
Porscha: Policy Oriented Secure Content Handling in
Android

Machigar Ongtang
Faculty of Information

Technology

Dhurakijpundit University

Bangkok 10210, Thailand

machigar.ong@dpu.ac.th

Kevin Butler
Department of Computer and

Information Science

University of Oregon

Eugene, OR 97403 USA

butler@cs.uoregon.edu

Patrick McDaniel
Department of Computer

Science and Engineering

Pennsylvania State University

University Park, PA 16802

mcdaniel@cse.psu.edu

ABSTRACT
The penetration of cellular networks worldwide and emer-
gence of smart phones has led to a revolution in mobile
content. Users consume diverse content when, for example,
exchanging photos, playing games, browsing websites, and
viewing multimedia. Current phone platforms provide pro-
tections for user privacy, the cellular radio, and the integrity
of the OS itself. However, few offer protections to protect the
content once it enters the phone. For example, MP3-based
MMS or photo content placed on Android smart phones can
be extracted and shared with impunity. In this paper, we
explore the requirements and enforcement of digital rights
management (DRM) policy on smart phones. An analysis of
the Android market shows that DRM services should ensure:
a) protected content is accessible only by authorized phones
b) content is only accessible by provider-endorsed applica-
tions, and c) access is regulated by contextual constraints,
e.g., used for a limited time, a maximum number of view-
ings, etc. The Porscha system developed in this work places
content proxies and reference monitors within the Android
middleware to enforce DRM policies embedded in received
content. A pilot study controlling content obtained over
SMS, MMS, and email illustrates the expressibility and en-
forcement of Porscha policies. Our experiments demonstrate
that Porscha is expressive enough to articulate needed DRM
policies and that their enforcement has limited impact on
performance.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: General

; D.4.6 [Operating Systems]: Security and Protection—
Access controls, Authentication

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Keywords
DRM, Mobile Phone Security, Android, Security Policy

1. INTRODUCTION
Mobile phones are used extensively by nearly 5 billion peo-

ple worldwide [28] and form a vital information conduit for
business and personal information access. The use of mo-
bile phones has long transcended strictly voice calling, e.g.,
SMS exceeded 5 trillion messages worldwide in 2009 [43].
As users perform ever more data-centric activities on their
phones, they are increasingly purchasing smartphones with
the ability to run wide varieties of applications. Over 170
million smartphones were purchased globally in 2009 [18].
The data and applications used on these phones are equally
diverse. For example, the Apple App Store, which contains
over 130,000 applications, recorded 280 million application
downloads in December 2009 [21].

Open platforms such as Android provide few direct pro-
tections for the content placed on the phone. Access con-
trols restrict access to application interfaces (e.g., by placing
permissions on application components in Android), rather
than placing explicit access controls on data they handle.
Therefore, what limited content protections exist are largely
a by-product of the way interfaces are designed and permis-
sions (often capriciously) assigned. Thus, a malicious appli-
cation with the appropriate permissions can exfiltrate even
the most sensitive of data from the phone. Malware has re-
cently begun to exploit such limitations [3, 4, 5]. Moreover–
even in the absence of malicious applications–commercial
interests such as media providers wish to provide content
without exposing themselves to content piracy.

To combat these issues, a consortium of mobile phone
manufacturers including Nokia, LG, Motorola, Samsung,
and Ericsson have recently developed standards for content
protection on mobile devices. Codified within the Open Mo-
bile Alliance and focusing primarily on pay-per-use content
such as ringtones and multi-media, the OMA DRM v1.0 [37]
and v2.0 [38] standards define an API and infrastructure for
authorizing devices to process content. To simplify, OMA
DRM devices obtain rights objects (use licenses and cryp-
tographic keys) from providers that allow them to access
downloaded content. The licenses can regulate how the con-
tent may be used in simple ways such as by discrete lifetime
and maximum number of uses. The granularity of the OMA
DRM specifications, however, is coarse. The licensing unit is
the phone; as a result, the specifications say nothing about
content management when it is on the phone. Specifically,

there are no considerations of which applications may access
content. This was reasonable when the specification was
written in 2004, as there were no application markets at the
time and phone manufacturers provided their own software
for the phone. Since that time, though, the smartphone rev-
olution has mandated a need for protections at the applica-
tion layer, now that many applications can be purchased or
downloaded to access on-phone content. Otherwise, content
is subject to improper use by untrusted applications such as
rogue media players.

In this paper, we introduce the Policy ORiented Secure
Content Handling for Android (Porscha) system. Porscha
enforces fine-grained content policies1 over content delivered
to the phone. A study of application markets (see next sec-
tion) illuminates the needs of providers: from financial trans-
actions and airline tickets, to personal applications such as
diaries and journals, the diversity and sensitivity of content
processed by smartphones is immense. This study prompts
three classes of fine-grained content policies studied through-
out: a) content should only be accessible by explicitly autho-
rized phones, b) content should only be accessed by provider
endorsed applications, and c) content should be subject to
contextual constraints, e.g., used for a limited time, a maxi-
mum number of viewings, etc. In supporting these policies,
we extend the OMA DRM policy schema [37] to embrace
finer-grained controls.

Porscha policies are enforced in two phases: the protec-
tion of content as it is delivered to the phone (in transit, see
Section 4.2), and the regulation of content use on the phone
(on platform, see Section 4.3). For the former, Porscha binds
policy and ensures content confidentiality “on the wire” us-
ing constructions and infrastructure built on Identity-Based
Encryption [11]. For the latter, Porscha enforces policies
by proxying content channels (e.g., POP3, IMAP, Active
Sync) and placing reference monitor hooks within Android’s
Binder IPC framework. We implement and test Porscha on
a T-Mobile G1 smartphone and perform experiments using
the three most popular content types: SMS messages, MMS
messages, and email. Our experiments with Porscha show
that delivery delay for MMS is slightly over 1 second, while
latency from processing emails is only about 1 second or
less. A security analysis is given and we conclude with a
discussion of alternate designs and policy and infrastructure
extensions. We begin in the next section by considering
whether content policy is necessary for smartphones.

