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Abstract
Emerging storage platforms, such as HP’s memory spot,
are increasingly becoming smaller, faster and less expen-
sive. Whether intended for holding digital media or per-
sonal documents, such systems currently function as in-
dependent receptacles of data. As we demonstrate in this
paper, however, the true power of these devices is their
ability to form the flexible building blocks of larger logi-
cal storage systems. Such systems allow for the creation
of continuously reconfigurable storage devices, capable of
the dynamic addition, removal and repurposing of compo-
nent nodes. Moreover, such changes can be made trans-
parent to the user’s view of the storage system. To illus-
trate these properties, we design and implement a granu-
lar storage system based on memory spots. In so doing,
we identify and address significant challenges in areas
including organization, security and reliability. We then
conduct an extensive analysis of performance and demon-
strate the ability to achieve throughputs of greater than 3
Mbps to our unoptimized logical storage device. These re-
sults demonstrate the potential for new applications and
systems built on granular storage.

1 Introduction
Suppose you could rethink storage. Imagine for a minute
that storage was a physical substance like grains of sand
that could be placed, relocated, subdivided or combined.
The more storage one had, the more storage would be
available for whatever purpose was immediate. Move-
ment would be effortless–systems would recognize stor-
age as it became available and use it readily. In this world,
storage would no longer be an artifact of the fixed com-
puting infrastructure in your office or home or static token
one carries in briefcase, but a highly flexible, reusable,
and inexpensive commodity.

What would such a reality enable? Systems could eas-
ily and immediately expand or reduce their storage. For
example, could I take storage away from my laptop while
it is running to allow my television to record an extra hour

of shows and return it later? Could I achieve true storage
mobility by keeping a terabyte of storage sealed in the
bottom of my travel coffee mug I take to work each day?
Could GRID system operators arbitrarily redistribute stor-
age allocation by physically relocating portions of grains?

Such a storage substance exists. HP’s recently an-
nounced memory spot devices that export a simple stor-
age interface over a wireless media [12, 8, 18]. Built on
a platform similar to passive RFIDs, these 2mm2 devices
support up to 4Mb of storage that can be accessed at trans-
mission rates upwards of 10Mbps. With projected costs of
between 5 cents and a dollar (US), these storage grains1

are perfectly suited to meet our vision of granular stor-
age.

In this paper, we consider the requirements, design and
behavior of storage area networks (SANs) built on gran-
ular storage. We begin by considering a number of moti-
vating applications and explore the properties of granular
storage that separate it from traditional storage systems. A
high-level architectural design is given and key research
challenges considered. An implementation of our proto-
type granular virtual storage is described and development
experiences detailed. We then present an in-depth study
of the operational parameters of a granular storage sys-
tem. The analysis of our prototype storage system shows
that we can achieve high throughput under a range of real-
istic configurations and workloads. We conclude by com-
menting on the future of granular storage systems and key
remaining technical challenges.

Granular storage is very different from past storage
systems. The previously unseen levels of potential ac-
cess parallelism, transient nature of grains, and physi-
cal geography of a granular storage system introduce a
number of technical opportunities and challenges. These
challenges/opportunities are embodied in the three main
thrusts of this work:

1Because only incomplete specifications of HP’s memory spots are
available to the public at the time of writing, we use the term “storage
grains” to describe a platform inspired by but not necessarily beholden
to their device.
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• Organization - Data placement–the selection of the
specific storage grains on which data are to be
located–is a central determinant of the performance
and reliability of the system. For this reason, explor-
ing the behavior of allocation strategies is therefore
critical.

• Security - Storage grains use an unprotected wire-
less interface and possess very few native security
capabilities. These characteristics induce a number
of serious threats that must be addressed.

• Reliability - Storage grains are expected to be added
and removed frequently. The integrity of the storage
content following these events must be maintained.

The remainder of this paper details how we address these
key issues.

One may be tempted to see shades of granular stor-
age in recently proliferating USB “thumb drives” or other
low-cost storage devices. However, such comparisons are
misplaced: these devices are essentially convenient re-
movable hard drives. By contrast, granular systems seek
to gracefully absorb and release very small portions of the
larger logical storage system in a reliable, secure way as
the physical environment changes. We begin our analysis
of these systems in the following section by considering
the vision and motivation for granular storage.

2 Application Framework
Consider the versatility of storage systems built on storage
grains. Before embarking on a long trip, an automobile
owner attempts to load a new set of maps into the on-
board navigation system; however, the storage capacity
of this system has been reached. Undeterred, the owner
takes a handful of unused storage grains from his laptop
and adds them to the vehicle. On reaching his destination,
a subset of the storage grains borrowed by the navigation
system are moved to his digital camera to enable extended
use. Finally, after arriving home, our traveler returns the
storage grains to his laptop in order to store his processed
photographs.

The creation of a storage infrastructure based on mem-
ory spot technology provides a framework for a diverse
set of additional applications. Instead of requiring users to
transport general purpose computing platforms (e.g. lap-
tops) between locations, they could instead simply dock
their portable SAN at any open terminal. If device mount-
ing occurs at boot time, a briefcase embedded with storage
grains can carry not only a user’s data, but also their home
environment and operating system. Because of their small
size and lack of moving parts, the use of storage grain-
based SANs have great potential in highly dynamic en-
vironments. For example, such devices can be embedded

within clothing and helmets, providing unobtrusive physi-
cal protection for battlefield storage systems and data. The
applications of such a flexible logical storage device are
unbounded. In order to understand how such applications
can be realized, it is necessary to examine the characteris-
tics of a storage system built on these devices.

