
Kells: A Protection Framework for Portable Data

Kevin R.B. Butler
Department of Computer & Information Science

University of Oregon, Eugene, OR

butler@cs.uoregon.edu

Stephen E. McLaughlin and

Patrick D. McDaniel
Systems and Internet Infrastructure Security

Laboratory (SIIS)

Penn State University, University Park, PA

{smclaugh,mcdaniel}@cse.psu.edu

ABSTRACT
Portable storage devices, such as key-chain USB devices, are ubiq-
uitous. These devices are often used with impunity, with users re-
peatedly using the same storage device in open computer labora-
tories, Internet cafes, and on office and home computers. Conse-
quently, they are the target of malware that exploit the data present
or use them as a means to propagate malicious software.This paper
presents the Kells mobile storage system. Kells limits untrusted
or unknown systems from accessing sensitive data by continuously
validating the accessing host’s integrity state. We explore the de-
sign and operation of Kells, and implement a proof-of-concept USB
2.0 storage device on experimental hardware. Our analysis of Kells is
twofold. We first prove the security of device operation (within a
freshness security parameter ∆t) using the LS2 logic of secure sys-
tems. Second, we empirically evaluate the performance of Kells.
These experiments indicate nominal overheads associated with host
validation , showing a worst case throughput overhead of 1.22% for
read operations and 2.78% for writes.

1. INTRODUCTION
Recent advances in materials and memory systems have irre-

versibly changed the storage landscape. Small form factor portable
storage devices housing previously unimaginable capacities are now
commonplace today–supporting sizes up to a quarter of a terabyte [15].
Such devices change how we store our data; single keychain de-
vices can simultaneously hold decades of personal email, millions
of documents, thousands of songs, and many virtual machine im-
ages. These devices are convenient, as we can carry the artifacts of
our digital lives wherever we go.

The casual use of mobile storage has a darker implication. Users
plugging their storage devices into untrusted hosts are subject to
data loss [16] or corruption. Compromised hosts have unfettered
access to the storage plugged into their interfaces, and therefore
have free rein to extract or modify its contents. Users face this risk
when accessing a friend’s computer, using a hotel’s business office,
in university computer laboratories, or in Internet cafes. The risks
here are real. Much like the floppy disk-borne viruses in the 1980’s
and 90’s, malware like Conficker [22] and Agent.bz [32] exploit
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mobile storage to propagate malicious code. The compromise of
hosts throughout military networks, due to malware propagated by
rogue portable storage devices, has already led to a ban of their
use by the US Department of Defense [28]. The underlying se-
curity problem is age-old: users cannot ascertain how secure the
computer they are using to access their data is. As a result, all of
their information is potentially at risk if the system is compromised.
This paper attempts to address this conundrum by responding to the
following challenge: How can we verify that the computer we are
attaching our portable storage to is safe to use?

Storage security has recently become an active area of investi-
gation. Solutions such as full-disk encryption [25] and Microsoft’s
BitLocker to Go [18] require that the user supply a secret to access
stored data. This addresses the problem of device loss or theft, but
does not aid the user when the host to which it is to be attached is
itself untrustworthy. Conversely, BitLocker (for fixed disks) uses a
trusted platform module (TPM) [36] to seal a disk partition to the
integrity state of the host, thereby ensuring that the data is safe-
guarded from compromised hosts. This is not viable for mobile
storage, as data is bound to the single physical host. In another ef-
fort, the Trusted Computing Group (TCG) has considered methods
of authenticating storage to the host through the Opal protocol [37]
such as pre-boot authentication and range encryption and locking
for access control. These services may act in a complementary
manner to our solution for protecting mobile storage from poten-
tially compromised hosts.