2. DO SMART PHONES NEED DRM?
In looking at DRM in smartphones, we must ask the ob-

vious question of what must the service actually do. To an-
swer this question, we surveyed applications and usage seen
in current cell phones to attempt to ascertain what kinds
of documents are commonly exchanged and what the rea-
sonable requirements are that the providers may place on
them. We evaluated the top 50 free Android applications in
each of the 16 application categories present Android Mar-
ket in April 2010. For the purposes of this initial study,
we focused on applications that delivered content via SMS,
MMS, or email. Table 1 shows the number of applications

1Throughout we use the terms DRM and content policies
interchangeably. While the latter term is arguably more
general, any distinctions are outside the scope of the defini-
tion and enforcement of policy studied here.

requesting permissions to receive SMS and MMS and to read
from or write to SMS, MMS, and email attachments. We
briefly summarize our findings on content use below:

Personal and Business Documents:.
Applications in the Communication category (e.g. third-

party email/SMS/MMS clients), Tools category (e.g. anti-
virus, backup tools, and Office Viewer), and Travel category
(e.g. language translator) in Table 1 frequently manage per-
sonal or business SMS, MMS, and emails.

Documents in this category include sensitive emails be-
tween business partners and others encompass security ca-
pabilities, e.g., SMS is used for authorization in access con-
trol systems such as Grey [9]. In these cases, unintended
exposure can leak business secrets or compromise the ac-
cess control system. Thus, providers need to ensure that
(a.) only targeted phones (i.e. authorized users) receive the
documents, (b.) only trusted client applications can handle
them, and that (c.) these documents can never be modified.

Service-specific data:.
A number of applications use SMS to send commands to

on-phone clients. Note that in almost all cases, there should
only be one legitimate client consumer for the content type–
the one provided by the service itself. For instance, one
spy camera application used SMS to command the phone
capture pictures and record videos. Similarly, Mydroid2 is
a tool for finding the phone by turning off the silent mode
and turning up the volume when it receives a command via
SMS, and Mobile Defense3 allows remote connection to the
phones after receiving an authenticated SMS message.

Commands in these applications are sent or received via
provided websites or other interfaces. Unauthorized expo-
sure of the “command” documents could reveal the applica-
tion behavior, and indirectly the user’s intent. The applica-
tions may misbehave if the commands are tampered with.
In response, the senders must let (a.) only the phones under
control receive the commands, (b.) only the applications to
execute the commands to process them, and (c.) the com-
mands read only and may be read only once, and (d.) ensure
only legitimate content is consumed by the client.

Financial Information.
Emails and SMS have become key media for financial in-

stitutions to communicate with their clients. For instance,
banks and credit card companies offer SMS banking, SMS
account alerts, and e-statements. Payment service providers
such as PayPal and Amazon Payments mainly contact their
customers via email and also offer SMS-based payment ser-
vice. Similar to personal and business documents, the send-
ing institutions aim to inform the users. As a result, the
documents must be (a.) sent only to the phones of such
particular customers. They must be (b.) accessed only by
trusted messaging clients. Moreover, some documents such
as payment requests may be designed to work with a group
of payment applications trusted by the institutions which
can also be identified by their hashes or signatures. In most
cases, the senders should also ensure that (c.) these docu-
ments are read-only. They should be deleted only through
trusted client applications.

2http://code.google.com/p/mydroid/
3https://www.mobiledefense.com/

Application Category Receive

SMS

Receive

MMS

Read SMSWrite SMS Read At-

tachment

Communication 7 2 10 6 1

Tools 5 2 6 3 0

Finance 1 0 1 0 0

Travel 1 0 1 0 0

Others 3 1 2 3 1

Table 1: Number of sample applications that access SMS, MMS, and email.

2.1 DRM Policy Requirements
The surprising result of the application analysis was the

incredible consistency of the content policy requirements.
With few exceptions, the requirements fell into three cate-
gories:

• Binding content to the phone – most of the ap-
plications required that the content be targeted to a
single identified user or phone. Failure to implement
this policy could have catastrophic consequences (in
financial applications), or undermine the entire service
(in media access applications).

• Binding content to endorsed applications – of-
ten observed in desktop environments but largely ig-
nored in the mobile device industry, it is important
to control which particular applications can process
protected content. The consequences of the failure to
enforce this policy are similar to those above—a ma-
licious application on an otherwise legitimate phone
could corrupt, exfiltrate, or otherwise misuse delivered
content.

• Constraining continuing use of the content – it
is essential that the provider be able to control not
just access, but how that access evolves or expires
over time. Frequency, count, or temporal constraints
were common. Failure to provide these polices would
marginalize the license structures upon which many
services are now built.

To illustrate, Table 2 gives example policies falling into
these categories (using a self-explanatory policy schema).
Policy 1 states that a particular document (for example, an
authorization SMS in our access control system example)
can be read only if the application is signed with a particular
key and the phone is within 50 meters from the place under
control (e.g., as used in the Grey system). Policy 2 explicitly
identifies a legitimate application by its fingerprint (i.e., a
hash of the application image .apk file). We revisit these
policies in subsequent sections.

3. BACKGROUND AND ASSUMPTIONS
Having considered DRM policy requirements, we now ex-

amine how content is currently delivered to mobile phones.
We begin this section by briefly describing Android, then
discuss content delivery through the network and its han-
dling on the phone itself.

3.1 Android Background
Android is a middleware platform for mobile phones, built

on a Linux kernel that isolates applications by having them
run in their own process spaces with their own virtual ma-
chine instances. Operating system details are hidden from

application developers, who access and provide functional-
ity through components. These components are assembled
to provide applications, which perform all inter-process com-
munication (IPC) through Android’s Bindermechanism. Com-
ponents interact primarily through the use of Intent mes-
sages, which can either explicitly address components by
name or through implicit action strings, resolved to the
appropriate receivers by the Android middleware. Compo-
nents set up Intent filters and specify action strings in order
to subscribe to these specific Intents.

There are four types of components in Android. Ac-
tivity components normally provide user interfaces via the
touch screen and keypad. Service components perform back-
ground processing. Broadcast Receiver components act as
listeners which enable asynchronous event notifications. They
usually receive Intents addressed by action strings. Standard
action strings include “boot completed” and“SMS received”.
Lastly, Content Provider components act as a persistent
data store that implement an SQL interface. If implemented
by the providing application, other applications can query,
update, and delete the data in the Content Providers. Fig-
ure 1 describes how these components interact with each
other. In addition, applications have the ability to directly
call APIs from other applications.

