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Abstract—Recent developments in secure computation have
led to significant improvements in efficiency and functionality.
These efforts created compilers that form the backbone of
practical secure computation research. Unfortunately, many of
the artifacts that are being used to demonstrate new research
for secure computation are incomplete, incorrect, or unstable,
leading to demonstrably erroneous results and inefficiencies
- extending even to the most recently developed compiler
systems. This is a problem because it hampers research and
undermines feasibility tests when other researchers attempt
to use these tools. We address these problems and present
Frigate, a principled compiler and fast circuit interpreter
for secure computation. To ensure correctness we apply best
practices for compiler design and development, including the
use of standard data structures, helpful negative results, and
structured validation testing. Our systematic validation tests
include checks on the internal compiler state, combinations
of operators, and edge cases based on widely used techniques
and errors we have observed in other work. This produces a
compiler that builds correct circuits, is efficient and extensible.
Frigate creates circuits with gate counts comparable to pre-
vious work, but does so with compile time speedups as high
as 447x compared with the best results from previous work in
circuit compilers. By creating a validated tool, our compiler
will allow future secure computation implementations to be
developed quickly and correctly.

1. Introduction

Secure Multiparty Computation (SMC) has long been re-
garded as a theoretical curiosity. First proposed by Yao [55],
SMC allows two or more parties to compute the result of a
function without exposing their inputs. The identification of
such primitives was groundbreaking, creating opportunities
by which untrusting participants could calculate results of
mutual interest without requiring all individuals to identify
a mutually trusted third party. Unfortunately, it would take
more than 20 years before the creation of the first SMC com-
piler, Fairplay [36], demonstrated that these heavyweight
techniques were remotely practical.

The creation of the Fairplay compiler ignited the re-
search community. In the following decade, SMC compilers
improved performance by multiple orders of magnitude,

significantly reduced bandwidth overhead, and allowed for
the generation and execution of circuits composed of tens
of billions of gates [38], [31], [22], [30]. These efforts have
brought SMC from the realm of mere theoretical interest to
the verge of practicality; as an indicator of this fundamental
change, DARPA is spending $60 million to support the
transition of technologies such as SMC to practice [17].

SMC compilers have incorporated a number of novel
elements to achieve the above advances but fail in two
critical areas. Specifically, as we will demonstrate, these
compilers are often unstable and, when they do work, they
can produce outputs that generate incorrect results. This is
problematic as the integrity of the results computed by these
systems may be questionable, reducing their usefulness. It
might also be possible for incorrect results to be verified
as correct by the SMC protocol under such circumstances.
As SMC becomes ready for operational deployment, it is
critical that compilers can be demonstrated to be not only
efficient but also validated through principled design and
testing.

In this paper, we present Frigate, an SMC compiler de-
veloped using design and testing methods from the compiler
community. We name our compiler after the naval vessel,
known for its speed and adaptability for varying missions.
Our compiler is designed to be validated through extensive
testing of all facets of its operation in line with how modern
production compilers are validated. Frigate is modular and
extensible to support a variety of research applications, and
faster than the state of the art circuit compilers in the
community. In addition, the frigate’s use as an escort ship
parallels the potential for our compiler to facilitate continued
secure computation research. Our contributions follow:

• Demonstrate systemic problems in the most popular
SMC compilers: We apply differential testing on six
popular and available SMC compilers, and demonstrate
a range of stability and output correctness problems in
each of them.

• Design and implement Frigate: Our primary goal
in creating Frigate is correctness, which we attempt
to achieve through the use of principled and simple
design, careful type checking and comprehensive vali-
dation testing. We use lessons learned from our study
to develop principles for others to follow.

• Design Frigate to be extensible: Our secondary goal



was to provide a compiler that can be extended to
provide useful and innovative functionality. After we
completed the compiler we added signed and unsigned
types, typed constants, and three special operators.

• Dramatically improve compiler and interpreter per-
formance: The result of our efforts is not simply
correctness; rather, because of our simple design, we
demonstrate markedly reduced compilation time (by as
much as 447x compared with previous circuit compil-
ers), interpretation time (by over 786x), and execution
time (up to 21x) when compared to currently available
systems. As such, our results demonstrate that princi-
pled design can create correct SMC compilers while
still allowing high performance.

Although these SMC compilers may be considered by
some to be “research code,” they are being used extensively
within the community and by others as the basis for develop-
ing secure applications and improved primitives. The corpus
of compilers we test represent a large gamut, including
the most recently published solutions. In all cases, we find
issues with correctness or efficiency. The implications are
considerable, as the unreliable nature of many of these com-
pilers makes testing new techniques extremely difficult. It is
imperative that the community learns from these failures in
design and implementation for the field to further advance.
A reliable compiler is critical to this goal.

The remainder of the paper is organized as follows:
Section 2 provides a background in SMC; Section 3 in-
troduces techniques used to validate correctness; Section 4
describes our analysis of existing compilers; Section 5
defines principles for compiler design; Section 6 presents
the design of Frigate; Section 7 presents our performance
tests comparing Frigate to five widely-used SMC compilers;
Section 8 discusses related work; Section 9 concludes.

2. Background

Since SMC was originally conceived, a variety of dif-
ferent techniques have been developed. Recent work has
demonstrated that each technique can outperform the others
in different setups (e.g., number of participants, available
network connection, type of function being evaluated) [23],
[41], [6], [46]. In this work, we focus specifically on the
garbled circuit construction developed by Yao [55]. This
protocol has been shown to perform optimally for two-party
computation of functions that can be efficiently represented
as Boolean circuits. While our experimental analysis ex-
amines the performance of the compiler in the context of
garbled circuits, it is critical to note that this compiler can
be used with any SMC technique that represents functions
as Boolean circuits.

2.1. Garbled circuits

The garbled circuit construction provides an interactive
protocol for obliviously evaluating a function represented as
a Boolean circuit. It involves at least two parties: the first

party, the generator, is responsible for garbling the circuit
to be evaluated such that the input, output, and intermediate
wire values are obscured. The second party, the evaluator,
is responsible for obliviously evaluating the garbled circuit
with garbled input values provided by both parties.

For each wire i in the garbled circuit, the generator
selects random encryption keys k0i , k

1
i to represent the bit

values “0” and “1” for each wire in the circuit. Given these
garbled wire labels, each gate in the circuit is represented
as a truth table (while each gate may have an arbitrary
number of input wires, we assume each gate has two in-
puts without loss of generality). For a gate executing the
functionality ? with input wires i and j and output wire
k, the generator encrypts each entry in the truth table as
Enc((kbii , k

bj
j ), k

bi?bj
k ) where bi and bj are the logical bit

values of wires i and j. After permuting the entries in each
truth table, the generator sends the garbled circuit, along
with the input wire labels corresponding to his input, to the
evaluator. Given this garbled representation, the evaluator
can iteratively decrypt the output wire label for each gate.
Once the evaluator possesses wire labels for each output
wire, the generator can reveal the actual bit value mapped
to the output wire labels received.

To initiate evaluation, the evaluator must hold garbled
representations of both parties’ input values. However, since
the evaluator does not know the mapping between real bit
values and garbled wire labels, an oblivious transfer protocol
is required to allow the evaluator to garble her own input
without revealing it to the generator. Essentially, for each
bit in the evaluator’s input, both parties execute a protocol
that guarantees the evaluator will only learn one wire label
for each of her input bits, while the generator will not learn
which wire label the evaluator selected.

This protocol guarantees privacy of both parties’ inputs
and correctness of the output in the semi-honest adversary
model, which assumes that both parties will follow the
protocol as specified, and will only try to learn additional
information through passive observation. When adversaries
can perform arbitrary malicious actions, a number of ad-
ditional checks must be added to ensure that neither party
can break the security of the protocol. These checks are
designed specifically to prevent tampering with the evalu-
ated function, providing incorrect or inconsistent inputs, or
corrupting the values output by the garbled circuit protocol.

