement related to the system
call, system call is allowed; otherwise, it is denied and an error code is returned
to the application.

To create privilege separation in an application, we use the states identified in
a program’s execution as the basis for different policy enforcement parameters,
such that at different points through the execution, we can constrain access to
resources. The goal of our implementation is to integrate Systrace with our priv-
ilege state engine to simplify privilege separation in the application. This entails
modifying Systrace to understand the concept of states and vary enforcement
mechanisms depending on the state of the application. We describe the original
Systrace architecture and our modifications in the following sections.

4.1 Systrace Design

Systrace uses a hybrid approach to system call interception. A small kernel part
supports fast path for some system calls that are always allowed or denied. The
kernel part is used to make Systrace fail-safe. When a monitored application
executes a system call, kernel consults a small in-kernel policy database to check
if system call should be permitted or denied. System calls like read, write are
always permitted. In interactive mode, policy decision is deferred to the corre-
sponding user space daemon. When policy daemon receives a request for policy
decision, it looks up policy associated with the process. Kernel keeps track of
all new processes; child processes inherit policies of the parent. If Systrace is
terminated, all the processes Systrace was monitoring are also terminated, thus
eliminating chance of an adversary circumventing Systrace. In absence of a fast
path, Systrace asks the user space daemon for policy decision. Systrace blocks the
process until the daemon returns with an answer explicitly allowing or denying
the system call. The user space daemon uses kernel interface to monitor pro-
cesses, get pending policy decisions and state changes. Before making a policy



decision, system call arguments are translated by Systrace. As a result, system
call semantics don’t affect system call decisions. Translation of
socket(AF_INET,SOCK_RAW,IPPROTO_ICMP); takes form:
socket: sockdom: AF_INET, socktype: SOCK_RAW.
File-name arguments are translated to resolve all the symbolic links. This elim-
inates another avenue for an adversary to evade the application policy enforce-
ment.

Policy Specifications

Systrace uses an ordered list of policy statements, with one statement per
system call. A policy statement is a Boolean expression, B, combined with an
action clause: B then action. Ask, deny and permit form the valid action set. If
the Boolean expression evaluates to true then the specified action is taken. The
ask action requires user to deny or permit the system call explicitly. Boolean
expression consists of variables Yn and logical operators: and, or and not. Vari-
ables Yn are tuples of the form (subject op data) where subject is translated name
of system call argument, data is a string argument and op is a function with a
Boolean return value. To create different policies for different users, policy state-
ments may carry predicates. Predicates are appended to the policy statement.
They are of the form if {user,group} op data, where op is equality or inequality
and data is a username or a group name. Predicates are matched first before any
policy is evaluated. A log modifier can also be added to the policy statement to
create a granular audit trail for a particular system call.

Policy Evaluation

A set of policy statements forms the security policy. Policy evaluation starts
at the start of the list and ends when the first Boolean expression is true. The
action from that policy statement determines if the system call is allowed or
denied. If no Boolean expression becomes true then policy decision is forwarded
to the user in interactive mode and denied in the enforcement mode. When a
system call is denied, policy can specify which error code is to be passed to the
application. Systrace supports interactive and automatic policy generation. In
automatic policy generation, an application is run and Systrace records all the
system calls it generates and creates policy to allow all those system calls. On
following runs, the automatically created policy is used. While creating policies
automatically, it is assumed that application itself isn’t malicious. Interactive
mode is used to make sure that all execution paths of the application are covered
by the Systrace policy. If a policy statement can’t be found for a system call then
user is presented with a graphical notification that contains all the information
about the system call. The user then explicitly allows or denies that system call.

Exhaustive Policy Creation



A good policy should allow only those system calls necessary for the intended
functionality of the application and deny everything else. Each policy statement
is evaluated by itself, so it is possible to extend a policy just by appending
additional policy statements. A good policy is thus created by listing all the
possible actions that an application needs. To create an exhaustive policy with
automatic mode of Systrace, it is necessary to cover all execution paths in the
training mode. If it is not possible to foresee or execute all the execution paths
during training runs, then application should be run in interactive mode to create
a policy with complete coverage. A user can use generic policy templates for some
applications. These templates can be used as a starting point. After the security
policy has been finalized, automatic policy enforcement can be employed. In such
a case, system call is denied if a policy statement allowing it is not found.

4.2 Systrace Modifications

Systrace lists a set of statements that form policy for an application. We modify
semantics of the Systrace policy to make it understand and interpret the concept
of state. Original Systrace policy semantics look like this:
[<Boolean expression> then] <action>
[if \{user,group\} <op> <data>][log]

For modified Systrace application most of the policy statements will have at
least one Boolean expression, which will be of the form:
state eq "<state-name>".
The modified Systrace code has a state engine that will keep track of the privilege
state of the application and help interpret and create policy statements.

We have created our prototype in NetBSD stable 3.0.1. Systrace code is inte-
grated with NetBSD distribution. Size of code for Systrace in that distribution is
18047 lines of C code. Our modifications added 415 lines of code to various files
in the source tree. We treat our state variable as a part of Boolean expression and
it is added to most of the policy statements. When system call arguments are
translated by Systrace, state information is added to the system call’s translated
argument queue. As a result, state is treated as any other system call argument.
In the automatic mode, when the policy is written to a file, a Boolean expression
for state is also added to the policy statement. In the enforcement mode, the
state string found in policy is matched with data in the translate queue of the
system call. If both strings match then the system call is allowed, otherwise it is
denied.