Applications in Android can be classified into two groups.
System applications, including the phone, dialer, and mes-
saging applications, are bundled with the phone when it is
provisioned to a subscriber and are stored in a read-only sys-
tem partition. User applications are obtained from a variety
of sources, including the Android Market, and are installed
by users: these programs can compete with or complement
system applications, or extend the platform’s functionality
in very different ways.

Android’s security framework is based on permission la-
bels, which are unique text strings defined either by appli-
cations or the middleware. Application developers spec-
ify a list of permission labels in an application’s manifest
file, which presents information about resources an applica-
tion is allowed to access. For example, receiving and read-
ing an SMS message requires an application to hold the
RECEIVE_SMS and READ_SMS permissions, respectively. In
Android, all content is treated equally, meaning that any
application with permissions to access a particular document
type can access all documents of that type. Importantly, el-
evated protection levels such as allowing “dangerous” func-
tionality for certain permissions rely on the user to confirm
all permissions associated with an application at install time;
however, users who may not fully understand what they are
allowing and consequently may make bad security decisions.

3.2 Documents in Transit
Figure 2(i.) provides an overview of how content is deliv-

ered to a phone from outside sources. For clarity, we refer to
these external providers of content as content sources. Doc-

(1) allow-read{(sig=934db3d4 . . .) and (location=40.304107,-75.585938,50)}
Only the access control application signed by developer key 934db3d4 can read the document, and only when the phone

is within a 50-meter radius of location (40.304107,-75.585938).

(2) allow-read{(hash=6ab843a)} allow-modify{none} allow-delete{(hash=6ab843a)}
Only the application identified by its binary hash 6ab843a can read and delete the document.

Table 2: Examples of security policies for content protection.

Starting an Activity for a Result

ActivityActivity

start

return

Querying a Content Provider

Activity

Read/Write
Query

return

Content
Provider

Receiving an Intent Broadcast

System

Activity

Service

Broadcast
Receiver

Send
Intent

Communicating with a Service

Activity

callback

Service

call

start/stop/bind

Figure 1: Typical methods of component interaction in Android.

uments sent through the cellular (SS7) network, including
SMS and MMS messages, are received at the phone’s Radio
Interface Layer (RIL), processed by the baseband processor,
and made accessible to the phone application. Applications
whose content source originates from the Internet, however,
connect directly to them in order to receive these documents,
such as email. There are no intermediaries on the phone to
process this content prior to its handling by the application.

Lack of end-to-end security is a major problem in SMS,
MMS, and email transport. SSL/TLS for email delivery
only secures connection between the phones and the mail
servers. SMS and MMS documents delivered through SS7
make use of security mechanisms found within the cellular
network. The heart of the SMS system is the Short Message
Service Center (SMSC) which receives short messages from
mobile devices inside the cellular network or from external
short message entities (e.g. web-based SMS portals). The
messages are processed, stored in the SMSC queue, and de-
livered to the destination devices through a control channel.
Messages in transit are encrypted by the network providers.

The MMS system centers on the Multimedia Message Ser-
vice Center (MMSC). However, phones do not communicate
with the MMSC directly but through a WAP gateway push
proxy. Upon the arrival of MMS messages, the MMSC no-
tifies the receiving clients with WAP push notifications over
SMS. In response, the clients create a TCP/IP connection
to retrieve the messages from the MMSC through the WAP
gateway push proxy. Clearly, the security of the WAP push
notification delivery is based on SMS security. The accom-
panying MMS message retrieval can be secured using SS-
L/TLS. More information about the structure of the cellular
network and its security is available from Traynor et al. [50].

While SMS and MMS notifications are encrypted, there
are still several security issues. GSM encryption is provided
only over the radio interface since it is assumed that the
SS7 network is inaccessible to external entities. The net-
work providers do not always encrypt SMS messages [20].
Even if they did, though, the employed A5-family encryp-
tion algorithms have been compromised: a full rainbow table
for the A5/1 cipher has been published [6], while an attack
against the KASUMI cipher that is the basis for the new
A5/3 cryptosystem can be performed in less than two hours
on a PC [14]. Most importantly, GSM encryption does not
give end-to-end security because the encryption key is shared
between the mobile devices and the network providers, not

directly between the content source and receiving device.

3.3 On-Platform Document Access
Access to documents that arrive on the phone is contin-

gent on their method of delivery. Figure 2(ii.) demonstrates
how various document types are handled as they arrive at
the platform. There are three cases that we consider:

1. Initial Document Recipients: These applications
either receive documents directly from the platform
or from system applications. Their access will be de-
pendent on permission labels set within their manifest
files.

2. Documents at Rest: Some documents such as SMS,
MMS, and the attachments of the emails received will
be stored by the phone platform. In Android, these
documents will be stored in Content Provider compo-
nents, which act as databases for this content. Access
to these Content Providers to either read or write data
is also contingent on permissions in the application’s
manifest file.

3. Document Sharing: Indirect receivers are applica-
tions receiving documents from other applications. In
Android, the APIs allowing interaction and data shar-
ing between applications are mediated by the Binder
IPC mechanism. Permissions are placed on applica-
tion components to limit the data that can be sent
and received between applications. This acts as a weak
method of enforcing information flow enforcement, but
is not secure as there is no concept of partial ordering
with permission labels such that a lattice may be de-
rived [13].

3.4 Threat and Trust Model
We assume that the network is untrusted: an adversary

is capable of subverting any communications received from
the network interface, regardless of whether the cellular net-
work or the Internet were transited. In addition, any user
applications on the phones are assumed to be untrustworthy
unless otherwise identified by a sender. Our trusted comput-
ing base (TCB) comprises the underlying Linux operating
system and the Android middleware itself, as well as system
applications.

Content
Source

Phone App AApp B

Content
Source

Messaging... ...

Content
Source Email

SMS/
MMS

(i.) Documents in transit (ii.) Documents on phone

SS7 Network

SMSC

MMSC

WAP
proxy

Email
server

Android Middleware

Linux Kernel

MMS
retrieval

User AppsSystem Apps

Internet

Figure 2: External content providers deliver their documents to the application(s) on the phone. The shaded

area represents our TCB.