In this paper, we introduce Kells1, an intelligent USB storage de-
vice that validates host integrity prior to allowing read/write access
to its contents, and thereafter only if the host can provide ongoing
evidence of its integrity state. When initially plugged into an un-
trusted device, Kells performs a series of attestations with trusted
hardware on the host, repeated periodically to ensure that the host’s
integrity state remains good. Kells uses integrity measurement to
ascertain the state of the system and the software running on it at
boot time in order to determine whether it presents a safe platform
for exposing data. If the platform is deemed to be trustworthy then
a trusted storage partition will be exposed to the user; otherwise,
depending on a configurable policy, the device will either mount
only a “public” partition with untrusted files exposed or will not
mount at all. If at any time the device cannot determine the host’s
integrity state or the state becomes undesirable, the protected par-
tition becomes inaccessible. Kells can thus ensure the integrity of
data on a trusted storage partition by ensuring that data can only
be written to it from high-integrity, uncompromised systems. Our
design uses the commodity Trusted Platform Module (TPM) found
in the majority of modern computers as our source for trusted hard-

1The Book of Kells is traceable to the 12th century Abbey of Kells,
Ireland due to information on land charters written into it.
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Figure 1: Overview of the Kells system operation. Attestations of system state are required to be received successfully by the device in order
for the integrity of the host to be proved, a necessary precondition for allowing data to be available to the host.

ware, and our implementation and analysis use it as a component.
We note, however, that it is not integral to the design: any host
integrity measurement solution (e.g., Pioneer [26]) can be used.

Kells diverges substantially from past attempts at securing fixed
and mobile storage. In using the mobile storage device as an au-
tonomous trusted computing base (TCB), we extend the notion of
self-protecting storage [3, 11, 21] to encompass a system that ac-
tively vets the devices that make use of it. A Kells device is active
in order to be able to make these policy decisions. While this is
a change from the passive USB devices often currently employed,
we note that an increasing class of storage devices include process-
ing elements such as cryptographic ASICs. We thus provide a path
to enjoying the convenience of now-ubiquitous portable storage in
a safe manner. Our contributions are as follows:

• We identify system designs and protocols that support portable
storage device validation of an untrusted host’s initial and on-
going integrity state. To the best of our knowledge, this is the
first use of such a system by a dedicated portable storage de-
vice.

• We reason about the security properties of Kells using the
LS

2 logic [6], and prove that the storage can only be ac-
cessed by hosts whose integrity state is valid (within a secu-
rity parameter ∆t).

• We describe and benchmark our proof of concept Kells sys-
tem built on a DevKit 8000 board running embedded Linux
and connected to a modified Linux host. We empirically
evaluate the performance of the Kells device. These experi-
ments indicate that the overheads associated with host valida-
tion are minimal, showing a worst case throughput overhead
of 1.22% for read operations and 2.78% for writes.

We begin the description of Kells by providing a broad overview of
its goals, security model, and operation.

2. OVERVIEW
Figure 1 illustrates the operation of Kells. Once a device is

inserted, the host may request a public or trusted partition. If a
trusted partition is requested, the host and Kells device perform
an attestation-based exchange that validates host integrity. If this
fails, the host will be permitted to mount the public partition, if any
exists. If the validation process is successful, the host is allowed
access to the trusted partition. The process is executed periodically
to ensure the system remains in a valid state. The frequency of the
re-validation process is determined by the Kells policy.

2.1 Operational Modes

There are two modes of operation for Kells, depending on how
much control over device administration should be available to the
user and how much interaction he should have with the device. We
review these below:

Transparent Mode.
In this mode of operation, the device requires no input from the

user. The host verification process executes immediately after the
device is inserted into the USB interface. If the process succeeds,
the device may be used in a trusted manner as described above,
i.e., the device will mount with the trusted partition available to the
user. If the attestation process is unsuccessful, then depending on
the reason for the failure (e.g., because the host does not contain
a TPM or contains one that is unknown to the device), the public
partition on the device can be made available. Alternately, the de-
vice can be rendered unmountable altogether. A visual indicator on
the device such as an LED can allow the user to know whether the
host is trusted or not: a green light may indicate a good state while
a flashing red light indicates an unknown or untrusted host.

