
BGPRV: A Library for Fast and Efficient
Routing Data Manipulation

Kevin Butler, Sophie Y. Qiu∗, and Patrick D. McDaniel
Dept. of Computer Science & Engineering ∗Dept. of Computer Science

The Pennsylvania State University The Johns Hopkins University
University Park, PA 16802 Baltimore, MD 21218
{butler,mcdaniel}@cse.psu.edu yuqiu@cs.jhu.edu

Abstract— BGPRV is a tool aimed to aid the analysis of
BGP updates or routing table snapshots. It provides a set
of library functions that make it possible to retrieve and
process archived BGP data with efficiency and convenience.
It encapsulates the functions of scanning the Route Views
route repository, downloading data for specified time frame,
processing the binary MRT format, and filtering incomplete
or undesired data etc., and returns BGP data as single
stream. With the abstraction of operations and simplified
usage, it provides users with clean and organized BGP data
that is ready for further processing and analysis.

I. INTRODUCTION

BGP is the protocol that drives contemporary inter-
domain routing [7]. Its performance is one of the key
elements contributing to the success of the Internet. To
date, there have been numerous efforts devoted to BGP
related measurements and dynamic behavior analysis.
Obtaining real-time information about the global rout-
ing system from the perspective of tens of different
viewpoints around the world, Route Views data [12]
have become one of the most important resources to
Internet operators, networking community, and academic
researchers.

Route Views acts as a route reflector for over 40 dif-
ferent ASes, from around the world. The routers collect
both RIBs and UPDATEs and provide data in Cisco and
MRT formats. RIBs are routing table snapshots and UP-
DATEs are BGP update messages. Route Views collect
RIBs every two hours and UPDATEs every 15 minutes.
The archived data are extensively used for the study and
analysis of the Internet, for example, Internet topology
and hierarchy, address usage and prefix advertisement,
routing table growth, AS relationship inference, BGP
instability, and convergence etc.

Collection and manipulation of Route Views data
has been an interesting problem in itself. Tools have
been built to periodically download RIBs and damp-
ened routes [3], to support automatically queries [9], to
convert the MRT format RIBs and UPDATEs to ASCII
format [1], [5], or to parse and organize the collected
data [11].

With the BGPRV toolset, we have created an easy
to use set of functions that encapsulate many disparate
tasks and hide low-level details from users, making it
possible to collect and manipulate Route Views data with
ease. Of chief importance, BGPRV is written in Perl for
platform independence and its usage is simple. With a
single command that specifies the period of interest (start
time and end time), the tool takes care of tasks such
as scanning the Route Views website, replicating the
desired routing data, translating the binary format, and
generating streams of BGP updates from files. BGP data
can be collected and processed efficiently. It can run on
either online or offline modes, based on the requirements.
Moreover, the tool is not limited to manipulate Route
Views data. It can be applied for collecting and parsing
other MRT formatted data such as RIS data [10] and the
logs from any Zebra or Quagga router that output data
in MRT format.

BGPRV has been used in research on the address use
structure and advertisement stability characterization in
the Internet [8], origin authentication [2], and routing
validation system [6]. We expect its usage will be further
broadened in the Internet routing community.

II. OVERVIEW OF BGPRV

Route Views data are stored as many individual files
and the data are organized based on the year, month,
and smaller time units when they were retrieved from
the peering routers. BGPRV (see Figure 1) scans the
Route Views website periodically and keeps an updated
record for all the available data. It generates an entry
for the URL that points to the stored Route Views
data and puts them in a file named ”rv state.dat”. Each
entry is associated with a time stamp, representing the
last time the file was examined. Because the full list
of files that comprise the repository is kept, BGPRV
can detect if a file is missing or has been deleted, and
reacquire the file. Given the specified start time and end
time, BGPRV pulls the individual files stored at Route
Views and returns a sequence of hashes which point to
tokenized records. The downloaded data are stored in

Fig. 1. BGPRV: a tool to collect and manipulate Route Views data

a repository named ”rv repository”. BGPRV provides
abstraction from individual directories and individual
files and allows the user to read the BGP data as a single
file. It decompresses the downloaded file, converts MRT
format to ASCII format, and returns BGP data stream for
the specified period, while hiding all the implementation
and operation details from the user.

III. TOOLS

The major functions provided by BGPRV include the
following:

A. GETRV

Using LWP modules, getrv first scans the Route View
website, then download all files for the specified period.
The files are mirrored in a directory in the current
directory “rv repository”, which must be created before
running the script. To run the utility, use the following
parameters:

getrv <start time> <end time>

where the time is in the following format: ”MM/DD/YY
HH:MM:SS”. For example, $getrv ”01/01/03 00:00:00”
”12/31/03 23:59:59” retrieves all the UPDATE data for
2003.

B. BGPPDUMP

bgppdump provides similar function as Tim Griffin’s
bgpdump tool [4], but does so in a platform-independent
manner through the use of Perl, while extracting only
the pertinent information from the BGP data. To run the
utility, use the following parameters:

bgppdump [-f] <start time> <end time>

where the time is in the format “MM/DD/YY
HH:MM:SS”. The “-f” is optional, and indicates that the

utility should operate in offline mode (e.g., no scanning
or obtaining files over the web). The output of the tool is
similar to that found in the normal bgpdump. However,
only UPDATE and WITHDRAW data is reported, and
all community strings and most attributes are stripped.
The output format for Updates is:

<time>|A|<serc IP>|<prot> |<prefix>|<path>

and the output format for WITHDRAWS is:

<time>|W|<src IP>|<prot>|<prefix>.

