
Detecting Co-Residency with
Active Traffic Analysis Techniques

Adam Bates, Benjamin Mood, Joe Pletcher,
Hannah Pruse, Masoud Valafar, and Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab
University of Oregon, Eugene, OR

{amb,bmood,pletcher,hpruse,masoud,butler}@cs.uoregon.edu

ABSTRACT
Virtualization is the cornerstone of the developing third party com-
pute industry, allowing cloud providers to instantiate multiple vir-
tual machines (VMs) on a single set of physical resources. Cus-
tomers utilize cloud resources alongside unknown and untrusted
parties, creating the co-resident threat – unless perfect isolation is
provided by the virtual hypervisor, there exists the possibility for
unauthorized access to sensitive customer information through the
exploitation of covert side channels.

This paper presents co-resident watermarking, a traffic analysis
attack that allows a malicious co-resident VM to inject a watermark
signature into the network flow of a target instance. This watermark
can be used to exfiltrate and broadcast co-residency data from the
physical machine, compromising isolation without reliance on in-
ternal side channels. As a result, our approach is difficult to de-
fend without costly underutilization of the physical machine. We
evaluate co-resident watermarking under a large variety of condi-
tions, system loads and hardware configurations, from a local lab
environment to production cloud environments (Futuregrid and the
University of Oregon’s ACISS). We demonstrate the ability to ini-
tiate a covert channel of 4 bits per second, and we can confirm co-
residency with a target VM instance in less than 10 seconds. We
also show that passive load measurement of the target and subse-
quent behavior profiling is possible with this attack. Our investiga-
tion demonstrates the need for the careful design of hardware to be
used in the cloud.

Categories and Subject Descriptors
K.6.5. [Security and Protection]: Unauthorized access

General Terms
Experimentation, Measurement, Security

Keywords
Cloud Security, Traffic Analysis, Covert Channel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1665-1/12/10 ...$15.00.

1. INTRODUCTION
Cloud computing has paved the way for “the long-held dream

of computing as a utility” [3]. Commercial third-party clouds al-
low businesses to avoid over provisioning their own resources and
to pay for the precise amount of computing that they require. Vir-
tualization is key to this model. By placing many virtual hosts on
a single physical machine, cloud providers are able to profitably
leverage economies of scale and statistical multiplexing of comput-
ing resources. While many models of cloud computing exist, the
Infrastructure-as-a-Service (IaaS) model used by providers such as
Amazon’s Elastic Compute Cloud (EC2) service offers a set of vir-
tualized hardware configurations for customers [2].

The sharing of a common physical platform amongst multiple
virtual hosts, however, introduces new challenges to security, as a
customer’s virtual machine (VM) may be co-located with unknown
and untrusted parties. Placement on a common platform entails
the sharing of physical resources, and leaves sensitive data pro-
cessed in a cloud potentially vulnerable to the actions of malicious
co-residents sharing the physical machine. Researchers have al-
ready demonstrated methods of bypassing co-resident isolation in
virtualization middleware, particularly through the L2 cache [37,
45, 47]. Their results confirm that hypervisors present a new at-
tack surface through which privacy and isolation guarantees can be
compromised. However, defenses against such vulnerabilities are
already being proposed in the academic literature [35].

In this paper, we consider co-residency determination alterna-
tives that may be available even if current avenues for exploitation
no longer exist. We focus on investigating the network interface,
a channel that is explicitly communicative and is a multiplexed re-
source in virtualized settings. We use concepts explored in the area
of active traffic analysis to develop an attack that uses a physical
machine’s network interface to create an outbound covert channel
for data exfiltration. Our attack can be carried out with a mali-
cious CLIENT contacting a victim machine in the cloud (e.g., a
web server or media server, hereto referred to as the SERVER) and
observing the throughput of traffic received. In collaboration with
a FLOODER deployed in the cloud, we examine inter-packet de-
lays and the corresponding distribution of packet delays from the
server to determine whether the FLOODER has become co-resident
with the SERVER, using a Kolmogorov-Smirnov distribution test
to make this determination. In general there is limited visibility
into the cloud, but we correlate ground-truth measurements based
on out-of-band communication with production cloud providers to
validate our results. We show that despite different network packet
scheduling strategies amongst hypervisors used in clouds, our at-
tack is implementation-independent. We can determine whether
instances are co-resident in under 10 seconds and as few as 2.5 sec-
onds for a given probe. We further describe how a covert channel

can be deployed that can transmit 4 bits per second, and describe
how our attack can be used to perform passive load measurement
on the victim SERVER, allowing us to profile its activity.

This paper makes the following contributions:

• Investigates virtualization side channels in physical hard-
ware. Previous research in cloud security has investigated
sharing at the hypervisor software layer. Our work takes
a bottom-up approach by considering whether or not hard-
ware designed for non-virtual environments is safe for cloud
deployment. We make the surprising discovery that tech-
nologies designed to aid virtualization such as SR-IOV and
VMDq actually facilitate co-resident watermarking.

• Assesses severity of threat through extensive evaluation.
We determine the practicality of our attack through an ex-
tensive series of tests. These tests demonstrate co-resident
watermarking’s robustness under Xen, VMWare ESXi, and
KVM hypervisors, with varying server loads, network con-
ditions, and hardware configurations, and in geographically
disparate locations. In a final test, we employ our scheme in
a production science cloud to successfully watermark a target
network flow within 2.5 seconds.

• Introduces proof-of-concept attacks for the network flow
channel. We develop an accurate load measurement attack
that explicitly detects and filters out the activity of other vir-
tual machines, an issue left unaddressed in previous work
[37]. We also demonstrate the creation of a covert channel
capable of transmitting 4 bps of information.

The rest of this paper is organized as follows. We provide a
brief introduction to the issue of cloud co-residency in Section 2,
and present the relevant concepts of active traffic analysis, particu-
larly network flow watermarking, in Section 3. Section 4 presents
a threat model and our co-resident watermarking encoding and de-
coding steps. In Section 5 we elaborate on the application of our
scheme. Our attack is thoroughly evaluated in Section 6 under var-
ious conditions. Practical use scenarios are considered in Section 7
and countermeasures discussed in Section 8. Related work is con-
sidered in Section 9 before we conclude in Section 10.

2. CLOUD CO-RESIDENCY
In compute clouds, the co-resident threat considers a malicious

and motivated adversary that is not affiliated with the cloud provider.
Victims are legitimate cloud customers that are launching Internet-
facing instances of virtual servers to do work for their business.
The adversary, who is perhaps a business competitor, wishes to use
the novel abilities granted to him by cloud co-residency to discover
valuable information about his target’s business. This may include
reading private data or compromising a victim machine. It could
also include subtler attacks such as performing load measurements
on the victim’s server or launching a denial of service attack. Mas-
querading as another legitimate cloud customer, the adversary is
free to launch and control an arbitrary number of cloud instances.
As is necessary for the general use of any third party cloud, the
cloud infrastructure is a trusted component.

Co-residency detection though virtualization side channels is a
danger that was first exposed by Ristenpart et al. [37]. This work
lays out strategies for exploiting the instance placement routines
of the Amazon EC2 cloud infrastructure in order to probabilisti-
cally achieve co-location with a target instance. From there, co-
residency can be detected using a cross-VM covert channel as a

Third Party Compute Cloud

Cloud Node

Server

NIC

* Adversary-controlled hosts

Client*

Flooder*

Figure 1: The attack model considered for co-resident watermark-
ing. Two colluding hosts, the CLIENT and FLOODER, attempt com-
municate through the legitimate network flow of the SERVER.

ground truth. While more advanced methods of successful place-
ment are outlined, such as abusing temporal locality of instance
launching, it is shown that a brute force approach is also modestly
successful. Masquerading as a legitimate customer, an attacker is
able to launch many instances, perform the co-residency check, ter-
minate and repeat until the desired placement is obtained. Several
cross-VM information leakage attacks are also outlined, such as the
load profiling and keystroke timing attacks.

However, we independently confirmed that many of the approach-
es in previous work, such as the use of naive network probes, are
no longer applicable on the EC2. This, combined with academic
proposals that better isolate cross-VM interference impacts [35],
makes co-residency detection significantly more difficult at this
time. Instead, we introduce an alternate viable co-location test, co-
resident watermarking. In our exploration of potential defenses, we
conclude that closing the employed covert channel is difficult with-
out costly dedicated hardware or reduced network performance.
Our approach is not dependent on adversarial advantages such as
cloud cartography and placement locality that were available in
[37], although these would still ease the work of the attacker.