Reconfiguration is an extremely coarse-grained opera-
tion in current storage systems. When capacity is reached,
for instance, the solution typically involves device dupli-
cation (e.g., adding new disks) regardless of the additional
space required. Such over-provisioning is not only cost-
ineffective, but also potentially causes a significant under-
utilization of resources. For example, in a setting where
three devices each require an additional 10MB of stor-
age space, the purchase of three additional hard drives is
extremely inefficient. While USB flash memory offers a
more reasonable alternative in this regard, the inability to
simultaneously divide a single device between multiple
machines limits their applicability. Ideally, excess capac-
ity from one device should be relocated in arbitrarily small
quantities. Because of their modest individual capacities,
storage grains satisfy this objective. As demonstrated in
our motivating example, a handful of storage grains could
be transparently added to the SAN of each of the previ-
ously mentioned devices and, as usage patterns change, be
arbitrarily reconfigured and redistributed between them.

Portability and capability in storage systems have tra-
ditionally been inversely proportional. Large disk banks,
capable of extremely high access rates and storage capac-
ities, are functionally immobile. Conversely, while USB
flash storage devices offer increased mobility, they lack
high individual throughput and the ability to operate in
parallel. While RFIDs have a similar form factor to stor-
age grains and the potential to be used in parallel, the ab-
sence of a malleable computation infrastructure and the
inability to rewrite content restricts their effective use as
the building block of a SAN. However, the ability to orga-
nize a significant number of very small storage grains into
a logical storage device approximates many the capabili-
ties of larger static systems without sacrificing portability.

In order to create systems based on this architecture,
it is necessary to examine the requirements that storage
grain-based SANs must achieve. Like all storage systems,
the ability to reliably retrieve data is of paramount impor-
tance. Because of the small size and potential for dam-
age to individual devices, fault tolerance is of particular
concern. Performance must then be addressed in order to
understand the behavior of such an infrastructure. Finally,
because of the potentially exposed nature of such systems,
security must be built in to the initial architecture. Ac-
cordingly, the remainder of this paper investigates how
each of the above design requirements can be achieved in
such a system.
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Figure 1: Storage Grain System Architecture

3 System Design
The foundation of our system is based on two central el-
ements: a host machine and a set of storage grains. The
host communicates wirelessly with nearby storage grains
and is responsible for organizing them into a logical stor-
age device. As is consistent with traditional storage archi-
tectures, the host’s management makes the existence of
individual storage grains transparent to the file system.

This conceptual model of the storage system, shown in
Figure 1, exhibits design constraints that motivate three
central technological challenges: organization, reliability
and security. The methods and strategies by which data
is organized affects contention for resources, parallelism,
and overall performance. Security provides the protec-
tion of the confidentiality and integrity of data. This is
particularly challenging in a granular storage system be-
cause both the physical devices and the communications
between them are vulnerable to attack. Reliability, which
provides the capacity to recover from error and loss, is
also necessary because of a high failure rate caused by
grain loss, failure, theft or physical reassignment.

This section introduces the low level architecture of
a storage grain-based SAN. We begin by discussing the
components of the system. We then examine the impact
of the design decisions made for each element on the or-
ganization, security and reliability of the overall system.

3.1 Architecture
Figure 2 illustrates the major functional components of a
storage grain-based SAN. The process of accessing data
stored on a SAN occurs when an application makes a sys-
tem call requesting read or write access to a file. The call
is intercepted by the file system in the kernel and passed
as a block request to the storage grain device driver. The
device driver then requests specific sectors from the stor-
age grain controller, which communicates directly with
the physical storage grains. The results of a successful

Application

Kernel
Storage Grain 

Device Driver

Storage Grain 

Controller
User Space

Kernel Space

Storage Grains

Figure 2: Functional components of a storage grain-based
SAN.

request are then returned to the user via the reverse path.
The following subsections discuss the design of the de-

vice driver, storage grain controller and storage grains.
We discuss the design tradeoffs made at each phase and
their potential impact on the operation and performance
of the system.

3.1.1 Device Driver

The device driver is a loadable Linux kernel module im-
plementing the block interface. Upon receiving requests
from the kernel, the device driver translates requests for
block addresses into sectors. Requests are then sent to
a user-space storage grain controller via a netlink socket.
Responses from the storage grain controller are converted
into block request responses and returned to the user space
application via the kernel. As currently implemented, this
device driver is capable of supporting exactly one storage
grain controller.

Designing a device driver with minimal capabilities
serves a number of purposes. First, it minimizes the
addition of complex functions operating in kernel-space.
Moreover, implementing the majority of functional ele-
ments in user space permits the maximum flexibility and
support for the remaining pieces of the prototype sys-
tem (e.g. debugging, simplified interfaces, portability).
For improvements in performance, many of the intelligent
functions are likely to eventually migrate into the kernel
as this codebase matures.
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3.1.2 Storage Grain Controller

The storage grain controller runs as a user space daemon
and implements storage virtualization; the details of man-
aging storage grains are abstracted from the user. The
controller therefore exports read, write and grain initial-
ization interfaces to and receives access requests from the
device driver. Internally, this process translates sector re-
quests into communications with nearby storage grains.
In order to support such functionality, the daemon is re-
sponsible not only for reliable communication, but also
for managing resources usage, allocation strategies, and
scheduling.

Because of the limited capabilities available to storage
grains, as discussed in the next section, the complexity
of underlying communication protocols must be kept to
a minimum. The controller must therefore implement its
own mechanisms to ensure correct read, write and initial-
ization functionality. The details of these and their sup-
porting protocols are defined in Section 3.3.

Managing the assignment and use of storage grains is
accomplished through maintenance of a Sector Alloca-
tion Table (SAT). As shown in Figure 3, the SAT creates
a mapping between the data sectors of the logical stor-
age device and byte offsets in individual storage grains.
Through a hash table lookup, incoming read and write re-
quests are directed to the appropriate storage grain loca-
tions. Changes to the SAT itself occur only on the return
from a successful write. The strategy by which data is
actually mapped to storage grains is implementation de-
pendent and should be based on workload. Section 4 pro-
vides insight by comparing the performance of a number
of mapping polices.