4. ARCHITECTURE
Porscha enforces security policy in two phases: initially as

the content is transmitted over telephony networks and the
Internet (as content in transit), and thereafter as it is pro-
cessed and stored on the phone (on platform). This section
describes how Porscha defines and enforces policy in each of
these phases.

4.1 Supported Policy
Porscha extends the XML OMA policy [37, 39] to em-

brace the new DRM requirements identified in our applica-
tion study, discussed in Section 2.1. All policies are manda-
tory. That is, any OMA client receiving a Porscha policy
must implement the extensions or deny access. Detailed be-
low, policy is encoded in XML as either a section in the text
part of MMS or email attachment (see Section 4.3). Porscha
supports4:

Constraints on Devices – OMA DRM 1.0 binds the con-
tent to devices that have acquired the proper license (i.e.,
right object). OMA DRM 2.0 also supports binding to spe-
cific devices identified by the users’ International Mobile
Subscriber Identity (IMSI) or WAP Identify Module (WIM).
Described below, we extend identity to the phone number
of the device itself (as regulated by the cellular provider).

Constraints on Applications – Porscha extends OMA
DRM to constrain applications consuming content. Here
the senders can specify access be restricted to applications
with a given code fingerprint (hash of the application im-
age), that are signed with a given developer key, or require
that the application be configured with a given set of per-
missions (this last policy is similar to those found in the
Saint system [36]).

Constraints on Use – Common policies codified in OMA
DRM, such as validity period and number of uses, are sup-
ported. We extend these to support not only the regulation
of simple accesses, but also differentiation of simple access
from read, modify and delete rights.

4.2 Content-in-Transit
Porscha must secure content delivery over the untrusted

networks–namely the confidentiality, integrity, and authen-

4For brevity, we omit our XML structure and example po-
lices beyond that identified in Table 1. Note that we are able
to encode all policies uncovered in the application study us-
ing OMA and the Porscha extensions.

ticity of SMS, MMS, and email must be preserved. Porscha
uses identity-based encryption (IBE) [11] to ensure these
properties. IBE enables the senders to construct the public
keys of the recipients from known identities (phone numbers
or email addresses), thus eliminating the need for a priori
key distribution.

We briefly review the structure and use of IBE. Identity-
based Encryption systems form a subclass [11] of public key
cryptosystems. As with all public key systems, participants
(users or other entities) are assigned a public key (which
is widely distributed) and a private key (which is kept se-
cret by the participant). What differentiates IBE from other
kids of public key systems is the public key itself. An IBE
public key is an arbitrary string such as an email address,
name, social security number or any other value that is de-
sirable for the target environments. Serving a similar role to
a CA in traditional PKI systems, each IBE system contains
a trusted private key generator (PKG). The PKG generates
private keys using system wide secrets and provides them to
the participants through a registration process. The PKG
advertises public cryptosystem parameters for the IBE in-
stance.5 Encryption using the public key is performed by
inputting the message (data), public key string, and cryp-
tosystem parameters into the IBE encryption algorithm. De-
cryption is performed by inputting the ciphertext and pri-
vate key to the decryption algorithm. Again, as in normal
public key systems, it is also possible to encrypt using the
private key and decrypt using public key (e.g., as used in
creating digital signatures).

We use the following notation below. We denote the pri-
vate key generator PKG, sender (content source) S, and
receiver (phone) R. The identity for participant a is de-
noted Ia, the public/private key pair for a is K+

a and K−
a

respectively, content is m, and a policy for m is pm. En-
cryption and signature operations are denoted E(d, k) and
Sign(d, k), where d is the input data and k is the key. We
denote the one-time time ephemeral key used in the delivery
of email as ke.

SMS/MMS – In SMS/MMS delivery, the recipient’s tele-
phone number (MSISDN) is used as their public key identity.
Each cellular provider runs a Private Key Generator (PKG)
that publishes the IBE public parameters via publicly ver-

5The participant registration process, the secure acquisition
process, and other key management services (e.g., revoca-
tion) have been discussed at length in other works [19, 31,
8]. Such issues are outside the scope of this work.

ifiable medium, e.g., in a Verisign certificate. The phone’s
private key and IBE parameters are loaded at subscription
time in the phone SIM (see Section 6).

To send SMS/MMS, the sender encrypts its ID, the con-
tent, and policy using the receiver’s public key. The sender
then signs the resulting ciphertext his/her own private key
K−

sender. More precisely:

S → R : E({IS ||m||pm},K+
R)||

Sign(E({IS ||m||pm},K+
R),K−

S)

If the sender uses different PKG than the receiver (e.g., sub-
scribes to a different provider), it contacts the receiver’s
PKG directly using Internet connection or through multi-
domain key management service supported by mobile sys-
tems [48, 22, 51]. Note that the addition of the policy,
padding, and signature can increase the size of an SMS
message beyond that supported by current networks (160
characters). Thus, as described in the following section, we
convert SMS messages into MMS messages.

Email – We use a recipient’s email address as the tar-
get identity. PKGs run in support of email domains pub-
lish the public key parameters through extended attributes
on DNSsec [27] MX records. Emails can be vary in size
and be arbitrarily large. As performing IBE encryption on
large content potentially incurs high overhead, the sender
encrypts the body of the email using the one-time 128-bit
AES symmetric key ke, which is obtained through Diffie-
Hellman key exchange protocol. The symmetric key ke is
in turn encrypted with the receiver’s IBE public key. The
ciphertext is then signed, and the entirety is sent to the
receiver as a MIME encoded email, as follows:

S → R : E({IS ||m||pm}, ke)||E({ke},K+
R)||

Sign({E({IS ||m||pm}, ke)||E({ke},K+
R)},K−

S)

The following section details how these documents are pro-
cess once they are received by the phone.

4.3 On-platform Policy Enforcement
When a document arrives at the designated phone, Porscha

enforces the content security policy specified by the content
source. Detailed in this section, the Porscha mediator en-
forces policy through a set of protocol proxies and autho-
rization hooks within the Android middleware.