2.2. Circuit Compilers

Execution systems for garbled-circuit secure computa-
tion require functions represented as Boolean circuits. Due
to this requirement, there have been several compilers cre-
ated to generate circuit representations of common functions
used to test this type of computation. These compilers take
higher-level languages as input and transform them into a
circuit representation. Writing the circuit files without using
a compiler is tedious, inefficient, and will most likely result
in incorrect circuits as they can have billions of gates.



3. Compiler Correctness

One of our main motivations for developing a principled
compiler was the varying and unstable state of the existing
research compiler space. Garbled circuit research has made
significant advances in the past several years, which is
largely due to a set of circuit compilers that have been
commonly used to generate test applications for a significant
number of protocols. Given our years of experience, we
know the reliability of these results is suspect in many cases
due to common errors we have found in these compilers.
To facilitate continued advances in this research space, a
foundational compiler with reliable performance is a crit-
ical tool. Without it, researchers will be forced to either
use existing compilers, which we show are unreliable, or
develop their own compilers, which is time-consuming and
slows research progress. To demonstrate the need for a
new and correct compiler that is openly available for the
community, we examined correctness issues with the most
common compilers used in garbled circuit research.

We define the correctness of a complier implementation
using two criteria: (1) any valid program in the language can
be successfully compiled, and (2) the compiler creates the
correct output program based on the input file. There are two
methods used to demonstrate compiler correctness: formal
methods for validation and verification, and validation by
testing.

3.1. Formal Verification

The concept of a verifying compiler was identified as
a grand challenge by Tony Hoare in 2003 [21] due to
the significant complexity in design and implementation.
Since that time, the primary example of a formally veri-
fied compiler has been CompCert [32]. The development
and rigorous proof of each formalized component of the
compiler was an immense undertaking. However, despite
the amount of time and formal verification that went into
CompCert, it was demonstrated that the formal verification
used in CompCert was only able to ensure correctness
in select components of the compiler. When tested with
Csmith [54], there were still errors found that demonstrated
the limitations of formal verification. In addition, formal
verification of compiler transformations and optimizations is
still very much an open research area [35], [39]. Techniques
such as translation validation [44], [40], [50] focus on the
formal validation of a compiler’s correctness through the use
of static analysis techniques to ensure that two programs
have the same semantics, and are designed to attempt to
deal with the reality of legacy compilers. They have their
limitations as well, particularly within the context of secure
multi-party computation compilers that have not adopted
any particular standard for intermediate representations. As
a result, the semantic model must be adapted for every
compiler implementation, and any changes in the compiler
require changes to the model.

Based on these limitations and the impracticality of
applying formal verification, we instead apply validation

techniques that are the standard method for ensuring the
correctness of compilers.

3.2. Validation By Testing

Validation by testing demonstrates that a compiler is
correct through extensive unit testing. This is by far the
most common technique used in practice to ensure compiler
correctness. While testing for correctness can miss some
errors in compiling specific cases, it provides a practical
level of assurance that is sufficient for the vast majority of
applications. Validation tests are designed by examining how
to rigorously test the largest possible number of programs a
compiler can generate.

There are many existing validation tests [18], [52], [51]
and test suites [4], [1]. The validation tests used by ARM [1]
and SuperTest [4] provide a description of the procedures
they use to validate the vast majority of possible program
cases. However, these suites are language-specific, often
developed to find errors in popular tools such as gcc and
LLVM. To date, there have not been existing validation
tools designed to examine secure computation compilers.
As a result, we developed our own set of validation tests
based on the techniques used by these tools. Our tests, like
the test suites of ARM and SuperTest, explore the possible
statements and effects of those statements.

In our case, hand written tests are preferred over auto-
matically generated tests due to us being able to examine
the compiler source directly. This allows us to examine
possible code paths and be more systematic with our tests
than a random fuzzer. In addition, because there are no SMC
compiler standards, a different fuzz generator would have to
be created for each compiler input language.

Our tests follow the concept of testing the state space of
the compiler starting with broad examination of operators
and expressions, then refining the tests to consider common
special cases. Our tests proceed through five phases:

1) Attempt all possible grammar (syntax) rules and print
out the results. This shows that the compiler reads
in programs correctly and demonstrates the internal
program state is correct.

2) Beginning from the simplest operation to validate cor-
rectness (i.e., outputting a constant) test each operator
in the language and each control structure to ensure it
outputs the correct result.

a) Test the different possible primitive types and dec-
larations.

b) Test each operator as to whether it creates the correct
output circuit.

c) Test each control structure by itself.
d) Test function calls, parameters, and return state-

ments. Verify that parameters can be used inside of
their functions and that return statements work cor-
rectly. Also perform tests for where different types
are used as input parameters and return values.

3) Validate all the different paths for how data can be
input into operations. Demonstrate that different control



structures work correctly together. Or, as put by Su-
perTest [4], “Systematically exploring combinations of
operators, types, storage classes and constant values.”

a) Test if the operator deals correctly with the possible
types of data that can be input as an operand.

b) Test different types of control structures nested
within each other.

c) Test each operator under if conditionals with empha-
sis on operators that change variable values such as
assignment (=), increment (++), and decrement (--).

4) Test edge cases in programs.
a) Verify that empty functions do not crash on definition

or call.
b) Test array access and how arrays (and like operators)

deal with edge cases, i.e., out of bounds, minimum,
and maximum values.

c) Ensure known weaknesses in past compilers are
tested to determine whether these vulnerabilities ap-
pear.

5) Perform testing to verify each previously found error
was not re-added to the final implementation.

At the conclusion of these tests we have tested (1) the
correctness of each mini-circuit an operator uses, (2) the
ways data can come into each operator, (3) the base and
nested rule for each construct (if statements, for loops, array
declarations), (4) various edge cases. This set of tests checks
the operators, control flow structures, types, and covers
most, if not almost all, of the uses of the operators, control
flow structures, and types.

4. Survey of Existing Compilers

Using the test procedures described in the previous
section, we set out to quantify the common problems in
existing secure computation compilers. With each compiler,
we found problems that would prevent the compiler from
working correctly or corrupt test applications.

While the compilers we compare ourselves to are re-
search artifacts, such systems are widely used by the com-
munity to test and validate algorithms. Having bugs and
unpredictable behavior stunts the advancement of the field.

Upon acceptance, we informed the authors of each of
these compilers about the issues we found; we found that
many errors, as noted for specific compilers, were corrected
between the submission and acceptance of this paper.

While we do outperform many systems, the thrust of
our paper is not performance. We compare ourselves to a
number of well-known and widely tested systems and show
that we are less prone to errors and produce good results. We
ensured that our system was similar to current programming
languages1 and thus easy for new developers to use, and
added descriptive error messages. All of this was designed
to improve the way the community wrote SMC code and
reduce complexity.

1. We explain why we do not use a current programming language in
Section 6.1.
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Figure 1: Summary of the correctness results.

4.1. Comparison Compiler Information

PAL: We selected PAL [38] as it was the first compiler
designed for low-memory devices using an efficient interme-
diate representation. It also takes in Fairplay’s [36] SFDL,
a custom hardware description, and outputs SHDL, a gate
list. It is dramatically more memory efficient than Fairplay
and is able to compile much larger programs, but lacks
optimizations used in recent work.
KSS: We examined the compiler from Kreuter et al. [31],
hereon referred to as KSS. This compiler takes a hardware
specific language as input and outputs a gate list in binary
format. We chose KSS since it forms the basis for multiple
recently-published works.
CBMC: The CBMC-GC compiler [22] (hereon CBMC)
used a bounded model checker to compile a circuit program.
This compiler takes a C file as input and outputs a condensed
gate list (in ASCII). Because CBMC can compile programs
written in ANSI C, it is commonly used in other garbled
circuit research.
PCF: The PCF compiler [30], was created in order to have
a condensed output format while being efficient. It takes in
LCC bytecode as an input language and transforms it into a
PCF file (ASCII). This file describes a circuit in a condensed
format; a circuit interpreter is used to get each gate in turn.
We selected PCF since it has been used to generated some
of the largest circuits.
Obliv-C: Obliv-C [56] provides an extension that allows
users to compile Obliv-C programs using a C compiler.
These programs are then run in the normal C program
fashion, i.e., the default output is a.out. This has the
advantage of being able to use the −O3 optimization flag.
ObliVM: ObliVM [53] compiles the input language into a
Java file and then compiles the Java file using the javac
Java compiler. The class file is then run using Java. By using
Java, ObliVM is able to take advantage of the Java virtual
machine optimizer.