3. ACTIVE TRAFFIC ANALYSIS
Our approach uses concepts previously explored in network flow

watermarking and other active traffic analysis attacks. Network
flow watermarking is a type of network covert timing channel [8,
9], capable of breaking anonymity by tracing the path of a network
flow. Normally requiring the cooperation of large autonomous sys-
tems or compromised routers in anonymity networks, a target’s
traffic is subjected to controlled and intentional packet delay at an
institutional boundary in order to give it a distinct and recogniz-
able pattern [20, 21, 42, 46]. When the traffic exits the institutional
boundary, that pattern is still present and can be decoded. Network
flow watermarking can be employed to perform a variety of traffic
analysis tasks. They are of great interest recently as a method for
detecting stepping stone relays [5, 11, 28, 43], and compromising
network anonymity services (e.g. TOR network) [24, 29].

Previous work has considered a number of challenges in the de-
sign of a watermarking scheme. Schemes can be grouped into blind
and non-blind approaches. In blind schemes, the watermarking par-
ties do not store any state information for their target. All of the
necessary information is contained within the watermark, which is
itself a side channel. In a non-blind scheme, state information about
the target is stored for access by the exit gateways. Watermarks
must be robust to modifications from network traffic and jitter. If
the watermark is also resistant to intentional tampering or removal,

it is said to be actively robust. Watermarks are also ideally invisible
so a target cannot test for its presence. If detection mechanisms
such as the multi-flow attack are viable, the target can recover the
secret parameters and remove the watermark [24]. However, recent
work has shown that even the most advanced schemes do not pos-
sess the invisibility property [8, 17, 29]. As such, we do not pursue
invisibility as a goal in this preliminary work, focusing instead on
determining the efficacy and throughput of the co-resident network
flow channel. We consider the unique advantages and challenges
of developing an invisible version of our scheme in Section 8.1.

Our methodology also bears similarities to previous work on
traffic analysis of Tor. Murdoch et al demonstrated that a cor-
rupt Tor node can collude with a network server to extract infor-
mation about the path of a Tor connection [31]. This is accom-
plished through latency measurements of Tor relays after filling the
connection with probe traffic. These results were novel and trou-
bling in that Tor necessarily relied on mixing traffic from different
sources to establish anonymity. Our work exploits virtualization’s
dependence on traffic mixing to improve performance and resource
utilization. Critically, our work differs from [31] in that it does not
require a corrupt network server. Instead, we rely on a colluding
VM to manipulate the behavior of its co-resident victim.

4. SYSTEM DESIGN
We next present a simple scheme that can be applied from the

co-resident position to inject a target’s network traffic with a persis-
tent watermark. Given a sufficiently long network flow, it can break
hypervisor isolation guarantees regardless of cloud or network con-
ditions. Due to the coarse-grained abilities of a co-located VM to
inject network delay, we employ an ON-OFF interval-based packet
arrival scheme rather than attempting to control the delay between
individual packets. Our scheme leverages out-of-band communi-
cation between the encoding and decoding points in order to over-
come its limited ability to inject delay through network activity.

4.1 Threat Model
This work’s primary motivation is to investigate the existence of

hardware-level side channels in cloud infrastructures, calling into
question the viability of isolation assurances for virtual machines.
We go beyond the traditional co-resident threat model and imagine
a cloud in which naive timing channels such as network probes are
unavailable to the adversary; cloud administrators have chosen to
route all local traffic through a switch to fuzz the results of these
services and prevent co-residency detection. To their credit, the
administrators in this cloud have also proactively applied patches
that have all but eliminated popular hypervisor side channels such
as the L2 cache. Given the relatively small attack surface that the
virtual hypervisor represents, this is not too imaginative of a leap.
In fact, we observed that some of these security measures had been
taken in our own investigation of EC2. In spite of these obstacles,
our adversary wishes to discretely discover his victim in the cloud
through innocuous use of his own instances.

We assume system administrators are not interfering with the
activities of their customers, and will not intervene with customer
behavior unless it is a threat to Service Level Agreements (SLAs)
or to the general health of their business. We also assume that our
victim is trusting of the cloud infrastructure and expects modest
delays imposed by other cloud customers. From the isolation of
their VMs, the victim will be unable to make inferences about the
cause of variances in system performance. As a result, the victim is
unable to differentiate between the activities of the adversary and
the actions of other legitimate cloud guests. Finally, we assume
that the victim’s instances are available to the adversary over an

open network, and that the adversary is able to create network flows
from these instances on the order of several seconds.

4.2 Co-Resident Watermarking
Like previous work in cloud co-residency, the co-resident water-

marking attack relies on the pigeonhole principle to probabilisti-
cally achieve co-location with a victim virtual machine, launching
many virtual machines and then performing statistical side chan-
nel tests from each [37]. To begin the search for his target, the
attacker launches a large number of instances on the cloud. We re-
fer to these instances as FLOODERs. Each FLOODER announces its
presence to a master host, the CLIENT, which is a colluding agent
situated outside of the cloud. The attack begins when the CLIENT
initiates a web session with our target instance, the SERVER, which
is accessible at a pre-determined IP address. Systematically, the
CLIENT iterates through its list of registered FLOODERs, sending
a series of signals to each. Based on these signals, the FLOODER
injects network activity into the outbound interface of its physi-
cal host machine. This activity is multiplexed with the outbound
traffic of the server, creating delay in the legitimate SERVER flow.
This delay constitutes the building block of our watermark scheme.
In the event that a FLOODER is co-resident to the SERVER, the
CLIENT-SERVER flow can be imprinted with a watermark signa-
ture. This creates a beacon through which the CLIENT can test for
co-location. The CLIENT tests each FLOODER’s location for a por-
tion of its network flow. If no watermark signature is detected, the
attacker can terminate all instances and launch a new set until co-
location is achieved. In the event that a signature is detected, the
attacker can use the co-resident FLOODER for a second phase of
attack. This could involve another known exploit or continued use
of the network flow side channel. Our co-resident watermarking
attack is pictured in Figure 1.

4.3 Signal Encoding
In this section we explain the watermark embedding process. An

unwatermarked network flow of length T between a cloud server
instance and a remote client can be divided into n intervals of
length ti. Each interval ti will observe a certain number of packet
arrivals pi over its portion of the network flow. Traditionally, the
encoding of a watermark requires that two different levels of packet
delay, +d and−d, be repeatedly and randomly introduced to a net-
work flow with equal probability. These two delay levels form the
bits to be read from the side channel. The watermark is therefore
made up of components {wi}ni=1 where

wi =

{
+d with probability 1

2

−d with probability 1
2

From the co-resident position, we are limited in our ability to
inject arbitrary amounts of delay into the flow, nor can we inject
a negative amount of delay. Therefore, our delay values (+d,−d)
represent the maximum and minimum total amount of network ac-
tivity we are able to introduce from a co-resident virtual machine.
Upon receiving a signal to mark the flow, +d is achieved through
a co-resident FLOODER host injecting a constant stream of UDP
packets onto the network interface. Conversely, −d is achieved
through taking no action for the length of the interval.

In addition to the activities of co-resident instances, the variance
in pi will reflect hypervisor scheduling, network congestion, and
virtualization-imposed artifacts. While these factors will not re-
main constant for any meaningful length of time [38], their effects
can be filtered out by randomly selecting each wi in sequence. In
Section 6, we demonstrate that watermark signals can be decoded
in spite of the presence of any of these factors.

Physical Machine
Server

Flooder

NIC ClientSwitch

Physical Machine
Packet Sink

(a) Local testbed.

Third Party Compute Cloud

Cloud Node
Server

Flooder
NIC

Flooder

Switch ... Client

Cloud Node
Packet Sink

Switch

(b) Cloud, successful co-location.

Third Party Compute Cloud

Cloud Node
Flooder

NIC Switch Client

Cloud Node
Server

Flooder

Cloud Node
Packet Sink

...

(c) Cloud, failed co-location.
Figure 2: Testbed topologies used in evaluation. Adversary-controlled hosts are shaded in red.