4.3.1 Policy Enforcement on Initial Recipients
SMS/MMS – Depicted in Figure 3(a), SMS and MMS
PDUs (the base structure for data messaging services in cel-
lular networks) initially arrive at the Phone application (M1
in Figure 3(a)). Under normal (non-Porscha) circumstances,
the Android SMS Dispatcher delivers these messages to all
applications that have registered for WAP_PUSH_RECEIVED In-
tents (which requires the RECEIVE_MMS permission). The
Intent identifies the URI to the MMS content. Messaging
application then downloads the MMS content and stores
it in the MMS Provider inside of the middleware. The
MMS Provider broadcasts another Intent when the content
is stored.

To enforce policy, Porscha delays the initial WAP_PUSH_
RECIEVED broadcast, but automatically triggers the Messag-
ing application to download the content (M2). Once the
content download completes, a second mediator hook parses

Linux Kernel

User Apps System Apps

Android
Middle-
ware

App B App C
...

Porscha
Proxy Phone

Activity Manager
Service

Porscha

Mediator

Messaging

M4

SMS/

MMS
M1

M2

M3
MMS

content

M5

M6

(a) Mediating SMS/MMS Delivery

Linux Kernel

User Apps System Apps

Android
Middle-
ware

App A Email
App...

Phone...

Activity Manager
Service

Porscha
Mediator

Email
E1

E2
E3

(b) Mediating Email Delivery

Figure 3: The Porscha mediator implemented in-

side Android intercepts the document delivery and

enforces the policy on initial recipients.

the PDU (M3), extracts the policy from the content, and de-
termines, in conjunction with the Activity Manager Service
(M4), which applications are allowed to receive the docu-
ment. Applications compliant with the policy receive the
subsequent notifications, while those not in compliance will
not.

Note that the Intent notifying the arrival of SMS/MMS
cannot be issued from within the Android middleware: the
broadcasting entity must be an application that possesses
BROADCAST_SMS permission for SMS and BROADCAST_WAP_
PUSH for MMS. Additionally, applications must be signed
by the platform key for these permissions to be granted. To
address this problem, we implement the Porscha Proxy as a
system application signed and built with the platform. It re-
ceives from the Porscha mediator the list of the applications
allowed to receive the document, the document content, the
document metadata, and whether the document should be
dispatched as SMS or MMS (M5). If the document should
be dispatched as SMS, the Porscha Proxy constructs an SMS
PDU and broadcasts an SMS_RECEIVED Intent to authorized
applications (M6). If the document is dispatched as MMS,
the proxy broadcasts a WAP_PUSH_RECEIVED Intent, contain-
ing the URI to the MMS content which is accessible through
the MMS Content Provider, to authorized applications.

Email – Email traffic is opaque to Android: email client ap-
plications use application level protocols such as POP [25],
IMAP [26], or Active Sync [33] to communicate with remote
mail servers. For this reason, Porscha must “shim” email
traffic by creating transparent proxies. The email enforce-
ment intercepts email traffic at the network level through an
SSL socket (E1). This mechanism operates at the middle-
ware level inside of our TCB which is inaccessible to the ap-
plications. Messages are intercepted and interpreted within
each proxy and policy enforced. We use the Apache Mime4j
library [7] to parse the e-mail message streams in plain RFC-
882 and MIME formats. For each email, the XML attach-
ments are examined. If the attachment is recognized as con-
tent policy, the Porscha mediator coordinates with Activity
Manager Service to enforce the policy (E2). The content
may only be retrieved by an email client if it satisfies the

policy (E3).
For usability, rather that filter email from applications

that fail policy, we chose to mask its content. In such cases,
Porscha removes all information from the email’s header and
body, and replaces these fields with the string Hidden. We
will extend policy schema in the future to allow the sender to
provide “alternate text” that would instruct the user where
to go to obtain an appropriate application or license for the
received content in the event the accessing phone/applica-
tion does not satisfy the policy.

Note that while controlling access to DRM-protected doc-
uments, Porscha allows unprotected documents to be re-
ceived without restriction. These documents are not IBE
encrypted by Porscha. Thus, they can be accessed by the
receiving applications.

4.3.2 Policy Enforcement on Documents at Rest
By default, Android stores the SMS, MMS, and email at-

tachments with the system applications using Content Provider
components. Applications with permissions to access (read
or write) these Content Providers can access this content
even if they are not the initial recipients. To allow exter-
nal senders to control access to the documents delivered
from them, we add an extra policy field to the structure
of each Content Provider record. The Porscha mediator in-
serts the policy (if available) into this field, and when the
Content Provider record is accessed the corresponding pol-
icy is checked, and access allowed or denied based on the
compliance of the caller application with the policy.

4.3.3 Enforcement on Indirect Receivers
Porscha mediates passing of data between applications as

shown in Figure 4.3.3 and as follows:

Intent – The Porscha mediator acts as a reference monitor
for Intents that pass protected content. The sending appli-
cation binds the policy with the Intent that encompasses the
content. The mediator prevents applications not satisfying
the policy from receiving the Intent.

Content Sharing – Inclusion of a policy field into Content
Provider records, as described above, allows the Porscha me-
diator to ensure that every access to stored content satisfies
the attached policy. Access is mediated through the Content
Resolver mediation hook.

Inter-application API calls – When an application API
is called by another application (e.g. Service call), we bind
a policy to the input parameter or return value containing
content delivered in an Android’s parcel object. The me-
diator interprets the parcel, and enforces the policy. If the
policy fails (on either the call or return), a security exception
is thrown.

5. EVALUATION
This section briefly evaluates the costs of policy enforce-

ment in Porscha. All experiments were executed on a HTC
G1 Dream smartphone over T-Mobile 3G services. Porscha
was built on the Cyanogen [1] Android 2.1 firmware build
and installed on the phone, as was the Stanford IBE library
V.0.7.2 (a C implementation of Boneh-Franklin IBE [11]).
The IBE module was crossed compiled for the ARM proces-
sor as a native executable. Each experiment was repeated
10 times and the average reported (with negligible observed

sample variance).
Highlighted in Table 3, an initial set of experiments sought

to measure the overheads associated with SMS processing.
Here we measured the time between the arrival of the PDU
and the time it is dispatched to consuming applications. The
experiments showed that SMS processing time is less than
0.1 seconds in unmodified Android. SMS documents are de-
livered as MMS introducing an additional 4 or greater second
overhead. Microbenchmarking of SMS processing revealed
three central underlying costs: MMS push notification han-
dling (≈ 1.03 s), MMS content retrieval (≈ 1.44 s), and
other connection management processing (≈ 1.04 s). The
lower costs associated with SMS-over-MMS vs. MMS with
media content were associated with the reduced size of the
objects being downloaded (SMS policy objects were on the
order of 100s of bytes versus 18kb .jpg objects in MMS ex-
periments). The maximum observed overhead for IBE was
about 480 msec.