4.2. Analyzing Compiler Correctness

We performed an analysis of the compilers to determine
whether they work as expected, which we summarize in



Figure 1. We do not attempt to find edge case errors that
may only affect a minutiae of programs. Instead, we focus
on testing the main operations and control structures in the
input language that most users would perform.

We separate our analysis of previous compilers into two
areas: errors and inefficiencies. We only note an error if the
original program was valid; if the compiler crashes due to
an incorrect program we do not consider it to be a com-
piler error. However, we found that most of the compilers
lacked helpful error messages when an invalid program was
provided as input.

4.2.1. PAL. Errors: PAL encounters problems when structs
are used. This prevents the use of complex data-types unless
each data item is independently defined. This appears to be
an issue with the compiler’s front-end, and is indicative of
insufficient validation for that function within the language.
Inefficiencies and Limitations: PAL circuits are compiled
into ASCII, which results in much larger file sizes than
using a binary format. PAL also has some problem-size
limitations, and fails to compile very large programs. While
the templating concept proposed in this work is useful, it is
not useful for compiling circuits of practical size.

PAL does not use the most efficient adder sub-circuit,
meaning it requires 3n non-XOR gates instead of n (XOR
gates can be executed for “free” [29]), and uses 3 input gates
for MUXs. It also does not provide a complex optimization
phase, so the output is not very optimized.

4.2.2. KSS. Errors: The KSS compiler has a number of ar-
eas where it does not function properly. Nested if statements
consistently cause errors in the output circuits. Further, for
loops used within if statements also cause the compiler to
fail with regularity. Programs requiring multiple conditional
statements, such as Dijkstra’s algorithm, must be re-written
to use single nested if statements. This is furthered hampered
by the lack of conjunction operators. These shortcomings
limit expressivity and the ability to write certain programs.

We discovered that when a variable is used inside of
a function and also outside (i.e., a global variable defined
later in the code), it can lead to incorrect output circuits. This
error can occur when a function and the body of the program
might both use the same name for input. One such case
occurred when we used the variable a both in the program
body and in a function. Finally, we found a set of cases that
the generated circuit was incorrect due to what may be an
optimization error. This set of cases each used some of the
same functionality.
Inefficiencies and Limitations: Rather than reduce the
output size using an intermediate representation, KSS out-
puts the entire circuit. It also uses a very large amount of
hardware-specific code, which makes porting a extremely
difficult task. While this hardware-specific code provides
some efficiency gain on specific platforms, it makes the task
of extending the code very complex.

Like PAL, KSS’s output does not take advantage of the
most optimized adder sub-circuit. As a result, many circuits
are about 3x larger (non-XOR gates) than necessary.

4.2.3. CBMC. Errors: Output variables can cause com-
pilation errors if used more than once, or if read inside
the program. This is a common occurrence when a func-
tion returns different values depending upon conditional
statements, e.g., a piecewise function. These errors can be
avoided by careful programming. There is an error where
input cannot be assigned directly to output variables. We
also found another error that may be related to the input-
to-output error though its exact cause is a mystery. CBMC
provides an error message if an input variable is written
within a program.

CBMC sometimes fails to compile using arrays as input.
Without being able to rely on input arrays, the programmer
must enter integers in an unstructured manner, making op-
erations such as matrix multiplication more difficult.
Inefficiencies and Limitations: CBMC outputs the entire
circuit in a ASCII format, which, while condensed com-
pared to PAL, is still much larger than using binary. The
format also doesn’t map output variables to pins, making
developing and debugging the interpreter prone to error.

4.2.4. PCF. This section tests the published version of PCF,
PCF1. There is a new version under development that, at
the time of our testing, was not as efficient as PCF1.
Errors: PCF allows global variables, but if global values are
initialized during declaration, it can crash, i.e., the assign-
ment must happen later on in the program. We discovered
this error trying to get AES to work correctly, though this
problem affects any program that uses global variables.
When an array is addressed with an out of bounds index,
PCF effectively returned random results (whatever was in
memory) instead of producing an error message for each
test we made. This is an extremely dangerous behavior, as
it can lead to hidden and hard-to-detect errors.

By default, the PCF compiler does not update the pro-
gram labels that keep track of the number input wires,
meaning, by default, the amount of input will not be correct
if these labels are used by an execution system. Furthermore,
the programmer must calculate the input sizes (in bits) of
each party in every program. The translate script provided
with PCF, which is used to convert LCC bytecode to PCF,
can fail on valid input files. In addition, PCF has input
buffer overflow problems as inputs above 214 bits overflow
the input-buffers for the two parties. This means that the
circuit will most likely fail upon execution when more
than 214 bits of input are requested in a program, like the
millionaires problem with 65,536 bits as input. These input
size bounds are currently hard-coded into the PCF compiler,
not defined by the program being compiled, and must be
edited manually in cases where larger inputs are needed.
Inefficiencies and Limitations: While PCF produces very
small output circuits, the interpreter used to parse these
circuits is extremely inefficient. Our tests demonstrated that
the interpreter can require as many as ten operations to read
in a single gate. This overhead is magnified by the fact that
each gate is calculated by the interpreter for every circuit that
is garbled. For malicious secure execution systems where
many copies of the same circuit must be garbled, it is far



obliv int a=0;
obliv if(input1>0)
{

for(int i=0;i<3;i++)
a = a + 1;

}

Figure 2: Example code from Obliv-C that does not optimize
as much as it could.

more efficient to parse the gate once, then garble the same
functionality as many times as are required for protocol
security. PCF also produces spurious gates, which add to the
circuit complexity and should be removed. As with many
other compilers studied, PCF uses ASCII output format,
increasing storage size.

As PCF uses C as input, it also does not allow for
arbitrary width types. In other words, it does not support,
for instance, native multiplication of two 256-bit numbers.

4.2.5. Obliv-C. Most of the following errors were fixed
between submission and acceptance of this paper
Errors: The statement q = q & 0 throws a compiler
error; multiplying a variable by 0 also causes an error.
This type of multiplication is useful for eigenvectors. These
operations work successfully if non-zero values are used.

Arrays going out of bounds (both access and modifica-
tion) often produce no error messages or warnings, even
those that should have been discovered at compile time.
Hugely incorrect accesses (e.g., out of bounds by a few
hundred) can produce an error and crash, but smaller errors
are often not detected. Such errors can affect the gate-count
and modify the output in unexpected ways.

Further, the system cannot handle large arrays – the
execution system crashed when we created an unsigned
int array of size 32,000 for testing.
Inefficiencies and Limitations: Obliv-C does not always
optimize circuits even when it is easily possible to do so.
For example, q = q & q requires n gates, where n is the
bitlength of the operation. In the segment of code seen in
Figure 2, Obliv-C requires about 156 non-XOR gates; our
compiler requires about 43 non-XOR gates for the same. It
appears Obliv-C does not always keep track of optimizations
for wire states at the gate level. These kinds of statements
appear in programs such as the edit distance of two strings.
The authors suggest having the developer keep track of the
possible range of an integer manually. However, this is not
part of their compiler.

There are no arbitrary width types, which reduces the
expressivity and increases gate counts of many programs.
Trying to use a smaller type than an int, such as char
produces seemingly strange gate counts, i.e., the multiplica-
tion of two 8-bit chars and stored into an 8-bit char appears
to not be an 8-bit multiplication and gives gate counts of
either (1) a 32-bit multiplication or (2) a multiplication of
unknown size (between 32 bits and 8 bits in length). We
printed out the CHAR_BIT variable (the number of bits in

int@n a=0;
if(input1$0$==1)
{
a=a+1;

}

Figure 3: Example code: @n dictates the length of the
variable, $0$ picks the 0th wire

a char) and used sizeof to verify the char is actually
supposed to be 8 bits in length.