4.4 Signal Decoding
At the decoding point, packet arrivals per interval are recorded

over the length of the flow. After each measurement, the intervals
are sorted into samples X+d and X−d based on the pre-negotiated
co-resident activity representing +d and −d. If co-residency has
been achieved, then these two interval groupings represent the flow
during two distinct network states. We can therefore expect the
interval grouping samples to have different discrete distributions.

These two samples can be compared using statistical similar-
ity tests. In this work we modeled packet arrivals by a Poisson
distribution [26], and employed the non-parametric Kolmogorov-
Smirnov (KS) test for independence [34]. This statistical measure
has been employed previously in other analysis of covert timing
channels [17, 33]. To test the null hypothesis that the two samples
are from the same distribution, a statistic is calculated and com-
pared to a look-up value corresponding to 95% confidence. If the
test fails, then the decoder rejects the similarity of the distributions
and declares the instances to be co-residents.

For the Kolmogorov-Smirnov test, the decoder calculates the
empirical cumulative distributions F1,n+(X+d) and F1,n−(X−d).
The KS statistic is then calculated as follows:

Dn+,n− = sup|F1,n+(X+)− F1,n−(X−)|

where sup is the supremum of the differences in the cumulative
distributions. The null hypothesis can be rejected with confidence
α if √

n+n−
n++n−

Dn+,n− > Kα

where Kα is a critical value from the Kolmogorov distribution.
An alternate non-parametric test that is better known for use with

discrete distributions is the Pearson Chi Square (χ2) test. We chose
not to use this metric because of the difficulty of handling the trivial
case in which samples are extremely dissimilar. χ2 struggles with
any cell frequencies that are less than 5, and quite often in our eval-
uation we found the FLOODER’s impact was such that there was no
overlap in the contingency tables of the marked and clear intervals.
Relying on the χ2 test would have also hindered our ability to make
swift determinations of co-residency.

5. IMPLEMENTATION
Our target instance, the SERVER, was a virtual machine run-

ning Apache 2. The CLIENT host initiated a TCP session with
the SERVER, continuously re-requesting a 10MB file. To create
more realistic web traffic conditions, we wrote a PHP script that
simulated background noise on a server. The script conservatively
estimated a 1:3 write-to-read traffic ratio, creating a more turbulent
channel from which to perform our measurements. Upon execu-
tion, the script reads a bounded amount of non-cached data from a

file, optionally executes a disk write, and finally performs a CPU-
bound set of computations. This closely models applications on a
production web server, where for each request the server will fetch
data from a database, perform some computation or transformation
on it, and return it to the user. Alternately, in the case of the disk
write, this models the other common case seen inside web applica-
tions where a user sends data, computation is performed, and the
data is written to disk. As read requests are more common for many
web servers, we weighted these probabilities accordingly. To sim-
ulate the activity of additional cloud customer instances, a GUEST
VM ran a script that behaved similarly to the SERVER.

Our FLOODER used a raw socket injection binary, written in C,
that responded to prompts from a CLIENT host to create outbound
multi-threaded UDP streams for specified intervals. The packet
streams were directed by MAC address to a neighboring cloud in-
stance that was not otherwise a participant in the trial. Alternately,
the FLOODER could set the time-to-live of packets to 0 and direct
the flood to a host outside of the cloud. The former is a more ap-
pealing option, as it decreases the cost of the attack on services
such as Amazon EC2 that have fees for data transferred into and out
of the cloud. Under either design, the FLOODER’s activity passes
through the network interface and then immediately leaves the path
of the CLIENT-SERVER flow. In Section 6.6, we demonstrate that
this is sufficient to avoid secondary bottlenecks that might lead to
false positives in our co-residency check.

The CLIENT monitored the watermark impact by signaling the
FLOODER and performing synchronized reads on the network flow
between the CLIENT and SERVER. The flow was measured by
monitoring the number of packet arrivals by interval. Synchroniza-
tion was established through estimating the round trip time between
the CLIENT and FLOODER. Various hypervisors introduce addi-
tional delays and artifacts through their fair resource scheduling
algorithms. In order to ensure the FLOODER’s effect was captured,
we limited the hypervisor’s ability to react to the FLOODER’s ac-
tivity. We measured in small bursts of 250ms and then waited 2
seconds before signaling the flooder again. This was sufficient to
ensure that our measurements were independent.

6. EVALUATION
We used a number of different testbeds to evaluate our approach,

as shown in Figure 2. The first was a local area network that con-
tained a commodity switch, two Dell workstations and one Dell
PowerEdge R610 server with two 4-core Intel Xeon E5606 pro-
cessors and 12 GB RAM. Each machine had a network interface
card that could transmit in 1000 BaseT. In a subsequent trial we
replaced the server’s NIC with an SR-IOV enabled Intel 82599 10
Gbps Ethernet controller and attached it to the LAN with a fiber-to-
copper Ethernet transceiver. The server was dual-booted with both
VMWare ESXi 4.1 and a Xenified Linux 2.6.40 kernel. On both

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 200 400 600 800 1000 1200

P
ro

b
a

b
ili

ty

Packet Arrivals Per Interval

Marked Intervals
Clear Intervals

Control Flow

(a) Xen on local testbed.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 500 1000 1500 2000 2500 3000 3500

P
ro

b
a

b
ili

ty

Packet Arrivals Per Interval

Marked Intervals
Clear Intervals

Control Flow

(b) VMWare ESXi on local testbed.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800

P
ro

b
a

b
ili

ty

Packet Arrivals Per Interval

Marked Intervals
Clear Intervals

Control Flow

(c) Xen over long network path.
Figure 3: Probability distributions for co-resident watermarking.

hypervisors we launched two or more similarly provisioned virtual
machine guest images that acted as our cloud instances. Each VM
ran the Linux 2.6.34 kernel allocated with resources similar to those
afforded to an Amazon EC2 Small instance, approximately 1 vCPU
compute unit and 1.7 GB memory.

Additionally, we used two science clouds for further analysis.
The first, the University of Oregon’s ACISS, ran OpenStack KVM.
Here, each guest image was provisioned with 1 vCPU and 2GB
memory. The instances received network access through a bridged
10 GbE network card. Each physical host was connected to a 1:1
provisioned Voltaire 8700 switch with fiber channel. The switch
had 2 10 GbE trunks to a Cisco router that connected to the uni-
versity network. The second cloud was Futuregrid’s Sierra at the
San Diego Super Computer center. Sierra ran the Nimbus service
package with the Xen 3.0 hypervisor. Instances on Sierra were also
bridged onto a 10 GbE switch. Each of the investigated hypervisors
used default network management configurations, and none im-
posed traffic shaping or bandwidth ceilings on the managed VMs.

The CLIENT process requires little processing power and can be
run from any commodity PC or reasonably provisioned virtual ma-
chine. On our local testbed, it was run primarily from a bare-metal
workstation running a Linux 2.6.40 kernel with 4 GB memory and
a Pentium dual-core 3 GHz CPU. The workstation had a NIC that
was supported to 1000BaseT full duplex. We used additional per-
formance tools to confirm that the CLIENT host was sufficiently
provisioned to handle these tasks. To test our ability to decode the
watermark with longer paths and realistic network conditions, we
launched CLIENT instances that performed the watermark attack
on our local testbed from a bare metal machine at a geographically
disparate university. This instance was running a Linux 2.6.38 ker-
nel with 8GB memory, an Intel Xeon X3450 2.67 GHz processor,
and a NIC set to 1000BaseT full duplex.

6.1 Xen Hypervisor
We first attempted our co-resident watermarking scheme using

the local Xen testbed. This configuration is pictured in Figure 2a.
The default Xen bridged networking settings were used for domU’s
virtual interfaces, which were set to 100BaseT full duplex. As we
note in Appendix A, Xen’s dom0 bridge imposes major delays and
represents the transmission bottleneck of this first test. Although
this does not exploit the physical interface, we chose to exam-
ine this Xen configuration due to its popularity. Subsequent trials
demonstrate that our approach is not dependent on any particular
hypervisor or network interface.