Note that any UPDATE containing an AS set or IPv6
address is ignored.

C. BGPSTAB

bgpstab examines the stability of BGP by analyzing
BGP updates. To run the utility, use the following
parameters:

bgpstab [-f] [-r <src>] <start time> <end time>

where the time is in the format ”MM/DD/YY
HH:MM:SS”. The ”-f” is optional, and indicates that the
utility should operate in offline mode. The ”-r” parameter
indicates the viewpoint of the test. Where specified, all
announcements not from that viewpoint are ignored. A
second mode allows to restart a test in progress. The
mode is invoked as

bgpstab -s <statefile>

and restarts a test. A statefile named with the test date
range (so multiple tests can run at the same time)
is created periodically (typically after processing every

250th UPDATE file). The file name is encoded in the for-
mat of YYYYMMDD.HHMM-YYYYMMDD.HHMM-
bgpstad.dat. There is no need to give any other pa-
rameters, as the statefile contains all the original times,
sources etc.

The output files are named by the ranges of times they
cover as for the statefile, except the ending of the file
indicates the types of data that is covered. *-ases.out is
the AS centric output file. It gives the AS number and
the events observed from this AS, including the number
of prefixes, the number of origin change events, the
number of direct AS to AS change events, the number of
announcements, and the number of withdraws. Similarly,
*-prefixes.out is the prefix centric output file. It gives the
prefix and the events related to this prefix, for example,
the number of ASes the have originated the prefix, the
number of related origin change events, the number of
related direct AS to AS change events, the number of
announcements, and the number of withdraws.

The uptimes observed during the test is given by
*-upfile.out, which contains a single observed uptime
(continuous period when a prefix was available and origi-
nated by the same AS) per line. Similarly, *-downfile.out
outputs downtimes (continuous period when a prefix was
not available) observed during the test.

bgpstab also outputs the overall statistics results. *.out
contains the information such as completion date, test
coverage, the specific viewpoint for this test (All an-
nouncements for non-viewpoints are ignored), and the
number of UPDATE messages that the stability program
observed1. Moreover, it also gives the number of mes-
sages whose origin is IBGP (PROT IBGP), the number
of messages whose origin is EBGP (PROT EBGP), the
number of messages whose origin is reported as being
incomplete (PROT ICOM), the number of messages
whose origin is unknown (PROT UNKNOWN), e.g., no
origin attribute included in the message, and unfiltered
sources which are the message counts for all sources in
the test data (if source is selected, many of these are
ignored).

IV. PERFORMANCE

As an example to illustrate the performance of BG-
PRV, we run bgppdump in offline mode on an Apple
XServe with dual 1.8 GHz G5 processors and 4 GB of
RAM, connected in a RAID-5 configuration by Fibre
Channel to an Apple X-Raid disk array. We processed
the archived Route Views BGP updates for a one-
month period (Jan 2005). The program took 1390.76
CPU seconds to process 211,970,676 announcements
and 22,183,935 withdrawals. Much of the computation

1Note that the number of UPDATEs will be less than the number
of announcements, as many withdraws or announcements could be
included in the same message.

time was spent inflating the archives, which are com-
pressed 95% compared to their full-sized equivalents.
The size of the generated update stream is 16GB, with
all community and other irrelevant attributes stripped and
incomplete information filtered.

V. SUMMARY

In this paper, we introduce BGPRV, a tool which
makes it possible to retrieve and process MRT-formatted
BGP data with ease. Hiding implementation and opera-
tion details, BGPRV encapsulates the functions of scan-
ning Route Views website, data downloading and de-
compression, converting MRT format to ASCII format,
and allows the user to read BGP data as single stream
instead of many individual files. Moreover, BGPRV is
platform independent, efficient, and simple to use.

REFERENCES

[1] http://www.cs.purdue.edu/homes/fahmy/software/as/
documentation.html.

[2] W. Aiello, J. Ioannidis, and P. McDaniel, “Origin Authentication
in Interdomain Routing,” in Proceedings of 10th ACM Conference
on Computer and Communications Security (CCS). ACM,
October 2003, pp. 165–178, washington, DC.

[3] BGP data collector, http://www.routeviews.org/scripts/collector.
[4] BGP tools, http://nms.lcs.mit.edu/software/bgp/bgptools/.
[5] M. d’Itri, “Perl dump parser scripts,” http://www.linux.it/md/

software/zebra-dump-parser.tgz.
[6] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and

A. Rubin, “Working Around BGP: An Incremental Approach to
Improving Security and Accuracy of Interdomain Routing,” in
Proceedings of Network and Distributed Systems Security 2003
(NDSS). Internet Society, February 2003, pp. 75–85, san Diego,
CA.

[7] K. Lougheed and Y. Rekhter, “A border gateway protocol (BGP),”
RFC 1163, June 1990.

[8] S. Qiu, P. McDaniel, F. Monrose, and A. Rubin, “Characterizing
address use structure and stabillity of origin advertizement in
interdomain routing,” in 11th IEEE Symposium on Computers
and Communications, Pula-Cagliari, Sardinia, Italy, June 2006.

[9] Rancid Clogin, http://www.shrubbery.net/rancid/.
[10] RIS raw data, http://www.ripe.net/ris/rawdata.html.
[11] C. A. tools, http://www.caida.org/funding/routing/atoms/.
[12] University of Oregon Route Views Project, http://www.

routeviews.org/.