User-Defined Mode.
The second mode of operation provides the user with a more

active role in making storage available. When the Kells device is
inserted into the system, prior to the attestation taking place, a par-
tition containing user-executable programs is made available. One
is a program prompting the user to choose whether to run the de-
vice in trusted or public mode. If the user chooses to operate in
trusted mode, then the attestation protocol is performed, while if
public mode is chosen, no attestations occur. In this manner, the
user can make the decision to access either partition, with further
policy that may be applied on trusted hosts opening untrusted par-
titions, to prevent potential malware infection. These hosts may
quarantine the public partition, requiring a partition scan prior to
allowing access. Such a scan can also be performed by the device.
Such a scenario could be useful if there is a need or desire to access
specific media (e.g., photographs, songs) from the public partition
of the disk while using a trusted host, without having to mark the
information as trusted. Trusted partitions on a Kells device are un-
likely to be infected to begin with, on account of any host using
this partition having to attest its integrity state. This is essential,
since a user would not be hesitant to load or execute content from
a partition that is considered trusted.

Note that the policies described above are but two examples of
the methods of operation available with this infrastructure. For sim-
plicity, we have described the coarse-grained granularity of trusted
and public partitions. Within the trusted parition, however, fur-
ther fine-grained policy can be enforced depending on the identi-
fied host; for example, blocks within the partition may be labeled
depending on the host writing to them, with a data structure keep-
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Figure 2: Overview of the Kells architecture.

ing track of the labels and access controls to data (e.g., encrypting
labeled data and only decrypting based on the host having access
to this label, as specified by device policy).

2.2 Threat Model
We assume the adversary is capable of subverting a host oper-

ating system at any time. While we do not specifically address
physical attacks against the Kells device, such as opening the drive
enclosure to manipulate the physical storage media or modifying
the device tick-counter clock, we note that defenses against these
attacks have been implemented by device manufacturers. Notably,
portable storage devices from IronKey [1] contain significant phys-
ical tamper resistance with epoxy encasing the chips on the de-
vice, electromagnetic shielding of the cryptographic processor, and
a waterproof enclosure. SanDisk’s Cruzer Enterprise [24] contains
a secure area for encryption keys that is sealed with epoxy glue.
Tamper-resistance has also been considered for solutions such as
the IBM Zurich Trusted Information Channel [38]. Such solutions
would be an appropriate method of defense for Kells. In addition,
we assume that any reset of the hardware is detectable by the de-
vice (for example, by detecting voltages changes on the USB bus
and receiving cleared PCR values from the TPM).

Kells does not in itself provide protection for the host’s internal
storage, though an adaptation of our design can be used to pro-
vide a similar protection mechanism, as with the Firma storage-
rooted secure boot system [2]). Integrity-based solutions exist that
protect the host’s internal storage (hard disks), including storage-
based intrusion detection [21] and rootkit-resistant disks [3]. As
is common in these systems, we declare physical attacks against
the host’s TPM outside the scope of this work. As previously dis-
cussed, the TPM is used as an implementation point within our
architecture and other solutions for providing host-based integrity
measurement may be used. As a result, we do not make any at-
tempt to solve the many limitations of TPM usage in our solution.
Additionally, we do not consider the issue of devices attesting their
state to the host. The TCG’s Opal protocol [37] includes provisions
for trusted peripherals, addressing the issue by requiring devices
to contain TPMs. Software-based attestation mechanisms such as
SWATT [27], which does not require additional trusted hardware,
may also be used. Finally, we rely on system administrators to
provide accurate measurements of their systems, which must be
updated if there are changes (e.g., due to configuration or updates).
Without updates, Kells will not be able to provide access to the
trusted partitions of these systems.

3. DESIGN AND IMPLEMENTATION
We now turn to our design of the Kells architecture, shown in

Figure 2, and describe details of its implementation. There are
three major components of the system where modifications are nec-
essary: the interface between the host and the device, the storage
device itself, and the host’s operating system.
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Figure 3: Overview of USB operation with an embedded Linux
mass storage device, or gadget.
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Figure 4: Sample USB setup between a host and the Kells device.

3.1 USB Interface
We begin by describing the basics of USB operation in order to

aid in understanding the design of Kells. This is a brief overview;
more details may be found in the appendix.