For this initial test, the CLIENT initiated a single TCP session
with the SERVER’s apache process. The CLIENT then generated
a random binary signal that was transmitted to a FLOODER, causing
it to generate intermittent UDP traffic floods. The CLIENT mea-

sured packet arrivals by interval and sorted these into marked (+d)
and clear (−d) samples. The probability density of these two sam-
ples is pictured in Figure 3a. This figure and all others are based
on 3200 total measurements that correspond to 13 minutes and 20
seconds of observed network flow. Immediately after the trial, a
second control test was launched in which the FLOODER was not
signaled and took no action.

Based on visual inspection alone, it can be observed that there
is great similarity between the packet arrival distributions for the
clear intervals and the undisturbed control flow. In contrast, there is
great difference between the distributions of the clear intervals and
marked intervals. After just 2.5 seconds of observed network flow,
the KS statistic for the clear and marked distributions is 0.98. The
p-value, which represents the likelihood of obtaining such an ex-
treme result under the null hypothesis, is 0.01. This is sufficient to
reject the null hypothesis, and confidence only increases throughout
the remainder of the trial. In contrast, comparing the clear interval
sample to the control flow yields a KS test statistic of 0.38, which
is insufficient to reject the null hypothesis with 95% confidence.
This is sufficient to declare that our instances are co-located.

6.2 VMWare ESXi Hypervisor
To determine whether differences in hypervisor scheduling af-

fect our watermarking results, we repeated the above trial on the
same testbed, now using the VMWare ESXi hypervisor. ESXi lacks
Xen’s dom0 administrative domain and is therefore much more ef-
ficient at packet transmission. The results, shown in Figure 3b,
show that that our SERVER running on ESXi enjoys significantly
higher throughput than Xen under similar conditions. Once again,
the unmarked sample is similar to the control flow, but dissimilar
to the marked sample. As there is no overlap between the clear
and marked intervals, the KS statistic is 1. We are once again
able to reject the null hypothesis, confirming that our FLOODER
is co-resident to the SERVER. This demonstrates the feasibility of
co-resident watermarking on two of the major hypervisor families.

6.3 System Load
To demonstrate its applicability in real cloud environments, we

assessed the ability of the FLOODER to inject a watermark sig-
nature under increasingly adverse system conditions. In addition
to launching FLOODER and SERVER instances on our local Xen
testbed, we launched an increasing number of GUEST instances.
These GUESTs represent other communication-intensive customers
in the cloud that are non-participants in our attack. Each GUEST be-
haved identically to the SERVER, running Apache and serving up
files over prolonged HTTP sessions.

We repeated our standard trial with up to 3 GUESTs for a total
of 5 instances on the machine. This load approached the maximum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900

P
ro

b
a

b
ili

ty

Packet Arrivals Per Interval

Marked Intervals
Clear Intervals

Control Flow

(a) 1 additional GUEST.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200

P
ro

b
a

b
ili

ty

Packet Arrivals Per Interval

Marked Intervals
Clear Intervals

Control Flow

(b) 2 additional GUESTs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

b
a

b
ili

ty

Packet Arrivals Per Interval

Marked Intervals
Clear Intervals

Control Flow

(c) 3 additional GUESTs.
Figure 4: Density functions for co-resident watermarking with increasing numbers of I/O bound web server guest instances.

Trial Length KS+d,−d p-val Result
SERVER

& FLOODER 2.5 sec 0.99 0.01 Co-Res
Add 1 GUEST 3.75 sec 0.78 0.05 Co-Res
Add 2 GUESTs 3.75 sec 0.91 0.01 Co-Res
Add 3 GUESTs 10 sec 0.49 0.05 Co-Res

Table 1: Results of tests in Xen as system load increases. Minimum
flow lengths required to achieve 95% confidence are displayed.

capacity of our testbed. The results of these trials are pictured in
Figures 4a-4c. As the number of GUESTs on the machine increase,
we see distribution of the marked samples begin to approximate the
distribution of the clear samples. From this we suspect that extreme
load can potentially erase our watermark signature. However, the
Kolmogorov-Smirnov test offers a more precise measurement than
visual observation. These results, shown in Table 1, show that we
are able to quickly confirm co-residency with up to 5 guests on our
local testbed.

6.4 Network Conditions
Our next experiment measured the resiliency of encoded water-

marks when traveling across longer network paths. To do this, we
executed our CLIENT process from a bare-metal host at a geograph-
ically disparate university. The CLIENT issued HTTP requests to
the SERVER that resided on our local Xen testbed. To smooth the
observable network flow in the presence of higher round-trip times,
the CLIENT initiated 5 TCP sessions with the SERVER. Results
from this long-distance trial are pictured in Figure 3c. Once again,
there is a no visible similarity between the clear and marked dis-
tributions. The watermark signature is still identifiable after just
2.5 seconds and yields a KS statistic of 1 (p-value 0.01). We are
once again able to reject the null hypothesis, confirming that our
FLOODER is co-resident to the SERVER. The persistent presence
of the watermark means that the co-resident watermarking attack is
not distance bounded relative to the location of the cloud provider.

6.5 Science Clouds
Having found success on our local area network, we set out to

replicate our results on industry-class hardware in a partially con-
trolled environment. We used the ACISS compute cloud service as
well as Futuregrid’s Sierra cloud at the San Diego Supercomput-
ing Center. On the private science cloud, we were able to launch
two instances that were confirmed to be co-resident by the cloud
staff. On Sierra, we confirmed co-residency by querying the Nim-
bus cloud client for the physical host of our instances. We did
not have any foreknowledge of the activity of other users in these
clouds. Our initial attempts to launch co-resident watermarking in
this environment failed; we were only able to generate approxi-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200 1400 1600

P
a

c
k
e

t
A

rr
iv

a
ls

Interval

Marked Intervals

Clear Intervals

Figure 5: FLOODER activity does not significantly impact neigh-
boring physical machines.

mately 3.2 Gbps of traffic from a single FLOODER instance, falling
well short of the 10 Gbps channels. This prevented us from in-
jecting packet delay into the CLIENT-SERVER flow. Because we
were only off by a small constant factor, we re-attempted the trial
with multiple co-resident FLOODERs. This topology is pictured in
Figure 2b. While achieving “tri-residency" would not be a real-
istic attack scenario, this served as a stand-in for a more sophis-
ticated denial-of-service attack against the physical network inter-
face. Additionally, as many cloud applications are communication
intensive [16], we can expect some of the difference in bandwidth
to be made up for by the activities of other cloud customers. Recent
work in VM network performance enhancement, if adopted and de-
ployed, could also increase the instance throughput sufficiently to
make tri-residents unnecessary [16, 36].

The results of these trials are visible in Figures 6a and 6b. In
spite of the unknown and uncontrolled state of the cloud cluster, the
watermark signature between the clear and marked interval sam-
ples is still clearly visible. After 5 seconds of observed flow on the
ACISS cloud, the result is a KS statistic of 0.98 with a p-value
of 0.01. We are once again able to reject the null hypothesis, con-
firming that our FLOODER is co-resident to the SERVER. These
results demonstrate the feasibility of co-resident watermarking for
the KVM hypervisor. Under similar conditions, we successfully
launched co-resident watermarking on a Futuregrid cloud. TheKS
test yielded a statistic of 0.97 with p-value of 0.02 after 2.5 seconds
of observed flow. These tests demonstrate that our aurrent imple-
mentation is nearly practical for industrial compute clouds.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 500 1000 1500 2000 2500 3000 3500

P
ro

b
a
b
ili

ty

Packet Arrivals Per Interval

Control Flow
Marked Intervals

Clear Intervals

(a) University of Oregon’s ACISS Cloud

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800

P
ro

b
a
b
ili

ty

Packet Arrivals Per Interval

Control Flow
Marked Intervals

Clear Intervals

(b) Futuregrid Sierra
Figure 6: Results from trials run on a industrially provisioned compute clouds.

6.6 Neighboring Instance False Positives
We have shown co-resident watermarking to be capable of de-

tecting co-residency in a variety of circumstances. However, for
this attack to be practical, it must also avoid false positives, reports
that the FLOODER is co-located with the SERVER when it in fact
is not. This is of greatest concern for topologies in which the in-
stances are not co-resident but share a common network path. In
order to be multiplexed at the network interface, the FLOODER’s
activity necessarily must reach the first switch; if packets are re-
sultingly delayed at this point, then the watermark signature would
be injected on all network flows that share the switch. Due to our
design decision to inject layer 2 packets that are routed by MAC
address to another adversary-controlled instance, we know that the
FLOODER and SERVER flows’ paths share only a single hop.