For MMS, we measure the latency from the arrival of
the PDU to the time to MMS content is completely down-
loaded and applications notified. Without IBE, Porscha in-
curs about a 4% overhead (≈ 20 msec). IBE adds about
1 s. to the overhead–significantly more than in SMS. Here
again the cause is the size of the encrypted media: the .jpg
object. Note that recent advances in IBE offer run-time
improvements that can reduce these overheads by as much
as 20-35% [23], and techniques such as the use of one time
symmetric keys (as detailed in section 4.2) may substantially
reduce these costs.

The overhead of processing email ranges from 0.7 seconds
to just over 1 second, depending on the email access proto-
cols. These costs are largely due to the proxying of the ac-
cess protocols, SSL, buffering, email message reconstruction,
and policy extraction and evaluation (if policy is available).
Note that we have not yet implemented IBE for email, but
the experiments above suggest that overheads will be man-
ageable.

6. DISCUSSION
This section examines the security guarantees provided by

Porscha and potential threats to these guarantees.

6.1 Protecting the Private Key
Porscha’s model for key distribution involves the client

phone receiving a private key from the phone provider. Re-
call from Section 4.2 that a private key generator (PKG) is
trusted to create IBE keys and that a phone’s MSISDN can
be used as a public key identity. The cellular provider will
operate the PKG and provide the private key at subscription
time on the client’s SIM card. However, the SIM is merely
a memory card, and is susceptible to being stolen or lost.
Therefore, we use a shared secret between the provider and
client phone to encrypt the stored private key, with knowl-
edge of the secret required to unlock the key package. One
way of communicating this to the user would be with on
a slip of paper or a similar out-of-band method when the
SIM is purchased or reprogrammed. This method is already
used for the SIM authentication key, stored by the provider
in their authentication center (AUC).

6.2 Recipients Without Porscha
External senders do not have prior knowledge about whether

Porscha is available on client phones. In the absence of

Android Middleware Platform

Porscha

Mediator

Intent

Data Policy

App A App B

(a) Mediate Intent Passing

Android Middleware Platform

Porscha

Mediator

App A App B

Record Policy

Content

Resolver

Content Provider

(b) Mediate Content Provider Ac-
cess

Android Middleware Platform

Porscha

Mediator

App A App B

Return Value +

Policy

Service

(c) Mediate Service Call

Figure 4: Porscha Mediator intercepts cross-application content passing

Original Overhead from Porscha without IBE Overhead from Porscha with IBE

Latency policy passed policy failed policy passed policy failed

SMS 0.083 4.07 4.12 4.57 4.56

MMS 5.16 0.22 0.21 1.52 1.53

POP3 6.34 0.68 0.91 2.51 2.61

IMAP 3.79 1.02 1.02 2.94 2.85

Active Sync 3.38 0.8 0.85 2.18 2.19

Table 3: Overheads in processing SMS, MMS, and Email (in seconds).

Porscha, the clients would not be able to access protected
documents. This is reasonable, as any content delivered to
and intended for the phone should remain opaque to the
user. As a result, whether it be phones that do not have a
Porscha framework installed or another means of accessing
content, e.g., retrieving emails on a computer, content pro-
tected by Porscha should and will be inaccessible by these
entities.

Note that emails accessed by the IMAP protocol are ul-
timately managed by an IMAP server; thus, any modifi-
cations made to an email by Porscha may be reflected on
other clients. To resolve this issue, we store all modifica-
tions, such as decrypted emails and those with information
removed, locally on the phone, and only reflect back to the
IMAP server the original email that was sent to the phone
- thus, an original copy of the email is always maintained.

6.3 Application and Platform Trust
With Porscha, we are making assumptions of trust in

the Android middleware and associated system applications.
There are a number of reasons why this level of trust can
be considered appropriate. First, Android applications are
signed with a certificate whose private key is held by the sys-
tem developer; this provides a means of ensuring that the
application’s integrity is intact and that the origin of the
code is as expected. Tools such as Kirin [16] allow install-
time certification of applications against potentially danger-
ous functionality.

Android is middleware that runs on a Linux kernel. Sev-
eral methods of ensuring kernel integrity have been consid-
ered, and this is an area of ongoing research. These include
run-time monitors such as the Linux kernel integrity moni-
tor (LKIM) [32]. Ensuring that the phone platform itself is
booted into a trustworthy state has also been an area of con-
siderable focus. One promising solution is to include trusted
platform modules (TPMs) [49] inside mobile phones; specif-
ically, the Mobile Trusted Module (MTM) initiative [15] has
considered a TPM-like device that adds functionality for se-
cure boot, which enforces integrity protection of the under-
lying firmware and system state, and allows for continual

assurance of boot-time guarantees through use of the Linux
Integrity Measurement Architecture (IMA) [45].

6.4 Alternative Application Enforcement In-
frastructures

The extent to which Porscha protects a document largely
depends on the attached policies. The senders can indicate
the target applications by different degrees of specification
from unique application package hashes to loosely defined
application properties.

An even stronger security model can be implemented as
a performance trade-off. For example, Porscha can be used
along with Saint [36] which regulates application interac-
tions (but does not examine the content being passed). As
a result, we would gain a more comprehensive view of ap-
plication behavior and could ensure that all applications are
monitored for sharing violations.

Adoption of more heavyweight mechanisms offering con-
tinual content monitoring, such as dynamic taint analysis [12,
52], is also possible. However, these systems are not designed
for information with semantically rich policy attached. The
policies for incoming documents are mostly unique. Manag-
ing large and highly dynamic set of taint markings (e.g. in
taint analysis) can thus be burdensome. Porscha’s content
enforcement mechanism is comparatively quite lightweight.