4.2.6. ObliVM. Most of the following errors were fixed
between submission and acceptance
Errors: ObliVM provides a disclaimer on their code reposi-
tory about the correctness of their system that it is expected
to contain a variety of errors. In our attempt to get their code
working, we encountered a problem with their test script to
run their code. Through conversations with the manager of
the code, this problem was resolved.

The typechecking is somewhat loose, i.e., it allows many
different lengths of variables to be used in an expression, i.e.,
int2 a; int4 b; int8 c; c = b + a. The oper-
ator length appears to depend on the size of the output
variable and not the size of the operands; this can lead
to incorrect results if great care if not taken (i.e., int16
t = 4096; int8 q = t % 9; results with q as 0
when 4096 mod 9 should be 1.). Safer type checking would
eliminate this possible problem. We noticed this when we
tried to write a modular exponentiation program. Single bit
variables often throw errors when used; for instance, they
cannot be combined with multi-bit variables (it throws a
Java error).

When we tried to return (output) a result of size 2, but
passed in a value larger than 2 bits, we received a result
larger than would fit in 2 bits (i.e., it appears the return size
may be ignored for the output).

The use of constants can sometimes be a problem. x
= 100+x; throws an error, but x = x+100; compiles
successfully.

When returning the result of an expression (e.g., x +
y), storing the value in a variable and then returning it
(where the variable is of the return size) may produce a
different value than returning the expression directly; both
should produce the exact same result.
Inefficiencies and Limitations: ObliVM, like Obliv-C, does
not appear to provide a large amount of gate-level optimiza-
tion. The statements seen in Figure 3 require approximately
2n non-XOR gates (where n is the length of the variable).
However, gate optimizations should prevent any non-XOR
gates from being required in this segment of code. These
kinds of statements appear in programs such as the edit
distance of two strings. Likewise, a statement like a = a
& a should require no gates of any kind, but it requires n
AND gates in ObliVM.

Selecting more bits in a variable than exists allows
compilation to succeed, but throws an error at runtime.



error: incompatible types: t__T[] cannot be converted to
int

-> int __tmp12 = f_tmp_6;}

Figure 4: Example error message from ObliVM.

The error messages are not always helpful; they are
mostly Java errors from the generated Java program. An
example error can be seen in Figure 4.

4.3. Summary

PAL, KSS, CMBC, Obliv-C, ObliVM, and PCF crashed
on programs that should correctly compile. KSS, ObliVM,
and PCF generated incorrect circuits. These are important
problems. Consider how easy it is for an array to go out of
bounds or the number of programs that benefit from nested
conditional statements. Or, if the expressivity is severely
limited by incorrect operators then programs cannot be
written as efficiently as they could otherwise. Principally,
if the program files used in an SMC computation are not
correct then the resulting SMC computation will not be
correct either.

5. Compiler Development Principles

Given the problematic state of secure computation com-
pilers in the research community, we set the primary goal
of our work to be the development of structured design
practices for secure computation compilers, and to demon-
strate the effectiveness of these practices with a new com-
piler implementation. By examining practices used by the
compiler community and combining those best practices
with the observed failings of previous secure computation
compilers, we have assembled a set of four principles to
guide the development of our compiler, Frigate. Through
this implementation, we demonstrate that these principles
should be considered standard practice when developing
new compilers for secure computation applications.

1) Use standard compiler practices: Use standard method-
ology from compilers (lexing, parsing, semantic anal-
ysis, and code generation). Use data structures that
are described throughout compiler literature (e.g., an
abstract syntax tree) [5]. Applying these standard, well-
studied constructs allows for straightforward modular
treatment of the compiler components when extending
the functionality. Furthermore, it allows for application
of standard compiler debugging practices.

2) Validate the compiler output: All production compilers
rely on proper program validation to ensure that the
compiler functions correctly. A variety of validation
test sets have been developed in both the research
community and in industry that can be applied to
newly-developed compilers [4], [1], [43].

3) Handle errors well with helpful error messages: Many
sources describing good compiler practices emphasize
the need to produce error messages, also known as

negative results (e.g,. [5], [4]). While allowing the
compiler to crash silently on an incorrect program does
not affect its overall correctness, it severely hampers
usefulness.

4) Simplify the design: A standard software engineering
principle is to avoid erroneous code by using simple
designs. This allows for more intuitive debugging when
errors do occur, as well as facilitating the addition of
future functionality.

6. The Frigate Compiler

To demonstrate the practical effectiveness of our com-
piler design principles, we designed the Frigate compiler
and secure computation language. We also created a fast
interpreter to read Frigate’s output files efficiently. Our
work demonstrates three additional contributions to the
state of secure computation compiler research: (1) a new
and simplified C-style language with specifically designed
constructs and operators for producing efficient Boolean
circuit representations; (2) a compiler that produces circuits
with orders of magnitude less execution time than previous
compilers; and (3) a novel circuit output format that provides
an efficient balance between compact representation and
speed of interpretation.

6.1. Input Language

Frigate’s novel input language incorporates the best of
what we have seen and used in the community and partially
because of this, we can achieve substantial non-XOR gate
efficiency. Our novel output format provides a balance be-
tween file size and removing extra instructions necessary in
some formats, e.g., PCF. Frigate is meant to be a well-tested,
user-friendly tool, which incorporates well known circuit
optimizations and provides good performance, allowing re-
searchers to easily create their own special optimizations
without having to write their own compilers.

To better facilitate the development of programs that can
be efficiently compiled into Boolean circuits, we developed
a custom C-style language to represent secure computation
programs. The language allows for efficiently defining arbi-
trary bit-length variables that translate readily into wire rep-
resentation, and restricts operations in a manner that allows
for full program functionality without excessive complexity.
We do not use C or a common intermediate representation
like LLVM’s bytecode as input, to allow for innovative
operators and non-standard bit-width operations.

This minimal set of operations adheres to our fourth
design principle of maintaining simplicity to ensure for
easier validation. Our language has control structures for
functions, compound statements, for loops, and if/else state-
ments. We include the ability to define types of arbitrary
length and combination as in SFDL, the language used by
Fairplay, combined with an operator that selects some bits
from a variable used in the KSS compiler input language.
We allow signed int t, unsigned uint t, and struct struct t
types in our input language (we can handle arrays inside



Operators Description
+ - ∗ / % arithmetic operators
∗∗ // %% extending and reducing operators
| ˆ & ∼ bitwise operators

= assignment operator
++ −− increment and decrement operators
== != equality test operators

> < <= >= conditional operators
<< >> shift operators
<<> rotate left operator

. struct operator
[] array operator

{} {:} wire operators

TABLE 1: A table showing the operators in Frigate’s input
language. As data types are either signed and unsigned,
the arithmetic and conditional operations behave differently
depending on whether the operands are signed or unsigned.
In the case signed and unsigned types are used in the same
operator, the compiler uses the unsigned operator (a warning
is also issued by the compiler). Extending and reducing
operators are discussed in Appendix B.

structs). For modularity, we have #include statements to
allow the use of external files and #define to replace a term
with an expression. The list of operators in our language
is in Table 1, with an example of our input language in
Appendix A.

Every program begins with a declaration of the number
of parties participating in the computation. Since not every
participant is required to provide input or receive output,
the input and output types for any subset of the participants
may then be specified.

To further maintain simplicity, only three primitive types
are defined in our programming language. int t types are
signed numbers defined to a specific bit length, uint t types
are unsigned numbers defined to a specific bit length, and
struct t types may consist of uint t , int t, and struct t
types. Developers may specify their own types using these
three types and the typedef command. These three types can
be combined to create any complex data type. To formally
define the typing of each operator in our language, we give
a selection of typing rules in Figure 5. The remainder of
these rules are available in the tech report.

One feature we were compelled to omit from our lan-
guage was global variables. We removed this feature after
we realized the significant overhead they represent within a
Boolean circuit program. Allowing global variables requires
keeping track of whether each function is called under an
if statement and adding a MUX gate every time a global
variable wire is assigned a value. Our language is capable
of expressing equally functional programs by passing in
“global” variables and returning any new values for these
variables.