To confirm that co-resident watermarking is not susceptible to
false positives, we configured a new topology on ACISS in which
the SERVER was not co-resident to the FLOODERs, but shared a
common upstream switch one hop away. This topology is pictured
in Figure 2c. We confirmed this topology through ARP table in-
spection and conferring with the cloud staff. We then repeated
the trial. The results are pictured in Figure 5. The activity of the
FLOODERs does not appear to impact neighboring instances. In
fact, the clear intervals and marked intervals yield a KS statistic
of 0.981 and p-value of 0.01 after 2.5 seconds of observed network
flow. They are statistically similar enough to accept the null hy-
pothesis that they were drawn from the same distribution.

6.7 Virtualization-Aware Hardware
As a preliminary investigation into the viability of hardware-

level defenses against co-resident watermarking, we repeated our
original Xen trial on an SR-IOV-enabled NIC. SR-IOV [25] is a
specification that allows physical I/O devices to present themselves
to the host as multiple virtualized I/O devices, allowing for direct
access to PCI interfaces. This especially impacts network access
in Xen, eliminating the need for dom0 to be involved in copying
packet buffers from the guest domain. Since each domU has access
to its own PCI virtual function, SR-IOV also provides individual
queues for each VM. Arriving packets are sorted into these queues
based on their destination, then are copied directly to the guest OS
memory using DMA. We discuss virtualization pass-through tech-
nologies further in Appendix B.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 200 400 600 800 1000 1200 1400 1600

P
a

c
k
e

t
A

rr
iv

a
ls

Interval

Marked Intervals

Clear Intervals

Figure 7: Packet arrivals per interval for our co-resident watermark-
ing attempts against an SR-IOV-enabled network device. The un-
marked traffic transmitted data at 0.83 Gbps, with the marked traffic
at 0.41 Gbps.

We tested our watermarking technique using an Intel 82599 ES
10 Gbps Ethernet controller that supports the SR-IOV specifica-
tion using the ixgbe driver. We configured the driver to present
two virtual functions (VFs) on a single outgoing port, which ap-
pear as separate PCI devices. We then connected SERVER and
FLOODER to one VF each on our Xen testbed. The outbound port
was connected to our local workstation with a fiber-to-copper Eth-
ernet transceiver, reducing the bandwidth of the NIC while preserv-
ing the driver’s behavior.

The results from this trial are shown in Figure 7. We observe that
by eliminating the middleware of the virtual hypervisor, co-resident
watermarking has become even more effective. When both the
FLOODER and SERVER are actively filling their dedicated packet
queues, each receives roughly 50% of the available system through-
put (∼ 0.17 Gbps). When the FLOODER is inactive, the SERVER
is able to transmit at the highest possible rate (∼ 0.33 Gbps). The
KS test trivially rejects the null hypothesis. The FLOODER’s abil-
ity to have such an impact indicates that, unlike some hypervisor-
managed network sharing schemes, the ixgbe driver imposes no
fairness measures based on anomalous virtual machine behavior.

As a result, the bandwidth of our side channel had increased due
to virtualization-optimized hardware. The security ramifications of
future performance-driven enhancements for virtualization need to
carefully considered before their adoption.

7. ANALYSIS
We have demonstrated that co-resident watermarking is capa-

ble of bypassing VM isolation and exploiting underlying hardware
configurations. There are a variety of circumstances in which an at-
tacker could consider making use of the outbound traffic side chan-
nel. Traditional co-resident threats such as covert communication
and load measurement are considered below. In a laboratory en-
vironment, we executed a proof-of-concept execution for each. In
future work, we hope to further develop these approaches.

Co-resident watermarking’s low cost makes it an appealing scout-
ing mechanism to precede the use of a more devastating exploit
such as a zero day against the hypervisor. The exact cost of launch-
ing this attack depends on the cloud being considered. However,
we can provide a rough estimate by using the results of Ristenpart
et al.’s brute force attack in which an 8.4% placement was obtained
on 1684 targets with 1784 probes. At the current rate of $0.08
per hour for small Amazon EC2 instances, our attack would cost
$1.01 and require 6 minutes 20 seconds per successful co-location.
This estimate assumes that the CLIENT is also an EC2 instance,
thus avoiding additional fees for outbound cloud traffic. While
Amazon’s cloud services have expanded rapidly in the past sev-
eral years, these numbers demonstrate that the amortized cost per
successful attack is low when a large enough net is cast.

7.1 Covert Communication
Up to now, the network flow side channel has been used to make

a binary determination of co-residency. Once co-residency has
been determined, however, any manner of communication can take
place over the channel. We are able to transmit a secret such as
a small key or message with only a small amount of redundancy.
We demonstrated this on our local ESXi testbed by creating a self-
synchronizing CLIENT script that did not rely on out-of-band sig-
naling from the FLOODER. The CLIENT’s only prior knowledge is
the size of the flood interval. The CLIENT reconstructs the signal
by taking extremely rapid measurements and then searching for the
local minima and maxima of the arrival patterns. These represent
the 1’s and 0’s of the channel. It would also be possible to build
more sophisticated communications protocols such as Cloak over
this channel [27].

In the trial, the CLIENT initiated a TCP session with the SERVER
and awaited a 2048 bit message from the FLOODER. The first 10
seconds of the ensuing message are pictured in Figure 8a. Our
CLIENT was able to decode the message with 100% accuracy. As
discussed by Cabuk et al. [9], the efficacy of an IP-based covert
channel can be affected by contention noise in the channel and jit-
ter in packet timings, which can lead to a loss of synchronization.
Error correcting codes, self-synchronizing codes, and phase-locked
loops can be used to mitigate these issues. In our investigation, we
included a 16-bit checksum for every 64-bit block transmitted by
the FLOODER. This allows the CLIENT to detect and recover from
misreads in the watermark signal. This leads to a total transmission
of 2560 bits. This required 10 minutes and 40 seconds of observed
network flow, leading to a 4.00 bps side channel throughput. This
bit rate is compares favorably with other I/O based covert chan-
nels [32]. If the participants possess outside knowledge about hard-
ware and hypervisor configurations, they could further increase the
bandwidth of the channel by decreasing the measurement size and
reducing the wait time between sent bits. Additionally, more ad-

vanced error-correcting mechanisms such as the use of Hamming
codes can increase the channel efficiency.

7.2 Load Measurement
Previous work has demonstrated that virtualization side chan-

nels can be used to measure co-resident server load [37]. We build
on this work with co-resident watermarking, discovering more ac-
curate traffic information about our target’s business. We accom-
plish this by simply monitoring the throughput of the undisturbed
CLIENT-SERVER TCP session. The key insight that a co-resident
instance provides is the ability to filter out additional causes of per-
formance variance that would otherwise lead to false inferences –
namely network congestion and changes in the load of co-resident
instances. A co-resident TCP flow serves as a second data point
that allows for an accurate perspective of the target instance’s load.

To perform load measurement, the FLOODER instance first uses
co-resident watermarking to confirm that it is co-resident to the tar-
get SERVER. It then becomes a regular web server, and the CLIENT
initiates a single TCP session with both the SERVER and FLOODER.
The CLIENT is able to observe the ratio between the throughputs
of the two flows to generate a traffic profile of the victim. Network
congestion can be detected and ignored by the fact that, since both
flows will usually share a network path, both flows’ throughput
will decrease equally and the ratio will remain constant. Changes
in the load of other customers’ virtual machines also affect both
the CLIENT and FLOODER equally, and therefore the ratio will be
maintained. The only scenario in which the ratio changes is when
the SERVER’s load changes.

To demonstrate this behavior, we executed proof-of-concept tri-
als on our local Xen testbed. The CLIENT initiated a single TCP
session with the SERVER and FLOODER, then performed rapid mea-
surements on both flows. Next, different load events were intro-
duced and observed. For the first trial, pictured in 8b, an increasing
number of web requests were issued from another host on the local
network in ten-second intervals. The CLIENT calculated exponen-
tially weighted moving averages of the two flows’ packet arrivals,
then took the ratio of the two. It can be observed that the SERVER-
to-FLOODER throughput ratio decreases linearly, and basic system
profiling techniques would allow the CLIENT to estimate the num-
ber of visitors to the victim instance. In the second trial, pictured
in 8c, web requests are instead issued to other co-resident virtual
machines. Every 22.5 seconds, 10 TCP sessions were initiated with
a previously inactive virtual machine. In this scenario, the SERVER-
to-FLOODER ratio remains roughly constant as both flows are ad-
versely but proportionately affected. The increasing instability of
the TCP flow may also serve as a second indicator of extreme load
on the physical cloud node.