The current prototype implementation only supports
a FIFO scheduling algorithm; however, the benefits of
traditional scheduling algorithms do not necessarily di-
rectly translate to this environment. Whereas spatial lo-
cality is often beneficial to request scheduling in tradi-
tional storage systems, competition for wireless resources
by neighboring storage grains may in fact decrease sys-
tem throughput. Spatial diversity, in combination with the
ability to access nodes without mechanical repositioning,
may in fact lead to better overall system performance. We
leave a more in-depth investigation of this issue to future
work.

3.1.3 Storage Grains

Memory spots are an emerging storage platform first an-
nounced in 2006. Characterized by their small form factor
(< 2mm2) and ability to communicate wirelessly, these
devices are each capable of storing between 256KB and
4MB of data [8, 12, 18]. Their proposed uses range from
embedding patient medical information in hospital wrist
bands to storing supplementary multimedia material di-
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Figure 3: Example Sector Allocation Table and corre-
sponding storage grains

rectly on paper documents. With access rates of approxi-
mately 10 Mbps, the ability to transparently carry and in-
stantly access non-trivial quantities of data is very much a
reality.

Similar to Radio Frequency Identification (RFID) tag
technology, memory spots are simple devices capable of
executing a small amount of fixed functionality. Their
lack of an independent power source limits interaction
with such devices to a query/response relationship initi-
ated by inductive coupling. Accordingly, each communi-
cation session with a memory spot is limited to a single
message in each direction. While the documented range
of communication by such devices is targeted to approxi-
mately 1mm, numerous examples of devices capable of
extending such limits by orders of magnitude are well
documented [37, 20]. Unlike RFID devices, however, the
contents of memory spots can be rewritten. Accordingly,
memory spots provide many of the attractive characteris-
tics found in traditional storage media.

As the base components of a SAN, storage grains act
as banks of storage sectors. These devices therefore per-
form a limited set of operations including the execution of
read, write and initialization requests. Because space and
power are scarce resources, restricting the functionality to
support only a small set of instructions is necessary.

Memory spots are not available to the public as of the
writing of this paper. Regardless, sufficient technical de-
tails have been made available such that their operations
and functionality can be effectively emulated as indepen-
dent processes in a conventional operating system. We
base the behavior of our virtual storage grains, discussed
in greater detail in Section 4, on this information.

3.2 Organization
One of the systemic challenges of a storage grain sys-
tem is the management of sectors. Unlike traditional sys-
tems in which sector assignments are dictated by physi-
cal disk characteristics, the proposed system must man-
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age the shifting geometry represented by the potentially
transient population of storage grains. Our approach is to
allocate sectors upon write, and re-allocate where recov-
ery is needed (after grain failure or removal). This section
considers solutions for allocation, leaving issues of recov-
ery and reallocation to Section 3.4 and future work.

Storage grains are simple read/write storage devices.
Each grain has a unique identifier burned into its memory
by the manufacturer. All communication with a grain is
tagged with this unique ID and the targeted device pro-
cesses only messages containing its ID. The grains ex-
port a simple access interface: they receive and process
reads/writes of arbitrary size to/from a specified offset
within a contiguous address space. We abstract this stor-
age interface to project an array of sectors2 to accommo-
date the operating system storage interfaces. Storage op-
erations are treated as single transactions involving an in-
dividual sector.

There are physical reasons that read operations are re-
stricted to single sectors. As previously discussed, stor-
age grains passively induce the energy used to transmit
responses in a similar manner to RFIDs. Hence, each read
request can only induce enough power for a storage grain
to respond with a fixed amount of data. We conservatively
chose to model power as limited to a single sector–in prac-
tice the grains made available in the future may induce
enough energy for more than one sector. To be sure, en-
vironmental factors such as distance and host transmitter
strength will vastly affect response capabilities, and its fu-
ture study is essential to the tuning of the granular storage
systems. To ease our initial development and analysis, we
similarly restricted writes to single sector transactions.

Allocation is a conceptually simple process: from a
population of storage grains of a given size3, we select
a particular storage grain with available space. The con-
sequences of such an algorithm are profound. The perfor-
mance and reliability of the system will be largely dictated
by the allocation strategy. We implement the following
sector allocation algorithms in our prototype:

• linear - This approach allocates storage from the first
to last available sector on a given storage grain before
writing to another device. In practice, all allocation
requests use the lowest unused sector offset on the
lowest available storage grain ID. This ensures that
sectors will be concentrated on as few grains as pos-
sible.

• striping - This algorithm implements a round-robin
approach in which the system allocates sectors

2By default, the sectors are 512 bytes, but other sector sizes are sup-
ported by our prototype through compile-time configuration parameters.

3The current work assumes a uniform size for all storage grains.
However, support for non-uniform storage grains could be added with
trivial extensions to the allocation algorithms.

evenly across available grains. To achieve a uniform
distribution, new write requests are directed towards
storage grains with the least number of used sectors.

• random mapping - Sectors are allocated to a ran-
dom unused sector on a random storage grain. This
ensures nothing other than, probabilistically speak-
ing, uniform use of all sectors on all storage grains
over a long term period.

These algorithms represent the three general philosophies
of allocation–minimal spread, maximal spread, and ran-
dom. There are opportunities to extend these simple al-
gorithms to optimize different aspects of the system. For
example, when a particular allocation strategy results in
low throughput, sectors can be actively or opportunisti-
cally relocated to better respond to observed or expected
workloads needs. We believe such performance character-
istics to be core to understanding grain storage behavior,
and its study is likely to uncover many interesting perfor-
mance and engineering tradeoffs.