The basic USB mass storage device stack is shown in Figure 3.
At the USB layer are endpoints, the means by which USB com-
mands are send and received. USB mass storage devices primarily
use bulk transfers, a best-effort service, to transmit information, but
every device also supports the flow of control transfers over end-
point 0. Above the USB layer is a SCSI emulation layer supporting
a limited subset of SCSI commands, such as reads and writes.

Within operating systems that support USB, such as Linux, the
number and functionality of supported devices is large and diverse.
To support devices (or gadgets) that do not conform to the USB
specificaton, Linux contains a repository for these devices and sets
flags when they to modify the host behavior, in order to correctly
operate with these devices.

USB is a master-slave protocol, meaning that all commands must
be initiated by the host. This model is conceptually at odds with a
device such as Kells, which independently enforces security policy.
Therefore, we reconsider how the device interacts with the host.

Figure 4 gives an abridged overview of the device setup process
at the USB layer. As with any USB device, high-speed detection
and bus addressing is performed before information is requested by
the host. The host requests the device descriptor, which includes
information such as the device’s vendor and product ID, as well as



a unique serial number. When the host requests the interface de-
scriptor, the Kells device identifies itself as a mass storage device
that operates in the typical fashion of only performing bulk trans-
fers. The host will set flags accordingly in order to send the correct
commands to the device.

Almost every USB mass storage device performs its operations
using only bulk transfers. However, we use control transfers for
sending trusted commands to Kells. Control transfers reserve a por-
tion of USB bus bandwidth, ensuring that information is tranferred
as quickly as possible. If a Kells device is plugged into a host
that does not support attestation operations, the host will access the
public partition as a standard mass storage device, oblivious to the
trusted protocols and storage. If the host recognizes the device as
trusted, it will send an Accept Device-Specific Command (ADSC).
The setup phase of the command allows the host to initiate the at-
testation protocol, while the attestation information is sent through
the data stage, and the gadget sets a response code that includes
a challenge. Further stages of the attestation protocol continue as
control transfers between the host and device, and all other read and
write operations are suspended until the protocol completes. The
attestation protocol is described in detail in Section 4.1.

3.2 Designing the Storage Device
Kells requires the ability to perform policy decisions indepen-

dent of the host. As a result, logic must execute on these devices,
which require a means of receiving command transfers from the
host and to use these for making the correct access decisions.

The basic architecture for the storage device is an extension to
the Linux USB gadget stack, along with a user-space daemon that
is in charge of policy decisions and accessing other important infor-
mation. Within the kernel, we added new functionality that allows
the device to receive special control transfers from the host. These
are exported to user space through the sysfs interface, where they
are read as strings by the daemon tasked with marshaling this data.

When plugged in, the daemon on the device sets a timer (as USB
devices contain a crystal oscillator for driving clock signals), and
waits to determine whether the host presents the proper creden-
tials. The device presents itself to the host as a typical mass storage
device operating in bulk-only mode, differentiating itself with the
vendor ID. We use the vendor ID b000 which has not been cur-
rently allocated by the USB Forum as of June 2010.2

If an ADSC command containing authenticating information from
the host is not received within this time period, operation on the de-
vice defaults to public operation. If the device is configured such
that the policy does not allow any partitions to be mounted, the
device will not present any further information to the host. If the
protocol fails, the failure is logged in the storage device’s audit log,
which is unexposed to the host. Depending on the defined policy,
either the public partition will be exposed or no partitions on the
device will be mounted at all. If the protocol is successful and the
host attests its state to the device, the daemon presents the trusted
partition to be mounted, by performing an insmod() command
to link the correct backing store with the gadget driver.

Within the Kells device is a policy store, which contains infor-
mation on every known host, its measurement database to compare
attestations against, and policy details, such as whether the host
is authenticated as an administrative console and whether the host
should expose a public partition if the attestation check fails. Op-
tionally, the device can also store information on users credentials
supplied directly to the device through methods such as biometrics.

2Because this is a proof of concept design and implementation, we
have not registered a vendor ID with the USB Forum yet; however,
based on our results, we may consider doing so.