8. DISCUSSION
Co-resident network flows represent a versatile side channel in-

side the cloud. One particularly useful application of this method
could be embedding a message into a network flow so as to bypass
filtration mechanisms such as a national web filter. In such a case,
the message sender could co-locate to a known-allowed server, at
which point they could embed a message into the server’s network
flows. There are two main benefits to this approach. First, the mes-
sage is effectively multicast to all visitors to the server, meaning
that even if the message were detected the intended target would
not be revealed. Secondly, an interested party, through entirely le-
gitimate traffic, can retrieve the message while retaining plausible
deniability. Additionally, this method works with no cooperation
of the known-allowed host.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9 10

P
a

c
k
e

t
A

rr
iv

a
ls

Time (seconds)

Watermarked TCP Flow

(a) A decodable side channel message

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
a

c
k
e

t
A

rr
iv

a
ls

R
a

ti
o

 P
e

rc
e

n
ta

g
e

Time (Seconds)

Flooder EWMA
Server EWMA

EWMA Ratio

(b) Analysis: SERVER load increases.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
a

c
k
e

t
A

rr
iv

a
ls

R
a

ti
o

 P
e

rc
e

n
ta

g
e

Time (Seconds)

Flooder EWMA
Server EWMA

EWMA Ratio

(c) Analysis: cloud node load increases.
Figure 8: Network flow side channel applications

8.1 Invisibility
In this work we do not focus on creating an invisible watermark-

ing scheme. Currently, the FLOODER’s activity would arouse im-
mediate suspicion from any administrator. While invisibility is a
desirable property of a watermark, recent work has demonstrated
that it is extremely difficult to achieve [8, 17, 29]. However, in
co-resident watermarking the attacker has the built-in advantage of
being expected to create some reasonable amount of delay for his
fellow customers. By creating a more realistic traffic model for the
FLOODER, we believe it would be possible to perform co-resident
watermarking without announcing the presence of malicious activ-
ity. This would of course come at the cost of the scheme’s perfor-
mance, as flooding intervals would need to occur less frequently.

8.2 Defenses
There are several defenses against the attack we’ve proposed;

however, all have serious drawbacks associated with them:

1. The most obvious defense is to provide each virtual machine
instance with a dedicated path out of its physical host. Our
approach is dependent on network flow multiplexing at the
hypervisor and network interface card. However, provision-
ing dedicated hardware is orthogonal to the purpose of cloud
computing, which depends on the sharing of devices to pro-
vide low cost compute resources.

2. We also saw that co-resident watermarking can be thwarted
by net under provisioning of instances relative to the network
transmission speed of their physical host. This made it diffi-
cult to launch our attack on third party clouds. Unfortunately,
this defense also depends on wasting resources, which im-
pacts the bottom line of cloud providers. Additionally, stud-
ies point to a rapid increase in VM density that makes a com-
munications bottleneck more feasible [16].

3. Alternatively, cloud instance administrators may provision
their networks to not take advantage of the "free" bandwidth
that is available in a multiplexed environment. Again, this
will negatively impact the relative value of using cloud-based
service providers. While this could be seen as a defensive
measure against malicious co-residents, it’s worth noting that
our attack doesn’t violate major SLAs [1].

4. It may also be possible that new, virtualization-aware hard-
ware can address and close this side channel. However, our
experience with the Intel 82599 ES controller indicates that
manufacturers are much more interested in addressing vir-
tualization’s performance challenges than those of security.

SR-IOV and other pass-through technologies increase the ex-
posure of underlying hardware and increase the effectiveness
of side channels.

5. Another possible avenue of defense would be to use the ran-
dom scheduling mechanism previously employed in cache
measurements [22] to do random outbound packet schedul-
ing. While this would be effective on some level, it could
trigger TCP congestion control [40] and degrade performance
across all virtual machines. In this sense our attack is dif-
ferent from cache-based attacks in that the protocol and ex-
pected behavior act as an enforcement mechanism to prevent
excess non-determinism from marring our data. Addition-
ally, this would break certain network related aspects of vir-
tual machine scheduling by the hypervisor.

The problem we illustrate is inherent in resource sharing, and is
particularly essential to cloud computing’s economy that is based
around maximizing resource utilization. By launching co-resident
watermarking on 3 of the major virtual hypervisors, we have demon-
strated the presence of systemic resource-sharing vulnerabilities
that are not unique to a particular virtualization initiative. More-
over, we have demonstrated that this problem can be further exac-
erbated by delegating resource management to the hardware level.
A consequence of this work is the need for hardware drivers that
extend the isolation guarantees of the hypervisor, sacrificing mini-
mal performance in exchange for increased privacy.

9. RELATED WORK

9.1 Cloud Side Channels
Bowers et al. have proposed use of a different network timing

side channel in order to challenge fault tolerance guarantees in stor-
age clouds [6]. This work measures the response time of random
data reads in order to confirm that a given file’s storage redundancy
meets expectations. This scheme can be used to detect drive-failure
vulnerabilities and expose cloud provider negligence. We intend
to investigate the applicability of storage cloud co-resident water-
marking in future work.

Cache-based side channels exploit the timing difference in ac-
cess latency’s between the cache and main memory. In the con-
text of cloud computing, cache-based side channel attacks have at-
tracted the most attention. Ristenpart et al. [37] showed that cache
usage can be examined as a means to measure the activity of other
instances co-resident with the attacker. Furthermore, they demon-
strated that they can detect co-residency with a victim’s instance
if they have information about the instance’s computational load.
In contrast, Zhang et al. [47] utilized cache-based side channels

as a defensive mechanism. Their scheme works by keeping por-
tions of cache silent and measuring whether it has been accessed
by other instances. Leveraging this scheme, they can challenge
correct functionality on the part of the cloud provider and discover
other unanticipated instances sharing the same host.

9.2 Hypervisor Security
Raj et al. [35] proposed two other mechanisms for preventing

cache-based side channels, cache hierarchy aware core assignment
and page-coloring-based cache partitioning. The former groups
CPU cores based on last level cache (LLC) organization and checks
whether such organization has any conflict with the SLA of the
clients. The latter is a software method that monitors how the phys-
ical memory used by applications maps to cache hardware, group-
ing applications accordingly to isolate clients. Another effective
defense against cache-based side channels is changing how caches
assign memory to applications, such as non-deterministic caches
[23]. Non-deterministic caches control the lifetime (decay inter-
val) of cache items. By assigning a random decay interval to cache
items, the cache behavior becomes non-deterministic and hence,
side channels cannot exploit it. Work in performance isolation in
Xen can also lead to added security benefits [18].

Other work aims to combat virtualization vulnerabilities by re-
ducing the role and size of the hypervisor. Most drastically, Keller
et al. eliminate a large attack surface by proposing the near elimina-
tion of the hypervisor [22]. This is achieved through pre-allocation
of resources, limited virtualized I/O devices, and modified guest
operating systems. While this approach in arguably reduces the
likelihood of exploitable implementation flaws in the virtualization
code base, it necessarily places VMs closer to underlying hardware.
Intuitively, this can only increase the bandwidth of the isolation-
compromising side channel that we explore in this work. Other
proposals reduce the hypervisor attack surface by considering only
specific virtualization applications such as rootkit detection or in-
tegrity assurance for critical portions of security-sensitive code [30,
39]. We do not consider these systems in our work because they are
not intended for the third party compute cloud model.

9.3 In-the-Wild Exploits
The Xen and VMWare communities have discovered only a hand-

ful of privilege escalation exploits. The presence of such attacks
greatly incentivizes efficient co-resident detection schemes. An
early version of Xen 3 included a bug that caused domU grub files
to be executed without protection in dom0 [12]. The exploit al-
lowed users to craft malicious grub.conf files that led to arbitrary
code execution in the administrative domain. Earlier versions of
Xen included a buffer overflow error that allowed specially crafted
disk images to execute code in dom0 [13]. In 2008, a bug was
discovered in the folder-sharing feature of some VMWare prod-
uct lines that allowed for unprivileged user code to be executed by
the vmx process [41]. More recently, a paging function in Linux
kernels 2.6.35.2 and earlier allowed for a guest domain to perform
a memory exhaustion attack on the system [14]. Lastly, in 2012
partial source code for VMWare’s ESX hypervisor leaked [7], and
while no exploits have been directly attributed to this leak yet, such
incidents increase the risk of compromise.