We consider the performance of the storage system
built on each of the above algorithms under various work-
loads in Section 4.

3.3 Security
The architecture described above introduces a number of
security challenges. Unlike traditional storage systems–
which can depend on at least limited guarantees of phys-
ical security–the portable nature of storage grains makes
them acutely vulnerable to physical compromise. Worse
still, the use of wireless communications between stor-
age grains and hosts allows a nearby adversary the abil-
ity to monitor, modify and insert messages into commu-
nications. We address these concerns by designing and
implementing a series of protocols that provide secure ac-
cess to storage grains. Note that because of similar un-
derlying technology and constraints, we borrow liberally
from the ideas (if not content) of RFID security proto-
cols [32, 17, 15, 16, 27].

This section defines a simple security model for the
granular storage system and outlines a system and pro-
tocol suite. We focus on the security of the interface be-
tween the host and storage grains, deferring issues of host-
level security (e.g., file access control, user management)
to the operating system upon which it rests. We use the
following notation throughout:

• C is a controller.
• IDSG is a device identifier.
• KF,D is a key specifying a function and device.
• KG is a global data key.
• l is the length of a request.
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Initialization
1a. σ = {KW,SG|KR,SG}KM,SG (key confidentiality)
1b. h = HMACKW,SG(IDSG, n,σ) (message integrity)
1. C→ SG : (INIT REQ, tn, l) IDSG, n,σ, h (initialization request)

2a. h = HMACKM,SG(succ, n) (message integrity)
2. SG→ C : (INIT RESP, tn, l) succ, n, h (counter value response)

Discovery
3. C→ * : (HELLO REQ, tn, l) (hello broadcast)
4. SG→ C : (HELLO RESP, tn, l) IDSG, size (hello response)

Counter Sync
5. C→ SG : (COUNTER REQ, tn, l) IDSG (counter value request)
6. SG→ C : (COUNTER RESP, tn, l) counter val (counter value response)

Read
7a. sdata = ({data}KG |HMACKG({data}KG)) (data confidentiality & integrity)
7b. h = HMACKR,SG(IDSG, n, offset) (message integrity)
7. C→ SG : (READ REQ, tn, l) IDSG, n, offset, h (read request)

8a. h = HMACKW,SG(succ, n, sdata) (message integrity)
8. SG→ C : (READ RESP, tn, l) succ, n, sdata, h (read response)

Write
9a. h = HMACKW,SG(IDSG, n, offset, sdata) (message integrity)
9. C→ SG : (WRITE REQ, tn, l) IDSG, n, offset, sdata, h (write request)

10a. h = HMACKW,SG(succ, n) (message integrity)
10. SG→ C : (WRITE RESP, tn, l) succ, n, h (write response)

Figure 4: Storage grain secure communication protocols

• n = (r, c) is a nonce, composed of a random number
r and a counter c.

• SG is a storage grain.
• tn is a transaction number.

Note that due to the resource constraints, the use of
public-key cryptography by grains is not possible. Hence,
all cryptographic operations defined in this section are
built upon symmetric-key cryptosystems, e.g., DES [28],
AES [7]. Because such operations can be supported in
RFID tags [6], we assume they are implemented in each
of the storage grains.

Our storage system contains three classes of principals:
owners, readers and writers. Owners are the proprietors
of physical devices and, through the use of the master key
KM,SG, establish keys for reading (KR,SG) and writing
(KW,SG). Ownership is regulated by possession of the
master key. Master keys are assigned and burned into
each storage grain by the manufacturer and delivered to

the owner at time of purchase. All master keys associ-
ated with the storage grains owned by a host are manually
configured on that host, e.g., placed in the local file. Non-
owner hosts permitted to access a storage grain are given
the appropriate read and/or write keys out of band.

All data written to grains by a host are confidentiality
and integrity protected with a global data key KG. This
key is not known to the storage grains. These additional
protections are used to preserve confidentiality and in-
tegrity in the presence of physical attacks on the storage
grains, e.g., directly reading the flash memory, and de-
fending against the loss of the master keys. This approach
does not prevent denial of service attacks caused by chan-
nel saturation or physical erasure or corruption.

Ensuring that messages are not replayed (i.e., ensuring
freshness) is accomplished using a two-component nonce
n = (r, c) passed with each transaction. The first part, r,
is a random value ensuring message uniqueness. The sec-
ond component, c, is a counter maintained by each storage
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grain to validate nonce values. Each access to a storage
grain must include a nonce value of at least c in order to
be processed. The inclusion of r prevents an adversary
from replaying stale data to a controller C with an incor-
rect c value. The protocol for synchronizing counter val-
ues between the controller and storage grain is described
below.

Detailed in Figure 4, we now describe the security pro-
tocols used to communicate between the controller and
storage grains. Storage grains are initialized via a series
of maintenance operations. The owner of each device es-
tablishes read and write keys via the initialization proto-
col. In this, the owner transmits an initialization request to
each of its storage grains containing encrypted copies of
KR,SG and KW,SG. Note that an owner can revoke read
or write access by reinitializing keys at any point after the
system starts. Controllers, which may or may not neces-
sarily be an owner, receive the necessary read and write
keys out of band. Controllers execute a discovery proto-
col to detect the presence of nearby storage grains. In this,
C broadcasts a HELLO message and receives responses
containing device ID (IDSG) and size from its neighbors.
Finally, C obtains the most recent counter value via the
counter sync protocol.