6.2. Compiler Design

With our input language defined, we next examine the
design of the Frigate compiler itself. Written in approxi-

Add
� ` ti : NumLi

� ` t1 + t2 : NumLi

Less
� ` ti : NumLi

� ` t1 < t2 : Num1

Assn
� ` ti : T

� ` t1 = t2 : T

If-Else

� ` ti : T � : Num1

� ` if (�){t1} else {t2} : T

Func-Call

� ` ti : Ti f : F

� ` f(t0...tn�1) : R

Figure 5: Example typing rules for basic operators and
control flow statements

Parsing
Includes

Type Check and 
Program Errors

Circuit Output 

Gate Optimization 

Input Analysis and Transformation Output

Defines

Figure 6: Overall design of the Frigate compiler. There are
six separate blocks of the compiler separated blocks into
three different stages instead of the traditional two stages.

mately 25,000 lines of C++, the compiler is designed to
be simple enough to validate each output code path and
modular for expansion to fit specialized secure computation
applications. While there are other languages (with stronger
typing, for instance), which would have made it easier to
show the correctness of the compiler, we use C++ for speed
and available libraries. Note that Frigate can handle a variety
of security models since we can attach any SMC imple-
mentation to the compiler without affecting the adversarial
model.

6.2.1. Compilation stages. Frigate represents programs in
the standard compiler data structure, the abstract syntax tree
(AST). In accordance with our first design principle, this
allows for straightforward static analysis and transformation
of each program. Each type of operation has its own node
where construction, type checking, and output of its sub-
circuit (among other functions) takes place.

Compilation of a program follows three phases as shown
in Figure 6. The input section of Frigate takes in a program
and creates an AST representation of the program. We
used Flex [2] and Bison [3] to generate the scanner and
parser used in this phase. In the second phase, any #include
statements are replaced with the included file’s generated
AST. All #define statements replace any terms in the AST
with a deep copy of the defined expression tree. To conclude
this phase, the type checker takes the AST and checks that
it is a valid program as defined by Frigate’s input language.
The final phase of compilation takes in the AST and outputs
the circuit while performing gate-level optimizations. If a
developer wishes to extend the functionality of Frigate, this
modular phase design allows for additional stages to be
inserted in between the existing stages.

6.2.2. Type Checking and Error Output. To satisfy our
third design principle, we created our type checker to output
detailed error messages to indicate the location and type of



error generated by an incorrect program (e.g., ./tests/add.wir,
Error line:11 Type “mytype” is used but not defined). To
ensure developers do not include unstable functionality in
their programs, Frigate enforces strict type checking that
prevents different types from interacting unless those types
are different signed or unsigned integer types of the same
length. A warning is issued in this case.

6.3. Circuit Representation

Previous work in compiler development has demon-
strated that it is possible to have either a large yet simple
circuit representation that is efficient to parse, or a highly
compact circuit representation that incurs significant cost
when interpreted by the evaluator. To strike a balance be-
tween these two extremes, we developed a novel circuit
representation that is significantly smaller than the simplified
circuit representations while still being efficiently parseable.
Our output format represents circuits using four elements:
a set of input and output calls, gate instructions, function
calls, and copy instructions. Our representation of functions,
as different files, allows us to shrink the output size without
the need for a costly circuit interpreter (more details in
Section 6.3.2).

To further improve the efficiency of evaluating Frigate
circuits, we designed the compiler to favor XOR gates, as
they can be evaluated with fewer operations and do not
consume bandwidth when certain garbled circuit protocol
optimizations are used [29]. We use the four-XOR, one
AND-full adder introduced by Boyar et al. [10].

6.3.1. Output Components. Here we present the details of
our circuit representation.
Wires: Each variable is composed of many wires that are
allocated as needed with a set address. Each wire exists in
either a used wire bin or a free wire bin. Once a used wire
is freed it is placed in the free bin. Order, as defined by the
address of a wire, is not preserved in the free wire bin. Our
compiler will free the wires it can after each operation.

We group wires together by the number requested for a
specific variable. This allows for a massive decrease in the
amount of time required for checking whether or not wires
can be placed in the free wire bin, i.e., instead of requiring
100,000 checks for a variable with 100,000 bits (wires) in
length, only a single check is needed.

Wires can exist in one of six states. ZERO and ONE
represent a wire’s state as 0 or 1. The UNKNOWN
state represents wires that depend on input values such
that their value cannot be computed at compile time.
UNKNOWN INVERT represents an unknown wire but at
some point was inverted. UNKNOWN OTHER and UN-
KNOWN INVERT OTHER are wires whose values are
pointers to another wire value or the inversion of another
wire value. By keeping track of inverted states, we can
optimize away inverts in some cases.
Gate Output: Given two input wires and a truth table,
the outputGate function will output a gate and update the
state of the output wire. An additional function is called to

determine whether the gate is needed or whether it can be
optimized out. If the gate cannot be optimized out then the
truth table will be adjusted for whether either of the input
wires’ states are inverted. Finally, the gate will be added to
the output.
Function Parameters and Return States: Since we output
the gate representation of each function independently only
once, uncorrelated with a single function call, we cannot
take advantage of knowing the state of a wire as it is passed
into a function. Therefore, function parameter states are
marked as UNKNOWN. It is possible to pass wires with
“0” and “1” states, but it is not as efficient as the optimizer
cannot use the information that they are “0” and “1” since
they must be marked as UNKNOWN. This inefficiency is
necessary since we only output each function a single time
preventing us from taking advantage of specific parameter
states. We could solve this by outputting multiple function
files with different wire parameters, but this would expand
our circuit representation.

6.3.2. Circuit Interpreter. Using our circuit output format,
the process of interpreting a circuit is reduced to a highly
efficient task. When the interpreter is initially called, it
reads an .mfrig file, which contains information about the
number of parties, input and output sizes, and the number
of functions. It then opens the .ffrig function files. After the
interpreter is initialized, it is ready for the first getNextGate
command. Each time getNextGate is called, the compiler
reads and executes the next instruction, and returns the
appropriate gate to the execution environment.

Each function occupies a specific set of wire values
such that no function’s wires will overlap. This enables
a “stack” of function calls without the need for the push
and pop operations that would be required if our functions
used overlapped wire addresses. This does not affect the
output circuit size. The interpreter keeps a call stack of
active functions in its internal state. Each function, rather
than being held completely in memory, is stored as a pointer
to the active instruction. When a function is called, the stack
of functions is updated, the active function is set to the
called function, and the called function is set back to the
first instruction.

6.4. Procedures

While our technique of dividing programs into distinct
functions and then composing the circuit with calls to those
functions allows for a significant reduction in the repre-
sentation size of many circuits, not all programs can be
easily partitioned into distinct functions. Even if a clean
partitioning does exist, the function overhead for copying
parameters and return values can exceed the number of
commands inside the function. Large representation size is
commonly encountered with loops, creating redundant data
that expands the size of the circuit representation. To reduce
the output file size in this case, we develop a novel construct
called procedures.



A procedure is an area of a loop that can be moved
by the compiler to a separate function so that, instead
of unrolling all the instructions for every iteration of the
loop, all that is required is a single function call to the
procedure function. Procedure can be intermixed with other
non-procedures inside of the same loop.

As the procedure circuit is exactly the same each itera-
tion, there are limits when using variables whose values are
ONE or ZERO inside of the procedure and change between
iterations. Most notably, this limitation includes using the
value of the loop variable.

To demonstrate the output file size reduction possible
using procedures, we consider an example program that adds
five 32-bit variables to an accumulator 1000 times (the full
program is in Appendix A). If no procedure is used, this
program requires an output file of about 13MB since each
iteration of the main loop must be unrolled. However, if a
procedure is used, then output is one 30 KB file (main) and
one 13KB function file (the procedure), a reduction of the
total disk usage by over 300x.