10. CONCLUSION
In this work, we have leveraged active traffic analysis techniques

as a means of determining co-residency of instances in cloud envi-
ronments. We show that our co-resident watermarking scheme can
be used to make a determination of co-residency in under 10 sec-
onds for a given probe in the cloud. We demonstrate the feasibility

of this attack by deploying it in multiple production cloud environ-
ments in geographically disparate locations and running a diverse
set of hypervisors. We are able to interpose a covert channel on
our target’s network flow, and show means of performing passive
attacks such as load measurement against the cloud-based target.
These investigations further demonstrate the ramifications of multi-
plexing hardware in virtualized environments, and is the beginning
of a line of inquiry into designing hardware for the cloud that is
performant without introducing undesired side effects.

Acknowledgements
We would like to thank Allen D. Malony, Chris Hoge, and the
ACISS staff for their assistance and support. Through our use
of Futuregrid, this material is based upon work supported in part
by the National Science Foundation under Grant No. 0910812
to Indiana University for "FutureGrid: An Experimental, High-
Performance Grid Test-bed." and Grant CNS-1118046.

11. REFERENCES
[1] Amazon EC2 Service Level Agreement.

http://aws.amazon.com/ec2-sla/.
[2] Amazon. Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/.
[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, et al.

Above the Clouds: A Berkeley View of Cloud Computing.
Technical Report UCB/EECS-2009-28, University of
California, Berkeley, 2009.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. In Proc. 19th ACM Symp. on Operating
Systems Principles, SOSP ’03, pages 164–177, New York,
NY, USA, 2003. ACM.

[5] A. Blum, D. Song, and S. Venkataraman. Detection of
interactive stepping stones: Algorithms and confidence
bounds. Proc. Recent Advances in Intrusion Detection
(RAID), 2004.

[6] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. L.
Rivest. How to Tell if Your Cloud Files Are Vulnerable to
Drive Crashes. In CCS ’11: Proc. 18th ACM Conf. on
Computer and Communications Security, pages 501–514,
Chicago, IL, USA, 2011.

[7] J. Brodkin. VMware confirms source code leak,
LulzSec-affiliated hacker claims credit.
http://arstechnica.com/business/news/
2012/04/vmware-confirms-source-
code-leak-lulzsec-affiliated-hacker-
claims-credit.ars.

[8] S. Cabuk, C. E. Brodley, and C. Shields. Ip covert timing
channels: design and detection. In Proc. 11th ACM
conference on Computer and communications security, CCS
’04, pages 178–187, New York, NY, USA, 2004. ACM.

[9] S. Cabuk, C. E. Brodley, and C. Shields. IP Covert Channel
Detection. ACM Transactions on Information and System
Security (TISSEC), 12(4), Apr. 2009.

[10] S. Chinni and R. Hiremane. Virtual Machine Device Queues.
White paper, Intel Corporation, 2007.

[11] B. Coskun and N. Memon. Online sketching of network
flows for real-time stepping-stone detection. In Proc. 2009
Annual Computer Security Applications Conf., ACSAC ’09,
pages 473–483, Washington, DC, USA, 2009. IEEE
Computer Society.

[12] CVE-2007-4993. pygrub (tools/pygrub/src/grubconf.py) in
xen 3.0.3. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2007-4993.

[13] CVE-2007-5497. Multiple integer overflows in libext2fs.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2007-5497.

[14] CVE-2010-2240. The do_anonymous_page function in
mm/memory.c. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-2240.

[15] Y. Dong, Z. Yu, and G. Rose. SR-IOV Networking in Xen:
Architecture, Design and Implementation. In Proc. First
Conf. on I/O Virtualization, WIOV’08, page 10, Berkeley,
CA, USA, 2008. USENIX Association.

[16] S. Gamage, A. Kangarlou, R. R. Kompella, and D. Xu.
Opportunistic Flooding to Improve TCP Transmit
Performance in Virtualized Clouds. In Proc. 2nd ACM Symp.
on Cloud Computing, SOCC ’11, pages 1–14, New York,
NY, USA, 2011. ACM.

[17] S. Gianvecchio and H. Wang. Detecting covert timing
channels: an entropy-based approach. In Proc. 14th ACM
conference on Computer and communications security
(CCS’07), Alexandria, VA, USA, 2007.

[18] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing Performance Isolation Across Virtual Machines in
Xen. In In Middleware, 2006.

[19] I. Habib. Virtualization with KVM. Linux Journal, Feb. 2008.
[20] A. Houmansadr and N. Borisov. SWIRL: A Scalable

Watermark to Detect Correlated Network Flows. In Proc.
18th ISOC Symp. on Network and Distributed Systems
Security (NDSS ’11), San Diego, CA, USA, Feb. 2011.

[21] A. Houmansadr, N. Kiyavash, and N. Borisov. RAINBOW:
A Robust and Invisible Non-Blind Watermark for Network
Flows. In Proc. 16th Network and Distributed System
Security Symp. (NDSS’09), February 2009.

[22] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Eliminating
the Hypervisor Attack Surface for a More Secure Cloud. In
Proc. ACM Conf. on Computer and Communications
Security (CCS’11), Oct. 2011.

[23] G. Keramidas, A. Antonopoulos, D. Serpanos, and
S. Kaxiras. Non Deterministic Caches: A Simple and
Effective Defense Against Side Channel Attacks. Design
Automation for Embedded Systems, pages 221–230, 2008.

[24] N. Kiyavash, A. Houmansadr, and N. Borisov. Multi-flow
Attacks Against Network Flow Watermarking Schemes. In
Proc. 17th USENIX Security Symp., San Jose, CA, 2008.

[25] P. Kutch. PCI-SIG SR-IOV Primer. Technical report, Intel
Corporation, 2011.

[26] A. M. Law and D. W. Kelton. Simulation Modeling and
Analysis. McGraw-Hill Higher Education, 2000.

[27] X. Luo, E. Chan, and R. Chang. Cloak: A Ten-Fold Way for
Reliable Covert Communications. In Proc. European Symp.
on Research in Computer Security ESORICS, 2007.

[28] X. Luo, J. Zhang, R. Perdisci, and W. Lee. On the Secrecy of
Spread-Spectrum Flow Watermarks. In Proc. European
Symp. on Research in Computer Security ESORICS. 2010.

[29] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and R. K. C.
Chang. Exposing Invisible Timing-based Traffic Watermarks
with BACKLIT. In Proc. 27th Ann. Comp. Sec. Applications
Conf., ACSAC ’11, Orlando, FL, USA, Dec. 2011.

[30] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and

Attestation. In Proc. 2010 IEEE Symp. on Security and
Privacy, Oakland, CA, USA, May 2010.

[31] S. Murdoch and G. Danezis. Low-Cost Traffic Analysis of
Tor. In Proc. 2005 IEEE Symp. on Security and Privacy,
Oakland, CA, USA, May 2005.

[32] K. Okamura and Y. Oyama. Load-based covert channels
between Xen virtual machines. In Proc. 2010 ACM Symp. on
Applied Computing, SAC ’10, Sierre, Switzerland, 2010.

[33] P. Peng, P. Ning, and D. S. Reeves. On the Secrecy of
Timing-Based Active Watermarking Trace-Back Techniques.
In Proc. 2006 IEEE Symp. on Security and Privacy, Oakland,
CA, USA, 2006.

[34] A. N. Pettitt and M. A. Stephens. The Kolmogorov-Smirnov
Goodness-of-Fit Statistic with Discrete and Grouped Data.
Technometrics, 19(2):205 – 210, 1977.

[35] H. Raj, R. Nathuji, A. Singh, and P. England. Resource
Management for Isolation Enhanced Cloud Services. In
Proc. 2009 ACM Workshop on Cloud Computing Security,
CCSW ’09, Chicago, IL, USA, 2009.