The read protocol is used to extract written blocks
from the storage grain. A read request contains the iden-
tifier of the destination grain, nonce, offset value and an
HMAC. An access attempt is permitted if the requested
block is valid (legal location and block had previously
been written) and the HMAC validates. Upon receiving
a valid message from the controller, a storage grain re-
sponds with a success flag, requested data and a hash of
the transaction. If the controller receives a correct re-
sponse, it decrypts the data using KG and forwards it to
the user.

The write protocol is used to place blocks on the stor-
age grain. As described in Section 3.2, the block alloca-
tion strategy determines where the block should be placed.
The controller then transmits a request containing the des-
tination identifier, nonce, offset, data encrypted under KG

and an HMAC of the transaction. The receiving storage
grain determines the validity of the response, stores the
encrypted data and returns an HMACed transaction mes-
sage. On successful writes, the client then updates the
SAT to reflect changes in the contents of storage grains.

3.4 Reliability
Reliability is a key requirement of any storage system: the
ability to accurately place and retrieve data under normal
and even exceptional circumstances is of paramount im-
portance. One seemingly attractive approach in granular
storage systems is to simply use RAID [29]. In particular,
features such as RAID 1 (mirroring) and RAID 5 (parity)

can achieve fault tolerance across the devices by exploit-
ing independent failures and removals of storage grains.
Such previous schemes are instrumental in understanding
and meeting these challenges, but as detailed below, the
effectiveness of a direct application of the standard RAID
approaches is unclear.

Granular storage systems must be exceptionally re-
silient to data loss. In fact, it is the intent of the system
to be able to dynamically remove storage grains for use
in other storage systems. For example, our protagonist in
Section 2 transferred grains from the laptop storage sys-
tem to enable his vehicle to use additional maps for his
trip. Hence, more than just failure recovery is required;
the system must survive potentially frequent failures and
removals of subsets of the storage grains.

Disks fail in RAID as large associations of sectors. Be-
cause those associations are known a priori and because
failures are rare, solutions such as parity are particularly
effective. However, because storage grains are smaller,
sectors fail in smaller association and in larger quantities.
Thus, the kinds of failures one will encounter are likely to
be more difficult to address.

Building on past storage reliability approaches, we pro-
pose to use a combination of mirroring and error correct-
ing codes (of which parity bits are an example) to achieve
a configurable level of reliability. We consider each of
these techniques in turn below, and then consider the po-
tential use in combination. Note that our efforts here are
very preliminary: we only seek to characterize the prob-
lem and posit initial solutions.

Mirroring places multiple copies of the same data on
separate devices. In the context of this work, the place-
ment of a single sector on multiple devices increases the
chances of the block being available after failure or re-
moval of some of the storage grains. This leads to a sim-
ple calculus: the cost of implementing a storage system of
size k with m mirrored copies of each block is k ∗m (as
measured in number of storage grains). Accordingly, the
system cost grows linearly with the number of mirrored
copies.

Error correcting codes [14] offer an alternative ap-
proach to reliability. For example, in the single or double
parity approach used in RAID, one or two disks are used
as “parity”–the loss of any other disk(s) can be repaired
by consulting one or both parity disks. Such solutions can
be extended to be resilient to potentially many failures,
where each new parity disk represents an increase of re-
silience to one additional failure. Such systems increase
the size of the system by a constant factor n, where the
total system cost is m + n.

Now consider the effectiveness and runtime cost of
each schemes. Assume the probability of any grain fail-
ing or being removed in a mirroring solution is r. Then,
the probability of any given sector being unavailable is:
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Figure 5: Storage survivability probability - r percent of
storage grain failures in system with m sector mirrors.

Pr(r)m. Such an approach may initially appear to be
quite effective. For example, assume Pr(r) = 0.25 and
m = 6, the probability that any given sector would be un-
available would be approximately 0.02%, or one fiftieth
of a percent. However, we care about the reliability of the
entire storage system. Thus, the real measure of the reli-
ability would be the joint probability that all the sectors
(where s is the number of unique sectors) were available,
i.e., the survivability rate would be (1−Pr(r)m)s. A sys-
tem with s = 100, Pr(r) = 0.25 and m = 6 would have
over a 97% chance of being completely available. A sys-
tem with the same total number of sectors but with half the
mirroring (i.e. s = 200 and m = 3), however, would offer
only a 4% chance of being reliable. As illustrated in Fig-
ure 5, these calculations indicate the presence of a “knee”
after which the reliability of the solution drops from ac-
ceptable to non-existent as a function of the number of
sectors.

Conversely, consider an n out of m error correcting
code. The probability of availability for any sector be-
ing available is 100% if m− n grains or less are lost, and
0% otherwise. However, the cost of resilience in this case
is in additional writes—any update of a grain means the
updating of all m EC codes. So, the cost of performing
the writes is m + 1. Note that the parallelism afforded by
storage grains may mitigate this cost.

The number of grains, their small sizes, and their ex-
pected failure rates mandate a careful inspection of these
solutions. As we will explore in future work, understand-
ing how we balance these two solutions and use them in
combination both statically (at format time) and later (in
response to observed failures/removals) to achieve target
levels of reliability is central to making these systems and
applications that will build upon them reliable.

4 Evaluation
The granular storage controller combines grains to export
a logical storage system that is simply a linear collection
of sectors. As previously discussed, translation between
sectors and the physical location on a grain is defined by
the SAT. Section 3.2 proposed linear, striping, and random
allocation strategies and claimed the inherent parallelism
of the latter two strategies would provide increased per-
formance. We now explore this claim by implementing
the granular storage system and evaluating the three allo-
cation strategies under a variety of workloads.

Operating systems access block devices with sequences
of sector requests corresponding to higher level work-
loads. In the absence of a scheduling algorithm, a se-
quential file read results in a bounded, in-order sequence
of contiguous addresses. Out of order sector request se-
quences can also occur, typically as the result of simul-
taneous access to many files. Such sequences may also
be the result of higher-level storage system inefficiencies
such as file system fragmentation. That is, a sequential
file read does not always result in an in-order sector re-
quest sequence.