7. Experiments
7.1. Frigate Validation

During the creation of Frigate, we unit tested each new
structure to ensure it functioned properly. Our unit tests
comprised checking most, if not all, possible program paths.
We manually checked each operator with sample output.
Then, to demonstrate the correctness of circuits created by
Frigate, we ran an extensive validation test suite consisting
of over 17,000 tests and several million additional tests
containing all possible combinations of input using 8-bit
types for complex operators. After hundreds of iterations
of development and testing and months of work, Frigate
successfully passed all validation tests, and produces cor-
rect and functioning circuits in every case where previous
compilers failed. For further details on the state space we
examined in Frigate, see Appendix C.

7.2. Compiler Efficiency Tests

By constructing a compiler using our four develop-
ment principles, we wanted to evaluate whether adhering
to the principles we laid out would have an adverse ef-
fect on performance. We tested the time that is required
to compile circuits in Frigate against the three compilers
(CBMC, PCF, and KSS) that output a complete circuit.
We also tested ObliVM and Obliv-C, but do not include
them in the compile-time results as they do not directly
output circuits and thus are not directly comparable. We
show some of these results in Appendix A. PAL did not
give competitive compilation results, so we omit them from
our benchmarks. For Obliv-C and ObliVM, we measure
the efficiency (gate counts) of primitive operations as the
runtimes of the compilers correspond to the C and Java
compilers, respectively. All of our benchmarking tests were
performed on a MacBook Pro with an Intel i7 4-core 2.3Ghz
with 16GB RAM, 256KB L2/core, and 6MB L3.
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Figure 7: Comparing the different compilers we tested for
compilation time. We did not succeed in compiling RSA256
with CBMC. Note the y-axis is logscale.

7.2.1. Test Programs. To evaluate performance across a
wide variety of compilers, we used common test programs
used by the other researchers in this space [31], [30], [48].
We used the following test programs: multiplication with
matrices of X by X with 32-bit values, AES, Hamming
distance of two X bit numbers, multiplication of two X-bit
numbers that produces a 2*X-bit result (this is in contrast
to the program of TinyGarble [49] who use X*X=X-bit
multiplication), and RSA (modular exponentiation) of X
bits, where the base, exponent, and modulus are all X bits
in length. For each test program, we varied the input size
X throughout our testing.

7.2.2. Tests. We summarize the results in Figure 7 by
comparing the largest input values for each program that
successfully compiled across all compilers. We evaluate the
compilers with their default setup in an attempt to produce
the smallest circuit (as opposed to disabling the circuit
optimizers). In every case, Frigate completes compilation
the fastest. In the best case, Mult 256, which computes
the multiplication of two 256-bit numbers, Frigate compiles
447x faster than the next fastest compiler, KSS.

In addition to comparing speed efficiency, we also con-
sidered the non-XOR gate counts of each program compiled.
Because the free-XOR optimization for garbled circuits [29]
allows XOR gates to be evaluated with non-cryptographic
operations and without consuming network bandwidth, we
consider non-XOR gates the bottleneck in computation.
Frigate greatly reduces the number of non-XOR gates for
the Mult-4096 program, demonstrating a reduction for the
number of non-XOR gates by about 3x. In the case of AES,
and RSA-512, the improvement was only slightly better
than existing compilers, reducing the gate count by up to
1.18x. We observed a increase in gate counts for Matrix
Multiplication by 0.8%, Hamming Distance by 2.35x, RSA-
256 by 1.19x, and Mult-256 by 1.37x. The full compilation
results are in Table 4, in the Appendix.

Other than Hamming Distance and AES, our gate counts



Frigate TinyGarble
ProgramName C Verlog
Hamming-160 719 1,264 158

Sum-1024 1,025 3,067 1,023
Compare-16384 16,386 52,224 16,384

X-to-X-bit Mult-64 4,035 - 3,925
MatrixMult5x5 128,252 - 120,125

AES 10,383 - 5,760

TABLE 2: Non-XOR gate count comparison between
Frigate and TinyGarble [49] using HDL and C as inputs. “-”
represents results not present in [49]. For accurate compar-
ison, our multiplication operation in this test produces n-bit
output as in [49].

are similar to the best gate counts of [49], who wrote
programs in behavioral and RTL level Verilog. For the three
test programs given in [49] that use a high level language
(C), we are superior. Table 2 gives the exact results.

While TinyGarble produces superior gatecounts in some
cases, this is achieved using Verilog, a hardware descrip-
tion language for electronic systems. Thus, the interpreter
converts something that is already close to a hardware-level
description into a circuit format, as opposed to dealing with
a high level language. It is not surprising, then, that in
a some cases, the Verilog version, which is closer to a
handcrafted circuit, performs better than Frigate.

For Obliv-C and ObliVM, we measure the cost of some
primitive operations, shown in Table 3. Frigate, Obliv-C,
and ObliVM have similar gatecounts for compare and sum
operations. These operations have O(N) gates, where N
is the bitlength of the operation. In contrast, ObliVM’s
multiplication and division templates are larger than that
of both Frigate and Obliv-C, and Frigate’s division template
is larger than that of Obliv-C.

It should be noted that neither Obliv-C nor ObliVM were
able to perform the a = a & a optimization to emit AND
gates. We include this optimization to show that neither of
these two systems perform a number of known optimizations
that should have been included. This is a disadvantage of
their model of compiling to an executable instead of a
circuit: in order to perform these optimizations, the system
will have to perform them every time the circuit is executed.

To summarize, ObliVM and Obliv-C do not perform
known gate-level optimizations. Without these and many
other optimizations implemented in Frigate, they sometimes
produce comparatively inefficient output programs.

7.3. Interpreter and Execution Speed

Interpreter Time: Our next set of experiments compares the
performance of the Frigate and PCF interpreters. Figure 8
shows our experimental results. The Frigate output format
allows for significant reduction in interpreting time. In the
worst-case, we improve over PCF by 106x, with a reduction
of 786x in the best case. We used the Unix time function to
measure the total computation time.

A lot of this speedup comes from the way Frigate and
PCF are designed. (1) Frigate optimizes the circuit a single

Frigate Obliv-C ObliVM
Sum-32 31 31 32

Compare-32 ( > ) 32 32 32
X-to-X-bit Mult-8 59 - 120
X-to-2X-bit Mult-8 136 - 176
X-to-X-bit Mult-32 995 993 2,016
X-to-2X-bit Mult-32 2,082 - 3,008

Div-8 61 - 172
Div-32 1,437 1,210 2,236

a = a & a 0 O(N) O(N)

TABLE 3: Non-XOR gate count comparison of different
operations for Frigate, Obliv-C, and ObliVM. For these tests
we look at the non-XOR gate counts different primitive
operations require (not gate counts for a specific program).
For Obliv-C, we do not measure 8-bit operations (char
variables) as they does not appear to give correct gatecounts
as noted in Section 4.2.5. Using signed types.
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Figure 8: Interpreter time per circuit for PCF and Frigate
interpreters. Note the y-axis is logscale. H stands for Ham-
ming Distance.

time in the compiler; PCF has to optimize at runtime. (2)
Frigate’s execution system can take advantage of certain
compiler (gcc) optimizations that PCF cannot due to a
design decision requiring each instruction to use function
pointers (i.e., lots of function calls that could be optimized
out). (3) Many instructions in PCF require a malloc due
to the interface to the PCF interpreter; Frigate’s interpreter
requires no mallocs after initialization.
Execution: The total execution time is improved by a faster
interpreter. We connected the Frigate interpreter and the
PCF interpreter into the same semi-honest execution system
loosely based on the KSS execution implementation but
further optimized and modified to use generic C++ vectors
as its primitive type (instead of Intel-only intrinsic data
types) to increase portability. Figure 9 shows the results.

Total execution time improves by 21x in the best case
and by 1.8x at worst. We can further improve our perfor-
mance by reducing the overall execution time by adding in
additional optimizations like the half-gate optimization [57]
or the fixed-key blockcipher optimization [7]. The speedup
is the result of the amount of extraneous instructions PCF re-
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Figure 9: Execution performance for semi-honest execution
system in Frigate and PCF. In these experiments we only
vary the interpreter and circuit format. The execution system
is the same in both cases. H stands for Hamming Distance.

quires, sometimes up to 18x instructions per gate instruction.
The interface, though elegant, requires malloc on many of
these. Here, our novel output format provides an advantage.