6.5 Digital Rights Management
DRM has been contentiously discussed for nearly 15 years.

Such controversy stems from the primary application of DRM:
to restrict the use of digital content and prevent piracy, os-
tensibly to preserve artistic integrity and protect revenue
streams for content creators. For example, three competing
DRM technologies for mobile or portable devices are Apple’s
FairPlay [29], Microsoft PlayReady [34]. Along with OMA
DRM, all aim to limit media usage for commercial purposes.
In Android, OMA DRM 1.0 is supported to manage ring-
tones, MMS, and pictures, preventing users for forwarding
these documents. An external generic framework for DRM
implementation is also available but is not used by the offi-
cial platform. An external framework containing the Open-

Core Content Policy Manager (CPM) [40] is also available.
CPM does not implement any DRM algorithms or protocols,
but acts as an aggregator with interfaces for authentication,
authorization, and access control. Plugins are available for
multiple DRM agents, such as WMDRM [42] and DivX [41].

There has been significant opposition to DRM [17, 2] with
detractors viewing it as a means for limiting consumer rights
and eliminating “fair use” provisions. However, DRM is by
definition a generic term for access control technology that
secures content and limits its distribution [10, 24]. We con-
sider DRM’s role in Porscha strictly as a means to providing
content-based access control without comment on business,
legal, or philosophical issues. We differentiate from existing
DRM schemes, however, and provide a superset of func-
tionality by preserving confidentiality, integrity, and avail-
ability, not merely employing encryption and licensing as
with typical DRM implementations. In addition, Porscha is
lightweight and designed with mobile solutions in mind; by
contrast, many advanced DRM protocols are heavyweight
and not transparent to applications.

7. RELATED WORK
Mobile phone security often involves regulating the behav-

ior of individual applications installed on the phone to pro-
tect the platform. As permissions requested by Android ap-
plications reflect their capabilities, Kirin [16] prevents instal-
lation of malware by identifying potentially dangerous appli-
cations based on these permissions. By contrast, Saint [36]
modifies the Android middleware to enforce application poli-
cies which regulate how application permissions are granted
and how applications interact with each other. While Saint
concentrates on securing communication endpoints, Porscha
concentrates on the actual content passed.

Enhancing mobile phone security through mandatory ac-
cess control (MAC) and trusted hardware, specifically Security-
Enhanced Linux (SELinux) [47] and TPMs, is a means of
protecting application and platform integrity. SELinux se-
curity policy has been applied to ensure the integrity of the
Openmoko phone platform and trusted applications [35].
Additionally, Rao and Jaeger [44] developed an SELinux-
based MAC system that considers input from multiple stake-
holders to develop policies for controlling application permis-
sions. Recently, Shabtai et al. [46] have ported SELinux to
Android and enabled security policy for enhancing the pro-
tection of system processes. Unlike Porscha, which enforces
MAC policies to secure documents arriving at the phones,
these approaches focus strictly on platform security; while
they are orthogonal to our concerns, platform trustworthi-
ness will increase the security of all overlying layers above,
including Porscha.

Several IBE solutions have been proposed for use with
mobile phones. Mobile phone numbers are commonly used
as client identities because they can be effortlessly authenti-
cated by the network. Communication among different net-
work providers running their own PKGs is a major challenge
for IBE implementation; proposed solutions have included
the use of hierarchical IBE [22, 51] and cross-domain key
extensions [48] .

8. CONCLUSION
This paper has proposed Porscha, a content protection

framework for Android that enables content sources to ex-

press security policies to ensure that documents are sent to
targeted phones, processed by endorsed applications, and
handled in intended ways. Through a study of real-world
applications, we formed an initial scope of appropriate con-
tent policies, and we demonstrated how these may be used
in Porscha to protect SMS, MMS, and email documents.
Porscha secures content delivery using identity-based en-
cryption and mediates on-platform content handling to en-
sure conformance with content policy. Future work will ex-
amine additional types of content that may be protected by
Porscha and the policy implications of managing this con-
tent.

9. REFERENCES
[1] Android Community ROM.

http://www.cyanogenmod.com/, March 2010.
[2] I hate DRM: A site dedicated to reclaiming consumer

digital rights. http://ihatedrm.com, June 2010.
[3] Mobile Watchdog.

http://www.mymobilewatchdog.com/, January 2010.
[4] SMS Trap. http://www.smstrap.com/, January 2010.
[5] Stealth SMS.

http://stealthsms.trusters.com/s_features.htm,
January 2010.

[6] A5/1 Security Project. Creating A5/1 Rainbow
Tables. http://reflextor.com/trac/a51, 2009.

[7] Apache Software Foundation. Apache James Mime4j.
http://james.apache.org/mime4j/, March 2010.

[8] G. Appenzeller, L. Martin, and M. Schertler.
Identity-Based Encryption Architecture and
Supporting Data Structures, Jan. 2009. IETF RFC
5408.

[9] L. Bauer, S. Garriss, J. M. Mccune, M. K. Reiter,
J. Rouse, and P. Rutenbar. Device-enabled
authorization in the grey system. In Proceedings of the
8th Information Security Conference (ISC’05), pages
431–445, 2005.

[10] E. Becker, W. Buhse, D. Günnewig, and N. Rump,
editors. Digital Rights Management Technological,
Economic, Legal and Political Aspects. Springer, 1
edition, 2003.

[11] D. Boneh and M. Franklin. Identity-Based Encryption
from the Weil Pairing. In Proceedings of CRYPTO,
2001.

[12] J. Clause, W. Li, and A. Orso. Dytan: A Generic
Dynamic Taint Analysis Framework. In Proceedings of
the 2007 International Symposium on Software
Testing and Analysis (ISSTA), pages 196–206, 2007.

[13] D. E. Denning. A Lattice Model of Secure Information
Flow. Commun. ACM, 19(5):236–243, May 1976.

[14] O. Dunkelman, N. Keller, and A. Shamir. A
Practical-Time Attack on the A5/3 Cryptosystem
Used in Third Generation GSM Telephony. In
Proceedings of the 30th Annual Cryptology Conference
(CRYPTO 2010), 2010.