Given linear, striping, and random allocation strategies,
the granular storage system will react differently to spe-
cific workloads. A storage grain can only process one
request at a time; if the next sector request is assigned
to a storage grain currently processing a request, the con-
troller will stall until that grain is free. Because the linear
allocation strategy assigns adjacent sectors to the same
storage grain, a sequential file access should experience
severe performance degradation. The stripe and random
allocation strategies therefore were designed to increase
throughput by distributing adjacent sectors amongst avail-
able storage grains. Out of order sector request sequences
result in non-repeating grain requests regardless of the al-
location strategy, thereby potentially improving the lin-
ear allocation strategy. At the same time, out of order
sector request sequences will degrade the stripe alloca-
tion strategy performance due to unmet workload assump-
tions. Simply put, the granular storage system throughput
is directly proportional to the variety of storage grains ac-
cessed.

4.1 Experimental Setup
Our implementation of the granular storage system pro-
vides a mechanism to evaluate file system request work-
loads. The kernel block driver is functional but not opti-
mized for performance4. Therefore, our experiments fo-
cus directly on the controller. Sector requests are pro-
duced via a specialized load generator and sent directly

4The camera ready version of this paper will include performance
results using the block driver.

8



to the controller. We use the load generator to produce se-
quences for six experiments covering the range of system
workloads discussed above.

The Small-File In-Order workload produces a short,
in-order sequence beginning at a random location within
the entire storage space. This sequence corresponds to
the operating system performing a linear read of a small
file. The experiment is repeated using 1, 2, 4, 8, 16, 32,
and 64 grains. Test runs use a sequence equivalent to a
100KB file. This size represents a small system file and
is small enough to be stored on a single grain under the
linear allocation strategy.

The Small-File Random-Order workload is similar to
the in-order variant. Instead of producing an in-order se-
quence, the test uses a random permutation. The permu-
tation corresponds to an out of order sequence resulting
from system peculiarities such as fragmentation. The ex-
periment is repeated over the same number of grains as
the small-file in-order workload and also uses a sequence
equivalent to a 100KB file.

The Large-File In-Order workload considers se-
quences resulting from linear requests of large files. It
has the same motivations as the small-file variant, except
it uses a 10MB file instead of 100KB. The experiment is
only performed using 16, 32, and 64 grains due to file
system size restraints; each grain is modeled as providing
only 1MB of storage.

The Large-File Random-Order workload mirrors the
in-order variant, but includes the sequence shuffling de-
scribed for the small-file random-order workload. This
workload mirrors the operation of a database system. The
randomized sequence order spans many grains, therefore
the effects of parallelism will be observed even for the lin-
ear allocation strategy. Just as with the large-file in-order
workload, the experiment is only performed with 16, 32,
and 64 grains.

The Many-File In-Order workload considers multiple
file access. Individual file accesses produce in-order se-
quences, each beginning at a random sector within the en-
tire storage space. The accesses are interleaved to pro-
duce a widely varying request sequence. The experiment
load represents twenty 100KB files and performs the ex-
periment only over 4, 8, 16, 32, and 64 grains do to file
system size restraints.

The Many-File Random-Order workload adds ran-
domized permutations to in-order variant. The generated
sequence provides the most random request order of the
workload set. As the request order itself is essentially
random, little difference between the allocation strategies
should be observed.

Each workload was performed for the three allocation
strategies and a varying number of storage grains. Our
testbed included a set of five Linux systems running a
recent version of the 2.6 kernel. Four systems ran the

storage grain emulators and one acted as the controller.
Experimental runs requiring more than four grains dis-
tributed the remaining grains amongst the four systems
running the grain emulators. For the entire test duration,
each grain emulation host ran 16 instances of the software,
however, not all instances were used in each experiment
run. The grain emulation hosts varied in performance po-
tential. Two grain emulation hosts had 1.73GHz Intel Pen-
tium M processors and 1GB RAM. A third contained a
3.0Hz Intel P4 processor and 2GB RAM. The fourth grain
emulation host used a 2.8GHz Intel P4 processor and 1GB
of RAM. The controller ran on a system with a 3.2GHz
Intel Xeon processor and 2GB of RAM.

The grain emulation hosts and controller were con-
nected via an isolated 10/100Mb/s Fast Ethernet switch.
Experiments were performed on a wired network in order
to provide a controlled setting impervious to environmen-
tal factors. Our evaluation goals are to observe the effects
of various allocation strategies and not contention over a
wireless medium, therefore the wired setting is appropri-
ate. We do however, contrast the latency resulting from
wired and wireless transmission media in Section 4.3 us-
ing the Bluetooth variant of our implementation.

4.2 Results
The experimental results provided in Figures 6 through 11
are the average of 100 runs of the workload experiments
for each allocation strategy. All experiments had 95%
confidence intervals less than two orders of magnitude
smaller than the mean. Each run was randomly a set of
read or write requests. Timers were inserted into the code
to measure the duration of the run. The total request size
was then divided by the duration to produce the through-
put presented in the figures.

Figure 6 shows the experimental throughput for the
small-file in-order workload. As expected, the linear al-
location strategy performs significantly worse than the
stripe and random strategies. The allocation strategy
translates a sequence of sector requests into a sequence
of grain requests. The linear strategy translates the in-
order workload into a series of sequential requests to the
same grain. As grains can only process one request at
a time, the controller must wait for a response between
each sector request. Note that if storage grains are ca-
pable of processing multi-sector requests, the linear al-
location strategy could be more viable. However, our
analysis assumes a grain can only process one sector re-
quest at a time. Hence, Figure 6 clearly demonstrates the
throughput potential of allocation strategies that distribute
requests amongst available storage grains. Throughput is
more than doubled in some cases.