7.4. Discussion

Speed of Frigate: During the creation of Frigate, we at-
tempted to speed up Frigate in many ways. Other than
writing efficient code, our separation of functions, output
representation, choice of programming language, efficient
data structures, lack of a global optimization phase, efficient
use of circuit templates, and our use of procedures all
contribute to why our compiler performed better.
Not Comparing to Other Interpreters: Both Obliv-C and
ObliVM compile to executables and not directly to circuits.
For PCF and Frigate, we could easily swap the interpreter
while maintaining the same SMC execution backend.
Extensibility: After the initial creation and implementation
of Frigate, we made additional changes that show extensi-
bility. We enabled constants to be defined with a specific
sign and specific bit-length, which was not in our original
specification, and added three additional operators: extend-
ing multiplication, reducing division, and reducing modulus.
These operators are discussed in detail in Appendix B.

For developers to extend Frigate with their own func-
tionality, they simply create or modify an AST node and the
parsing rules, modify typing for new or existing operators,
and then define what sub-circuit the operator outputs.
Tools: To demonstrate how Frigate can be used to create
useful developer tools, we created an extension to output
the gate counts of program components inline in a printout.
We implemented this tool to understand where the most
costly operations are in a program. Our tool also maps
in the cost of function calls even though they are not
called during compilation. As procedures are not output
during each iteration of a loop, the costs inside a procedure

function int mul(int x, int y)
<1047555,2092036>{
return x * y;

}
function void main()
<270270213,540799236>{
int t = input1;
for(int i = 0; i < 256; i++)
<268174080,536610048>{
t = mul(t, input1);

}
<1047555,2092036>{
t = t * input1;

}
output1 = input1 * input2 + t;

}

Figure 10: Example of Frigate’s gate counts in the program
at each compound statement. Key: 〈non−XOR gates, free
operations〉
represent only a single iteration, but outside the procedure, it
is counted for every iteration. Figure 10 shows an example.
Very Large Circuits: Using our unique output format, we
were able to compile a program that has 2467 non-XOR
gates in under 20 minutes (a 1024-bit addition performed
2000032 times). This is not the limit, but shows Frigate can
create very large programs.
Full Circuit List: Since many systems we have seen and
used require the full circuit as input, we created a tool (via
a command-line argument to the interpreter) to output the
complete circuit into an easy to understand text format.

8. Related Work

When the garbled circuit protocol was developed by
Yao [55], it demonstrated that secure multiparty computation
was possible. However, the protocol remained a theoretical
novelty until Fairplay [36] demonstrated that the protocol
could be feasibly run for small circuits. In more recent
work, the garbled circuit protocol has been vastly expanded
from its original capability and applied to various areas [9],
[20], [16], allowing for multiple parties [8], security in the
presence of covert [19], malicious [27], [33], [34], [47], [48],
and other adversaries [25], as well as outsourced execution
from computationally limited devices [26], [13], [12], [14]
and on mobile devices directly [11].

Several optimizations have been developed to reduce the
size of garbled circuits. The free-XOR technique [29], [15]
allows garbled XOR gates to be evaluated with a single
XOR operation and requires zero bandwidth. Optimizations
such as garbled row-reduction [42] allow for the size of
the transmitted AND gates to be reduced by a constant
factor. Other optimizations, such as FleXOR [28], have been
shown to reduce bandwidth and computation time for certain
functions. The pipelining technique developed by Huang et
al. [24] generates and transmits the circuit in layers, allowing
large circuits to be handled in a small amount of memory.
Most recently, the PartialGC system [37] allows for garbled
wire values to be re-used between protocol executions. How-
ever, while these protocol optimizations allow for constant
factor improvements in speed and bandwidth, they do not
optimize the size of the boolean representation itself.



Fairplay [36] was the first SMC compiler. While this
provided a first step towards a practical and usable means for
representing arbitrary programs as circuits, it suffered from
a number of correctness issues. To reduce the size of the
unoptimized circuit representation, the PAL compiler [38]
used pre-optimized templates instead of completely creating
each circuit at runtime. The compiler by Kreuter, shelat, and
Shen [31] incorporated some of circuit optimizations. The
Portable Circuit Format compiler (PCF) [30] combined the
concept of templating with several circuit optimizations. An-
other compiler, Wysteria [45], provides support for mixed-
mode secure computation.

A recent work by Songhori et. al [49] shows how to use
hardware tools to create SMC circuits. These produce sig-
nificantly smaller output files and often significantly smaller
non-XOR gate counts when writing in an HDL language.

9. Conclusion

Garbled circuit protocols have made significant advances
based upon the development of a set of circuit compilers
that have allowed researchers to quickly develop new test
applications. However, the sometimes error-prone nature of
these compilers has made building new research on them
problematic. In this work, we examine the state of secure
computation compilers using rigorous validation testing.
From this examination, we present a set of guiding prin-
ciples for secure computation compiler design and develop
the Frigate compiler based on these principles. By building
a principled compiler and thoroughly validating correctness,
our compiler reduces compile time by as much as 447x
when compared to previous circuit compilers. Furthermore,
our novel circuit representation format allows for circuit
interpretation time to be reduced by as much as 786x and
execution time by up to 21x. These results demonstrate that
a principled approach to design and validation of secure
computation compilers produces tools that are both correct
and efficient, and offer the community a solid foundation
on which to develop further research.

The source code for Frigate is available at
https://bitbucket.org/bmood/frigaterelease
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Appendix A.
Example Programs

Input Example: The program below gives an example
of much of the syntax in Frigate’s input language, using
statements, types, and input and output. Each output is the
addition of the two inputs.
#define wiresize 32
#parties 2
typedef int_t wiresize int
typedef struct_t mystruct {

int x;
}
typedef struct_t newstruct {
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int x;
newstruct var[5];

}
#input 1 int
#output 1 int
#input 2 int
#output 2 int
function void main(){

output1 = input1 + input2;
output2 = input1 + input2;

}

Procedure Example: This is the example program dis-
cussed in Section 6.4.
function void main(){

int x = input1;
int y = input2;
for(int i=0;i<1000;i++) {

x = x + y + y + y + y + y;
}
output1 = x;

}

Table 4 gives compiler performance results for our dif-
ferent test programs.

Appendix B.
Frigate Design Details

This section lists some of our design decisions and
explains why we decided to do things differently from other
compilers.
No Recursion: We do not allow recursion in our execution
model. Multiple copies of a specific function could be
created to simulate recursion but this is not done as part
of a native operation. Since the depth of recursion must be
known at compile time, this does not remove functionality
from the language but may reduce expressiveness.
Typed Constants: Constants can be typed to a specific
length and sign. By default, constants are not typed, sized
to their bit-length + 1, and use unsigned operators when all
operands are untyped constants. In the presence of typed
operands and untyped constants, the operator will use the
sign of the typed operand. We added the # and ## operators
to specify the bit-length and type of constants. We use # to
represent a signed constant and ## to represent an unsigned
constant, i.e., char16 x = -9#16; defines -(9) to be
signed 16-bit number. We issue a warning if one of these
operators is not used with a constant, as it may produce
incorrect results with negative numbers.
Extending and Reducing Operators: In order to reduce the
size of some circuits, we provide a multiplication operator
(∗∗) that takes in two X-bit numbers and produces a X ∗
2-bit number, and operators for division (//) and modulus
(%%) that take in a dividend of size X , quotient of size
ceiling((X + 1)/2), and returns a ceiling((X + 1)/2)-bit
result. We note the modulus and division operator only work
correctly when the result can completely fit in the quotient.
These circuits are much smaller than in the case of using
X to X-bit operators when, in the case of multiplication, a
X ∗ 2-bit result is desired.
More Than Two Parties: Our compiler allows more than
two parties in the computation unlike the other compilers we

if(x) { if(y) { } else { } }
else { if(z) { } else { } }

Figure 11: Twice nested if statements. There are 8 possible
combinations as x, y, and z can either be 0 or 1.
examined. Adding additional parties to the computations can
be useful to declare different types of output.