[15] J.-E. Ekberg and M. Kyläanpää. Mobile Trusted
Module (MTM) - An Introduction. Technical Report
NRC-TR-2007-015, Nokia Research Center, Helsinki,
Finland, Nov. 2007.

[16] W. Enck, M. Ongtang, and P. McDaniel. On
Lightweight Mobile Phone Application Certification.
In Proceedings of ACM CCS, November 2009.

[17] Free Software Foundation, Inc. The Campaign to
Eliminate DRM.
http://www.defectivebydesign.org/, June 2010.

[18] Gartner. Gartner Says Worldwide Mobile Phone Sales
to End Users Grew 8 Per Cent in Fourth Quarter
2009; Market Remained Flat in 2009.
http://www.gartner.com/it/page.jsp?id=1306513,
Feb. 2010.

[19] C. Gentry. Certificate-Based Encryption and the
Certificate-Revocation Problem. Advances in
Cryptology, 2656, January 2003.

[20] M. Gholami, S. M. Hashemi, and M. Teshnelab. A
Framework for Secure Message Transmission Using
SMS-Based VPN. Research and Practical Issues of
Enterprise Information Systems II, 1:503–511, 2008.

[21] GigaOm. The Apple App Store Economy.
http://gigaom.com/2010/01/12/
the-apple-app-store-economy, Jan. 2010.

[22] J. Horwitz and B. Lynn. Toward Hierarchical
Identity-Based Encryption. In Proceedings of
EUROCRYPT ’02, pages 466–481, London, UK, 2002.
Springer-Verlag.

[23] J.-S. Hwu, R.-J. Chen, and Y.-B. Lin. An Efficient
Identity-Based Cryptosystem for End-to-End Mobile
Security. IEEE Trans. Wireless Comm.,
5(9):2586–2593, September 2006.

[24] R. Iannella. Digital Rights Management (DRM)
Architectures. D-Lib Magazine, 7(6), 2001.

[25] IETF Network Working Group. Post Office Protocol -
Version 3. http://www.ietf.org/rfc/rfc1939.txt,
May 1996.

[26] IETF Network Working Group. Internet Message
Access Protocol - Version 4, rev1.
http://www.ietf.org/rfc/rfc1939.txt, March 2003.

[27] IETF Network Working Group. DNS Security
Introduction and Requirements.
http://www.ietf.org/rfc/rfc4033.txt, March 2005.

[28] ITU. Measuring the Information Society.
http://www.itu.int/ITU-D/ict/publications/idi/
2010/index.html, 2010.

[29] S. Jobs. Thoughts on Music.
http://www.apple.com/hotnews/thoughtsonmusic/,
February 2007.

[30] M. Kirkpatrick and E. Bertino. Enforcing Spatial
Constraints for Mobile RBAC Systems. In Proceedings
of the 15th ACM symposium on Access control models
and technologies, 2010.

[31] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and
S. Yoo. Secure Key Issuing in ID-based Cryptography.
In Proceedings of the ACSW Frontiers Workshop,
2004.

[32] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and
C. D. McDonell. Linux Kernel Integrity Measurement
Using Contextual Inspection. In Proceedings of ACM
STC, 2007.

[33] Microsoft Corporation. ActiveSync HTTP Protocol
Specification, version 6.0. http://msdn.microsoft.
com/en-us/library/dd299446(EXCHG.80).aspx, May
2010.

[34] Microsoft Corporation. Microsoft PlayReady. http:
//www.microsoft.com/playready/default.mspx,

June 2010.
[35] D. Muthukumaran, A. Sawani, J. Schiffman, B. M.

Jung, and T. Jaeger. Measuring Integrity on Mobile
Phone Systems. In Proceedings of ACM SACMAT,
June 2008.

[36] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically Rich Application-Centric
Security in Android. In Proceedings of Annual
Computer Security Applications Conference (ACSAC),
December 2009.

[37] Open Mobile Alliance Ltd. Rights Expression
Language Version 1.0. Technical Report
OMA-Download-DRMREL-V1 0-20040615-A, Open
Mobile Alliance, June 2004.

[38] Open Mobile Alliance Ltd. DRM Architecture 2.0.1.
Technical Report OMA-AD-DRM-V2 0 1-20080226-A,
Open Mobile Alliance, February 2008.

[39] Open Mobile Alliance Ltd. DRM Rights Expression
Language Version 2.0.2. Technical Report
OMA-TS-DRM REL-V2 0 2-20080723-A, Open
Mobile Alliance, July 2008.

[40] PacketVideo Corporation. Content Policy Manager
Developer’s Guide OHA 1.0 r.1. November 2008.

[41] PacketVideo Corporation. PV Android DivX
Premium Package. July 2009.

[42] PacketVideo Corporation. PV Android Windows
Media Package. November 2009.

[43] Portio Research. Mobile Messaging Futures 2010-2014:
Analysis and Growth Forecsts for Mobile Messaging
Markets Worldwide, 2010.

[44] V. Rao and T. Jaeger. Dynamic Mandatory Access
Control for Multiple Stakeholders. In Proceedings of
ACM SACMAT, June 2009.

[45] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and Implementation of a TCG-based Integrity
Measurement Architecture. In Proceedings of the 13th
USENIX Security Symposium, Aug. 2004.

[46] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
Android-Powered Mobile Devices Using SELinux.
IEEE Security and Privacy, 8:36–44, 2010.

[47] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a Linux Security Module. Technical
Report 01-043, NAI Labs, 2001.

[48] M. Smith, C. Schridde, B. Agel, and B. Freisleben.
Securing Mobile Phone Calls with Identity-Based
Cryptography. LNCS: Advances in Information
Security and Assurance, 5576:210–222, June 2009.

[49] TCG. TPM Main: Part 1 - Design Principles.
Specification Version 1.2, Level 2 Revision 103. 2007.

[50] P. Traynor, P. McDaniel, and T. La Porta. Security
for Telecommunications Networks. Advances in
Information Security. Springer, July 2008.

[51] Z. Wan, K. Ren, and B. Preneel. A Secure
Privacy-Preserving Roaming Protocol Based on
Hierarchical Identity-Based Encryption for Mobile
Networks. In Proceedings of ACM WiSec, 2008.

[52] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-Wide Information Flow
for Malware Detection and Analysis. In Proceedings of
ACM CCS, 2007.