The small-file workloads shown in Figures 6 and 7
show a throughput increase as the number of storage
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Figure 6: Small-File In-Order Workload Throughput
(100KB file)
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Figure 7: Small-File Random-Order Workload
Throughput (100KB file)
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Figure 8: Large-File In-Order Workload Throughput
(10MB file)
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Figure 9: Large-File Random-Order Workload
Throughput (10MB file)

grains increase; however, after a point, the throughput be-
gins to decrease. We believe the bell curve is an artifact
of the testing apparatus. Only four hosts emulate stor-
age grain instances. Resource contention, e.g., processor
contention and context switching, degrades performance
when one host processes requests for more than one stor-
age grain. The bell curve for the stripe strategy in Figure 6
confirms this suspicion. The stripe allocation strategy per-
fectly distributes sector requests to available grains. The
curve peaks at four storage grains. Coincidentally, this is
the same as the number of grain emulation hosts. There-
fore, we posit that increasing the number of grain emu-
lation hosts will prolong the bell curve peak. Note that
the peak is slightly translated to the right for the random
allocation strategy in Figure 6 and both stripe and ran-
dom strategies in Figure 7. This phenomenon likely re-
sults from randomness in the allocation strategy and/or the
workload, causing an increase in the apparent parallelism
of the requests and consequently relieving contention on
grain emulation hosts.

Randomness performs a significant role in observed
throughput. In Figure 6, the stripe allocation strat-
egy is easily distinguishable from the random strategy.
However, ostensibly no difference exists in Figures 7
through 11. Table 1 quantitatively explores the differ-
ences between workloads for each allocation strategy. The
table uses the small-file in-order workload as a baseline
for comparison, as it provides optimal performance for
the stripe allocation strategy. The percent difference in
throughput is shown for the other workloads. Looking
specifically at the stripe strategy, all workloads incorpo-
rating randomness result in a throughput decrease (recall
that the many-file in-order workload starts each file at a
random location and interleaves sector requests). Logi-
cally, without a perfect input sequence the stripe strategy
does not evenly distribute requests to grains. Real sys-
tem loads rarely conform to perfect in-order sequences,
therefore the stripe and random allocation strategies are
expected to perform similarly under typical workloads.

Workload randomness hurts the stripe strategy perfor-
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Figure 10: Many-File In-Order Workload Throughput
(20, 100KB files)
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Figure 11: Many-File Random-Order Workload
Throughput (20, 100KB files)

mance; however it aids the linear allocation strategy. Ta-
ble 1 shows significant throughput increases, over 100%
in some cases, for the linear allocation strategy in the face
of randomized workloads. These workloads result in dis-
tributed grain requests, equivalent to those in the random
allocation strategy. Observe that in Figures 9, 10, and 11,
the linear strategy performs the same, if not marginally
better than the other two strategies. Finally, the large-file
workloads, Figures 8 and 9, strongly distinguish the ef-
fects of input randomization. No parallelism exists from
the in-order workloads, hence performance remains low.

All allocation strategies perform equivalently for ran-
domized workloads; however, the stripe allocation strat-
egy throughput is increased for in-order sequences.
Therefore, it provides a starting point for system designers
wishing to implement a scheduling algorithm. However,
the complexities of dynamic SAN membership from lost,
broken and re-purposed storage grains will certainly im-
pact the optimality of such a strategy. Moreover, optimiz-
ing a scheduling algorithm for the stripe allocation strat-
egy requires more care than simply applying traditional
mechanical disk schedulers. Optimal sector sequences
must be more than in-order. The sequences producing
the high throughput in Figure 6 were contiguous in addi-
tion to in-order. Therefore, to reach optimal performance,
the scheduler must be cognizant of the number of storage
grains associated with the file system and reorder requests
accordingly. Furthermore, because performance of real
storage grains will be affected by contention for the wire-
less medium, an optimized scheduler should understand
storage grain geography.

Our granular storage system implementation allowed
for an exploration of various sector allocation strategies.
The stripe allocation strategy performs well for optimal
sector request sequences, however, it converges on the
random allocation strategy under realistic workloads. As

shown in the results, randomized workloads cause the
three allocation strategies to converge; even the linear
strategy performs well due to the parallelism present in
the workload. During the course of our experiments we
found performance to decrease after the number of grains
became greater than a certain value. We suspect this re-
sulted from resource contention, as each grain emulation
host ran multiple grain instances. We expect this trend
will disappear as the number of emulation hosts increase.
Finally, our evaluation only considered a wired intercon-
nection network, as we do not know specifics of storage
grain communication. In reality, storage grains will com-
municate wirelessly. Wireless communication is tradi-
tionally slower than wired communication, therefore we
further explore request/response delay.