Appendix C.
Frigate Validation Details

To practically validate a compiler, we must check all
possible ways that each statement can output a sub-circuit
and the ways in which data can flow from the beginning to
the end of the program (e.g., when the data is encapsulated in
variables, when it is used in control structures, etc.). While
daunting, the task is made simpler by realizing that each
operator and control structure can only be output in a finite
number of ways, i.e., an if/else statement has 2 possibilities:
it is either the first if/else statement or is nested under at least
one other if/else statement.

We perform the tests outlined in Section 3. At the
conclusion of these tests we have covered most, if not all, the
state space in Frigate. We have tested (1) the correctness of
each mini-circuit an operator uses, (2) all the ways in which
data can populate each operator, (3) the base and nested rule
for each construct (if statements, for loops, and arrays decla-
rations), (4) common edge cases, and (5) unique constructs
to Frigate’s input format. Some tests, like verifying whether
a file is correctly included, were performed by printing out
the AST and not by compiling and executing the program.

For each type of test, we test a variety of positive
(correct) and negative (incorrect) results with emphasis on
edge cases. For instance, for the addition operator we test
the following (1) Does the operator correctly perform with
all possible unsigned 8-bit input combinations? (2) Does
the operator correctly perform with all possible signed 8-
bit input combinations? (3) Does adding two different types
of the same length give a warning? (4) Does adding two
different types of different lengths give an error?
Operators: The first tests on operators examine whether
the sub-circuits, or templates, for each operator (addition,
subtraction, etc.) are correct. For each of these operations,
we constructed a large program to test all possible input
combinations of 8-bits. This involves 65,536 tests for each
binary operator for both signed and unsigned values.

Once we know the template circuits are correct, we must
then show all possible types of data that can be entered into
the template work as well. These types are: (1) constants, (2)
variables, or (3) results from an expression. Once these tests
pass, we know the operator can correctly input the different
possible types of data.
Control Structures: Once each operator is shown to be
correct, we know any other errors found will not be from
the primitive operators but from the control structures. There
are four control structures in Frigate we must test: functions,
if/else statements, for loops, and procedures.

For each control structure, we check every way in
which it can be output. Conditional if/else statements can



Time(s) All Gates Non-XOR Time(s) All Gates Non-XOR
Program Frigate PCF

Hamming 1000 0.0067 ± 7% 17,829 4,691 5.1 ± 1% 21,970 4,882
Hamming 16384 0.053 ± 4% 294,737 77,273 6.95 ± 0.8% 391,683 96,117

Mult 256 0.038 ± 5% 391,171 131,330 54.2 ± 0.7% 1,659,808 400,210
Mult 4096 7.94 ± 0.5% 100,630,531 33,558,530 63.7 ± 0.9% 364,605,460 89,444,609

Matrix Mult 5 0.011 ± 2% 372,377 128,252 60.2 ± 0.4% 433,475 127,225
Matrix Mult 16 0.17 ± 1% 12,201,986 4,202,498 68.8 ± 0.4% 14,308,864 4,186,368

AES 0.009 ± 10% 34,889 10,383 0.48 ± 5% 38,260 12,578
RSA 256 0.306 ± 0.5% 942,210,819 202,441,218 272 ± 0.6% 673,105,990 235,925,023
RSA 512 1.08 ± 0.2% 7,526,940,163 1,615,070,210 275 ± 0.8% 5,397,821,470 1,916,813,808
Program CBMC KSS

Hamming 1000 0.71 ± 2% 54,233 18,906 2.2 ± 1% 20,493 4,641
Hamming 16384 1.16 ± 0.8% 910,495 290,728 4.21 ± 0.8% 370,110 88,952

Mult 32 0.48 ± 1% 6,223 1,741 0.34 ± 6% 15,935 5,983
Mult 256 9,800* ± 5% 5,880,833 2,264,860 17 ± 2% 1,044,991 391,935

Matrix Mult 5 1.8 ± 2% 795,988 223,720 32 ± 2% 1,968,452 746,177
Matrix Mult 16 1,500* ± 7% 26,182,494 7,251,991 1900 ± 5% 64,570,969 24,502,530

AES 0.60 ± 4% 35,607 11,469 0.71 ± 1% 49,912 15,300
RSA 256 -** - - 14,000 ± 4%* 928,671,864 315,557,288
Program Obliv-C (time and # of non-XOR gates) ObliVM (time and # of non-XOR gates)

Hamming 1000 0.916 ±4% 7,719 0.148 ±7% 1,989
Hamming 16384 0.962 ±6% 126,945 0.150 ±5% 32,752

Mult 256 0.978 ±3% 95,296 0.837 ±3% 523,776
Mult 4096 0.927 ±4% 146,292,736 0.844 ±4% 134,209,536

Matrix Mult 5 0.942 ±5% 127,969 0.851 ±5% 653,125
Matrix Mult 16 0.919 ±5% 4,194,273 0.862 ±5% 139,591,680

AES 1.549 ±4% 385,056 0.198 ±8% 61,227
RSA 256 1.031 ±5% 169,993,375 - -
RSA 512 1.083 ±6% 3,525,298,575 - -

TABLE 4: This table shows the compile time in seconds, the amount of total gates, and the amount of non-XOR gates.
Note that for CBMC and KSS, we ran Mult 32 and Mult 256 instead of Mult 256 and Mult 4096.
All tests were ran 10 times unless otherwise noted: * tests ran 3 times, ** we stopped compilation after 6 hours.

be checked for correctness by performing an exhaustive
search up to depth 2 (i.e., test all 8 possible cases of the
conditional output as shown in Figure 11). The unique
ways to output the if/else statement occur within the first
conditional, while the depth-2 if/else statement must be
combined with its parent conditional. If the nested if/else
conditionals combine correctly at depth 2 then by induction,
it will work for subsequently nested conditionals as well.
Each if/else statement should be tested for when the guard
values are dependent on user input as well as when they are
not dependent on user input.

It is relatively simple to validate the correctness of for
loops when they are only nested under another for loop by
checking whether they output the circuit the correct number
of times. When they are used under if/else statements,
problems can arise depending on how the loop variable is
scoped and whether the loop variable’s result will be labeled
UNKNOWN, meaning the result is based on user input due
to the if statement, or whether it will be labeled as a 0 or 1
value. We test to depth 2 in case there is an external state
used by the compiler that may prevent nested for loops from
working correctly under if/else statements.

Functions also have a finite number of possible states
to test. Our procedure for carrying out this testing was as
follows. (1) Test the function call operator, where a function
call is treated as any other operator that takes in any number
of operands (parameters) and returns a single operand. We
test different possible combinations of parameters up to
length 2, as that is where data no longer acts in a unique
way. (2) Function definitions need to be tested to ensure

different types of return variables (array, struct, int, uint)
work correctly. (3) Test two of the same function call
in an operand with different results (e.g., addX(3,4) +
addX(5,6)). It is possible that the results of the first
call may be overwritten by the second call. (4) Test that
parameters can be used inside of the functions.

The correctness of procedures reduces to a simple ques-
tion: is each variable composed of the exact same wires
every iteration? We know that variables will use the same
free wires if the wire pool is sorted before each iteration.
Complete Validation Set: We performed a much more
extensive suite of tests on Frigate than we performed on the
other compilers. We went looking for where we believed
we would find errors in Frigate and in some cases we
found errors during validation. Other than the millions of
arithmetic tests we performed, our validation test set has
more than 17,000 tests. This set contains the above test cases
and has many arithmetic tests. Most of the tests were gen-
erated using various Java programs, i.e., we could template
the problem of nested if statements and then generate all
possible combinations.

Once we created our set of validation set program, we
integrated it to be performed every time make is called. This
way, we can see if any changes we made to the compiler
broke a test case (and this has been useful).