Configured policy can allow or disallow the device to be plugged
into specific machines.

3.3 Modifications to Host
A host must be capable of recognizing that the Kells device is

trusted and sending information to it differs from a standard USB
mass storage transaction. Our goal was to require minimal changes
to the host for operation, but because we are working at the USB
layer, some changes are necessary to the USB driver. We define a
flag IS_TRUSTED in the Linux unusual_devs.h device repository,
letting the host know that the device accepts control transfers.

Because the host must interact with its trusted hardware and per-
form some logic, we designed an attestation daemon that runs in
the host’s user space. The attestation daemon both retrieves boot-
time attestations using the Linux Integrity Measurement Architec-
ture (IMA) [23] and can act as an interface to any runtime moni-
toring systems on the host (see Section 4.2). It can also provide an
interface for receiving third-party updates (see Section 4.3).

4. ATTESTATIONS AND ADMINISTRATION
A key consideration with Kells is managing metadata and cre-

dential information in a manner that maintains usability and sim-
plicity of the device. We describe in this section details of how this
management occurs.

4.1 Attesting Host Integrity
In order for a host connecting to the Kells device to be trustwor-

thy, it must be installed and maintained in a manner that protects
its integrity. A way of ensuring this is through the provisioning of
a secure kernel and supporting operating system, from which mea-
surements of system integrity can be made and transferred to the
Kells device. The maintainer of the host system is thus required
to re-measure the system when it is installed or when measurable
components are updated. Solutions for ensuring a trusted base in-
stallation include the use of a root of trust installer (ROTI) [33],
which establishes a system whose integrity can be traced back to
the installation media.

The system performing the installation must contain trusted hard-
ware such as a TPM. Every TPM contains an endorsement key
(EK), a 2048-bit RSA public/private key pair created when the chip
is manufactured. This provides us with a basis for establishing the
TPM’s unique identity, essential to verifying the installation. The
stages of this initial installation are as follows:

1. The installation media is loaded into the installer system,
which contains a TPM. This system needs to be trusted, i.e.,
the hardware and system BIOS cannot be subverted at this
time.3 As described below, the system’s core root of trust for
measurement (CRTM), containing the boot block code for
the BIOS, provides a self-measurement attesting this state.

2. A measurement of each stage of the boot process is taken.
Files critical to the boot process are hashed, and the list of
hashes kept in a file that is sealed (i.e., encrypted) by the
TPM of the installing system. This process links the in-
stalling TPM with the installed code and the filesystem. A
Kells device in measurement mode can record the measure-
ments from the system, or this can be performed in another
manner and transferred to the device at a later time, through
placement of the list of hashes in a secure repository.

3This restriction is not necessary after installation, as malicious
changes to the system state will be measured by the CRTM.



We first identify the host’s TPM. While the EK is unique to the
TPM, there are privacy concerns with exposing it. Instead, an at-
testation identity key (AIK) public/private key pair is generated as
an alias for the EK, and strictly used for signatures. However, the
AIK is stored in volatile memory. Therefore, both the public and
private AIKs must be stored. The TPM provides the storage root
key (SRK) pair for encrypting keys stored outside the TPM. Thus,
the SRK encrypts the private AIK before it is sent to the device.
Formally, the set of operations occurs as follows. Given a host’s
TPM H and a device D, the following protocol flow describes the
initial pairing of the host to the device and the initial boot:

Pairing
(1) H : generate AIK = (AIK

+
, AIK

−)

(2) H → D : AIK
+
, {AIK

−
}SRK−

Measurement
(3) D → H : {AIK

−
}SRK−

(4) D : n = Generate nonce
(5) D → H : Challenge(n)

(6) H → D : Attestation = Quote+ML

(7) D : V alidate(Quote,ML)AIK+

Steps 1 and 2 occur when the host has been initially configured or
directly after an upgrade operation, to either the hardware or to files
that are measured by the IMA process. Subsequent attestations use
this list of measurements, which may also be disseminated back
to the administrator and stored with the AIK information so as to
allow for remote updates, discussed further in Section 4.3.