[36] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, A. L. Cox,
and S. Rixner. Achieving 10 Gb/s using Xen Para-virtualized
Network Drivers. Xen Summit, Febuary 2009.

[37] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds. In CCS’09: Proc. 16th
ACM Conf. on Computer and Communications Security,
Chicago, IL, USA, October 2009.

[38] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
Measurements in the Cloud: Observing, Analyzing, and
Reducing Variance. Proc. VLDB Endowment,
3(1-2):460–471, Sept. 2010.

[39] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes. In SOSP’07: Proc. 21st ACM Symp. on
Operating Systems Principles, Stevenson, WA, USA, 2007.

[40] W. R. Stevens. TCP/IP illustrated (vol. 1): the protocols.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1993.

[41] VMSA-2008-0008. Updates to VMware Workstation,
VMware Player, VMware ACE, VMware Fusion Resolve
Critical Security Issues. http://www.vmware.com/
security/advisories/VMSA-2008-0008.html.

[42] X. Wang, S. Chen, and S. Jajodia. Network Flow
Watermarking Attack on Low-Latency Anonymous
Communication Systems. In Proc. 2007 IEEE Symp. on
Security and Privacy, Oakland, CA, USA, May 2007.

[43] X. Wang and D. S. Reeves. Robust Correlation of Encrypted
Attack Traffic Through Stepping Stones by Manipulation of
Interpacket Delays. In Proc. 10th ACM conference on
Computer and communications security, CCS ’03, pages
20–29, New York, NY, USA, 2003. ACM.

[44] J. Whiteaker, F. Schneider, and R. Teixeira. Explaining
Packet Delays Under Virtualization. SIGCOMM Computer
and Communication Review, pages 38–44, 2011.

[45] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting. An Exploration of L2 Cache Covert Channels
in Virtualized Environments. In Proc. 3rd ACM Workshop on
Cloud Computing Security (CCSW’11), Nov. 2011.

[46] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao.
DSSS-Based Flow Marking Technique for Invisible

Traceback. In Proc. 2007 IEEE Symp. on Security and
Privacy, May 2007.

[47] Y. Zhang, A. Juels, A. Oprea, and M. Reiter. HomeAlone:
Co-Residency Detection in the Cloud via Side-Channel
Analysis. In Proc. 2011 IEEE Symp. on Security and
Privacy, Berkeley, CA, USA, May 2011.

APPENDIX
A. HYPERVISOR SCHEDULING

A.1 Xen
Xen is a popular type I virtual hypervisor that allows multiple

operating systems to share hardware through the use of abstracted
paravirtualized interfaces. Xen separates policy and mechanism by
having its hypervisor’s device scheduler provide only the most ba-
sic operations. Higher-level scheduling algorithms are the respon-
sibility of the domain 0 (dom0) guest operating system, which
acts as an administrator and has access to a hypervisor control in-
terface. In this way, Xen’s schedulers implement fair scheduling of
resources for guest domains (domU).

Xen schedules domain CPU utilization using the Borrowed Vir-
tual Time (BVT) algorithm [4]. BVT has a special low-latency
wake-up mechanism that temporarily favors domains that have just
received an event. This allows for the effect of virtualization to be
minimized for services such as TCP that require accurate round-
trip time measurements. Xen provides real time, virtual time and
wall-clock time to guest domains to ensure correct sharing of time
slices for their own applications.

For networking, Xen provides virtual network interfaces (VIFs)
that attach to a virtual firewall-router (VFR). Each VIF in dom0
corresponds to an interface that is visible in a domU. The VFW
performs services such as demultiplexing received packets based
on destination IP and port. VIFs emulate physical network interface
cards by providing transmit and receive I/O rings. Guest domains
transmit packets by enqueueing packets onto the transmit ring, and
receive packets by exchanging unused page frames for each packet
dequeued from the receive ring. Each packet domU packet passes
through dom0 on its way to or from the physical interface. Xen
packet scheduling is simple round robin.

Recent work has shown that the Xen hypervisor introduces con-
siderable packet transmission delays under heavy network usage,
adding on the order of 100ms to round-trip times [44], limiting
network throughput to as little as 2.9 Gbps [36]. A great deal of
this delay is introduced through the packet needing to pass through
dom0. The use of paravirtualized interfaces and software network
bridges also add delay when compared to hardware virtualization.
As our work seeks to inject as much delay into a network flow as
possible, we made use of these artifacts of the Xen hypervisor in
addition to the limitations of underlying physical devices. How-
ever, we demonstrate in Section 6 that our scheme is also effective
on lightweight hypervisors.

A.2 VMWare ESXi
VMWare ESXi is another operating system-independent hyper-

visor that allows multiple virtual machines to share physical hard-
ware. Unlike Xen, ESXi eliminates the privileged guest partition
and runs all management and infrastructure services directly from
a micro-kernel (VMkernel). The reduced footprint of the ESXi hy-
pervisor creates a smaller surface for vulnerability. ESXi imple-
ments a proportional-share based algorithm for domain CPU uti-
lization scheduling. With this mechanism, scheduling decisions are
prioritized based on the ratio of the consumed CPU resources to the

entitled resource limit of each virtual CPU (vCPU). Lower ratios
are given higher priority, thus giving vCPUs with greater resource
needs higher precedence. To increase performance, ESXi also im-
plements relaxed co-scheduling with symmetric multi-processing,
which allows multiple threads or processes to be executed in par-
allel over multiple physical CPUs. Packet scheduling relies on a
simple round-robin method.

A.3 KVM
KVM is a type 2 hypervisor for Linux platforms, and is designed

to re-use as much of the underlying Linux infrastructure as possi-
ble. With KVM, each VM is treated as a process and is scheduled
using the default Linux scheduler, which is the Completely Fair
Scheduler (CFS)[19]. CFS tracks the virtual runtime of each pro-
cess, which is the time allocated to each task to access the CPU.
Smaller virtual runtimes result in higher priority. CFS also imple-
ments sleeper fairness, in which waiting processes are treated as if
they were on the run queue, so they receive a comparable share of
CPU time when they need it.

In contrast to many other schedulers, CFS uses a time-ordered
red-black tree instead of a queue to maintain waiting processes.
Processes with higher priority (lower virtual runtime) are placed on
the left side of the tree, and processes with lower priority (higher
virtual runtime) are stored in the right side. The scheduler selects
the leftmost node to run, then to maintain fairness, the process’s
execution time is added to the virtual runtime and the process is
reinserted into the tree. This tree is self-balancing, and tree opera-
tions run in O(log n) time.

B. VIRTUALIZATION-AWARE DEVICES
As the number of VMs operating on a system increases, net-

work performance can drastically decrease in hypervisors that me-
diate network access with an administrative domain. The tradi-
tional single CPU core handling received packets is not sufficient to
service the number of incoming packets on a 10GB Ethernet con-
nection. Virtualization-aware hardware can be employed to miti-
gate these bottleneck risks and increase networking efficiency. Two
such hardware specifications are Virtual Machine Device Queues
(VMDq) [10] and Single Root I/O Virtualization (SR-IOV) [15].

VMDq is silicon-level technology that alleviates network traf-
fic bottlenecks by offloading packet-sorting responsibility from the
hypervisor to the NIC. Within the NIC, there exist unique queues
for each VM to receive their assigned packets. Relieving the VMM
of network traffic sorting allows more CPU cycles to be granted to
the VMs themselves. Both Xen and ESXi support VMDq technol-
ogy with baked-in software provided for additional efficiency. Xen
implements a new protocol for I/O channels, called Netchannel2,
which reduces I/O bottlenecks in dom0 by performing packet sort-
ing within the receiving domain instead of in dom0. ESXi’s VMDq
support comes from NetQueue, a similar software package.

SR-IOV is a specification that allows physical I/O devices to
present themselves to the host as multiple virtualized I/O devices,
allowing for direct access to PCI interfaces. This is especially im-
pactful when considering network access in Xen, as it eliminates
the need for dom0 to be involved in copying packet buffers from
the guest OS. Since each domU has access to its own PCI vir-
tual function, SR-IOV also provides individual queues for each
VM. Arriving packets are sorted into these queues by the physi-
cal device based on their destination, then are copied directly to the
guest OS memory using direct memory access (DMA). VMWare’s
implementation of SR-IOV, called VMDirectPath, permits direct-
assignment technologies to achieve device sharing.