A simple state engine is incorporated in the implementation. It takes in the
current state, the current system call and the application type as input and it
outputs the next state for the application. State engine for each application type
is learnt by studying 4-5 applications of that type. Because all these applica-
tions exhibit similar functionality, they also possess similar privilege states. For
example, a Web server application will typically start up, read the libraries, get
DNS information from local DNS server, open a listening socket, and serve all



Table 3. Increase in policy size with modified Systrace

Application Original Systrace Modified Systrace

Apache 223 262

Bozohttpd 138 144

Mini-httpd 149 158

thttpd 140 150

w3c-httpd 191 197

lighttpd 114 134

the incoming connection. State engine design can be improved to give us an
optimum set of state-system call relationship in terms of number of system calls
per state and the uniformity across different applications.

Systrace modifications integrate the policy enforcement mechanism with the
principles from privilege separation. The modifications do not physically separate
privileged part of the application; they rather enforce the privileges by Systrace’s
policy enforcement architectures.

Modified Systrace policy creates more granular Systrace policy by introduction
of privilege states. Because the policy is defined for every system call called from
that state, we in tern are defining privileges for different time-periods in the
lifetime of the application.

5 Evaluation

We created a prototype of the modified Systrace. In this section, we evaluate
different characteristics of the modified Systrace. The number of policy state-
ments is an important performance criterion, as the larger the policy file, the
more time is required for the policy engine to search for a policy statement
for a given system call. We created policies for couple of Web servers with our
modified Systrace. The policies were then enforced in the enforcement mode of
Systrace. Table 3 shows the policy size for the old and the new Systrace pol-
icy. The workload represents a single user choosing successive HTML documents
from a web server. The policies were created using the automatic policy gener-
ation mode of Systrace. Policies increase in size with the addition of privilege
state to the system call policies, and increased by an average of 15 statements.
Size is minimized by introducing the privilege state for some of the system calls
like mmap, munmap, getuid, or getgid. These system calls occur throughout the
lifetime of the application and mostly deal with low-level memory management
or provide information about user and group. Adding privilege state to their
policy statement only increases the size of policy with no real advantage.

States of an application represent different privilege levels for that applica-
tion. Each state has a unique signature in terms of type of system calls made in
that state. We also considered uniqueness of a privilege state as an evaluation



criterion for the modified Systrace. The uniqueness is measured in terms of the
percent of unique system calls called in that state. The results are laid out in
table 4. 2There are a high number of unique system calls in the accept state
because one policy statement is created for each HTML file served. The start
state also has a high percentage of unique system calls because it is the only
state where all the library files are accessed. These results are similar to the
unique system call values shown in table 1 which were obtained analysing the
system call traces.

Table 4. Unique Policy Statements for Each Privilege State

Application Start Listen Accept

Apache 56 15 69

Bozohttpd 18 3 91

Mini-httpd 27 10 86

thttpd 32 7 74

w3c-httpd 8 7 149

lighttpd 20 12 66

We evaluated the performance of Systrace and of our modified version. Bench-
marking was done by ApacheBench. An Apache Web server was installed on a
NetBSD machine and the workload was simulated with fifty total requests and
twelve concurrent requests. Without Systrace running, the time per request with
Apache averaged 5.01 ms. While running under Systrace, an average request took
8.6 ms to serve. Performance under the modified Systrace was further degraded,
with an average request taking 13.61 ms to serve, almost 1.5 times longer than
for the unmodified Systrace. However, this performance penalty is not because
of unnecessary context switches but because of the time taken by the system to
access and manage the TAILQ structures for each system call. Each system call
in Systrace has a system-call argument TAILQ associated with it. In the origi-
nal Systrace, arguments of most of the system calls were ignored for the purpose
of application policy creation. However, in modified Systrace, each system call
has at least 1 argument, i.e., the state of the application in which the system
call is called. Systrace manages arguments for approximately 30 different system
calls while Modified Systrace manages arguments for approximately 80 system
calls. Hence, the number of TAILQs to be initiated and managed has increased
by almost 2.5 times. We see this performance degradation because we want to
integrate the application specific state engine with minimal changes in original
Systrace as possible. We defer consideration of performance improvements for
future work.

2 Number of unique policy statements are comparable to the numbers in table 1. In
table 4 accept state has more unique policy statements because no wildcards were
used in any of the policy statements.



While creating the application policy with the modified Systrace, we only
looked at web servers. We plan to extend this idea to other classes of appli-
cations as well. Web servers are chosen for the initial study because of their
ubiquity and because the application class is not dominated by one particular
vendor/application. This gave us opportunity to study a variety of Web servers,
which are being used in the real world. Web servers also fit well in the state based
application policy because it is easy to understand the states in a Web server.
Further types of servers such as mail and DNS, and other server applications
will be considered in future work.

6 Conclusion

Securing applications is a two-step process involving creating an effective pol-
icy enforcement mechanism as well as creating good policies. We also simplified
privilege separation processes through inferring state transitions with high accu-
racy, enabling black-box analysis of the application. In addition, we found that
by modifying the Systrace utility, we could provide policy enforcement over the
defined states with a less than 17% increase in the size of the Systrace policy file
for the Apache web server.

There are several directions of future work based on this study. We have
only looked at the class of web server applications. State-based privilege separa-
tion techniques can also be extended to and demonstrated for other classes like
database servers, mail servers and the most downloaded user applications like
music players, web-browsers, IM clients. In future we also plan to compare this
privilege separation technique to results from PrivTrans and manual privilege
separation.
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