4.3 Access Latency
The experiments described in Section 4.1 evaluated the
system impact of different allocation strategies; however,
it did not provide insight into the communication over-
head. One final experiment was performed to analyze the
access latency between wired and wireless media. Blue-
tooth was chosen for wireless communications, as it pro-
vides a conservative estimation of lower bounds. We ex-
plored access latency by timing over 100,000 read and
write requests from the controller to one remote grain. We
first access the storage grain using the same wired network
described in Section 4.1. The requests were then repeated
between the same hosts, but over a Bluetooth wireless net-
work connection. The Bluetooth socket API is slightly
different than traditional network sockets, therefore our
implementation required adjustments. Of particular note,
the Bluetooth socket API required each endpoint to estab-
lish a connection before even “connectionless” messages
can be sent. Finally, the experiment used only one storage
grain to avoid packet loss due to packet collision.
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Table 1: Comparison of Throughput between Workloads
Linear Allocation Strategy

Workload 1 Spot 2 Spots 4 Spots 8 Spots 16 Spots 32 Spots 64 Spots
Small In-Order 1,488 KB/s 1,449 KB/s 1,361 KB/s 1,256 KB/s 1,042 KB/s 890 KB/s 632 KB/s
Small Random +0.3% +1.9% +1.5% -0.2% +4.2% -3.3% +2.2%
Large In-Order – – – – -1.3% -8.2% -5.1%
Large Random – – – – +88.2% +62.8% +39.4%
Many In-Order – – +90.6% +105.6% +95.7% +54.0% +22.4%
Many Random – – +91.5% +104.4% +96.7% +55.3% +24.1%

Stripe Allocation Strategy
Workload 1 Spot 2 Spots 4 Spots 8 Spots 16 Spots 32 Spots 64 Spots
Small In-Order 1,492 KB/s 2,590 KB/s 3,410 KB/s 2,866 KB/s 2,107 KB/s 1,384 KB/s 790 KB/s
Small Random -0.1% -23.1% -27.9% -12.6% -4.6% -1.6% +0.2%
Large In-Order – – – – +0.6% +0.1% +0.3%
Large Random – – – – -4.6% -1.7% -0.1%
Many In-Order – – -26.8% -13.5% -4.6% -1.8% -0.7%
Many Random – – -27.8% -12.8% -4.6% -2.0% -0.4%

Random Allocation Strategy
Workload 1 Spot 2 Spots 4 Spots 8 Spots 16 Spots 32 Spots 64 Spots
Small In-Order 1,492 KB/s 1,977 KB/s 2,440 KB/s 2,508 KB/s 1,994 KB/s 1346 KB/s 790 KB/s
Small Random +0.1% +0.1% +0.1% +0.3% +0.1% +0.1% -0.2%
Large In-Order – – – – +1.0% +1.0% -1.1%
Large Random – – – – +0.9% +0.9% -1.1%
Many In-Order – – +1.1% -0.2% +0.6% +0.3% -1.7%
Many Random – – +6.8% +2.4% +2.8% +2.6% -0.8%

Table 2: Measured Access Latency
Medium Read Write
Wired 327.2 ± 0.2 µs 324.5 ± 0.2 µs
Bluetooth 22.44 ± 0.03 ms 20.98 ± 0.03 ms

The experiment results are summarized in Table 2. In
both the wired and Bluetooth cases, read and write re-
quests exhibited nearly identical delays. Finally, as ex-
pected, Bluetooth was much slower than the wired net-
work. The experiment showed Bluetooth to be approxi-
mately two orders of magnitude slower. We expect these
values to offer approximate upper and lower bounds for
future storage grain devices.

5 Related Work
Distributed networked file systems (e.g., NFS [35],
AFS [13], and CIFS [23]) are organizations of file sys-
tems over a number of networked data servers in which
data can be shared by a number of users [24]. The reliabil-
ity and performance of these systems have been examined
in systems like CODA and VESTA. Through the use of
local user caching and replication of data, the CODA sys-

tem [21] is able to support disconnected operation. The
VESTA system [5] partitions data into disjoint sequences
in order to parallelize accesses to data.

In contrast to distributed networked file systems, stor-
age systems such as storage area networks (SANs) [30],
manage data at the block level. SANs can be configured
as RAIDs [29], which distribute the organization of data
across storage nodes in order to improve performance and
reliability [9]. Such storage systems are commonly built
over iSCSI [33] or Fibre Channel [30] network communi-
cation infrastructures.

General storage security has been analyzed with re-
gards to the way in which data is protected on both
the communication and storage media in various sys-
tems [31]. Single server storage security has largely been
implemented such that data is encrypted on the storage
device itself [2, 26]. Conversely, distributed file sys-
tems provide both access control and protect data while
in transmission, but do not encrypted stored data. For
example, AFS uses Kerberos for authentication and se-
cure RPC for the protection of communicated data [34].
Similarly, NASD, network attached secure disk, and se-
cure NFS provide mechanisms accomplishing the same
ends [10, 11, 36]. In addition to achieving these objec-
tives, the Secure File System (SFS) presents a novel key
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distribution mechanism [25]. Techniques addressing sim-
ilar security concerns in distributed storage systems have
also been suggested for iSCSI [19, 4, 22].

Similar to distributed file and storage systems, signifi-
cant research has also been done on the security of RFID
technology. RFID security goals include not only protect-
ing tag data [16, 17], but ensuring owner privacy by hin-
dering the ability for an adversary to track, clone or im-
personate the tag [1, 15, 27, 32]. Such tasks are difficult
due to the limited ability to perform complex functions
including cryptography [3].

6 Conclusion
Traditional storage systems are designed to support par-
ticular sets of operations. Devices capable of high perfor-
mance and capacity generally lack portability. By con-
trast, mobile devices are often incapable of benefiting
from the advantages of parallelism. Emerging memory
spot technology, however, offers the potential to overcome
these seemingly inherent inflexibilities. By constructing
a storage area network (SAN) from an array of minia-
ture wireless devices, each emulating the functionality
of individual disk tracks, the creation of malleable stor-
age devices becomes possible. Our granular storage sys-
tem recognizes and addresses core requirements includ-
ing organization, security and reliability. Through a thor-
ough examination of system behavior and performance,
we characterize the impact of such design requirements
and how traditional scheduling and allocations strategies
fail to map to this medium. As a result, we demonstrate
the ability to construct an arbitrarily reconfigurable log-
ical storage system built on storage grains. While sig-
nificant design challenges exist, this work creates a base
architecture upon which a diverse set of new applications
can be constructed.
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