The following states are measured in order: (a) the core root of
trust for measurement (CRTM), (b) the system BIOS, (c) the boot-
loader (e.g., GRUB) and its configuration, and (d) the OS. Mea-
surements are made by with the TPM’s extend operation, which
hashes code and/or data, concatenates the result with the previous
operation, and stores the result in the TPM’s Platform Configura-
tion Registers (PCRs). The quote operation takes the challenger’s
nonce n and returns a signature of the form Sign(PCR,N)AIK− ,
when the PCRs and n are signed by the private AIK. The measure-
ment list (ML), which contains a log of all measurements sent to
the TPM, is also included.

The above protocol describes a static root of trust for measure-
ment, or SRTM. There are some disadvantages to this approach,
since the BIOS must be measured and any changes in hardware
require a new measurement; additionally, it may be susceptible to
the TPM reset attack proposed by Kauer [13]. Another approach is
to use a dynamic root of trust for measurement (DRTM), which al-
lows for a late launch, or initialization from a secure loader after the
BIOS has loaded, so that it does not become part of the measure-
ment. SRTM may be vulnerable to code modification if DRTM is
supported on the same device [6]. DRTM may also be potentially
vulnerable to attack; the Intel TXT extensions supporting DRTM
may be susceptible to System Management Mode on the processor
being compromised before late launch is executed, such that it be-
comes part of the trusted boot and is not again measured [39]. For
this reason, it is an administrative decision as to which measure-
ment mode the system administrator should use for their system,
but we can support either approach with Kells.

Note that we are directly connecting with the host through the
physical USB interface. The cuckoo attack described by Parno [20]
may be mitigated by turning off network connectivity during the
boot-time attestation process, such that no remote TPMs can an-
swer in place of the host. However, if the host can access an oracle

that presents TPM-like answers, a means to uniquely identify the
host is necessary. We are actively investigating these methods.

4.2 Managing Runtime Integrity Attestations

1: (att, t) ← read.RAM.att
2: if |req.time− t| < ∆t ∧ GoodAtt(att) then
3: Perform the write req as usual.
4: else
5: if WriteBuffer.notFull() then
6: Buffer the request for later write back once a fresh attestation

is received.
7: else
8: Stall until there is space in the write buffer.
9: end if

10: end if

Figure 5: Write(req) algorithm.

1: (att, t) ← read.RAM.att
2: if GoodAtt(att) then
3: for Requests buffered before t do
4: Perform the write req as usual.
5: end for
6: end if

Figure 6: Commit() algorithm.

1: (att, t) ← read.RAM.att
2: if |req.time− t| < ∆t ∧ GoodAtt(att) then
3: Perform the read req as usual.
4: else
5: Stall until a fresh attestation is received.
6: end if

Figure 7: Read(req) algorithm.

To perform authentication of the host, the Kells device must
compare received attestations with a known set of good values. A
portion of non-volatile memory is used for recording this informa-
tion, which includes a unique identity for the host (e.g., the public
AIK) the host’s measurement list, and policy-specific information,
(e.g., should the host allow administrative access).

We provide a framework for supporting runtime integrity mon-
itoring, but we do not impose constraints on what system is to be
used. The runtime monitor can provide information to the storage
device as to the state of the system, with responses that represent
good and bad system states listed as part of the host policy. Our
design considers attestations from a runtime monitor to be deliv-
ered in a consistent, periodic manner; one may think of them as
representing a security heartbeat. The period of the heartbeat is
fixed by the device and transmitted to the host as part of the device
enumeration process, when other parameters are configured.

Because the device cannot initiate queries to the host, it is incum-
bent on the host to issue a new attestation before the validity period
expires for the existing one. The Kells device can issue a warning
to the host a short time period λ before the attestation period ∆t

expires, in case the host neglects to send the new attestation.
Algorithms 5 and 6 describe the write behavior on the device.

We have implemented a buffer for writes that we term a quarantine
buffer, to preserve the integrity of data on the Kells device. Writes
are not directly written to the device’s storage but are stored in the
buffer until an attestation arrives from the host to demonstrate that
the host is in a good state. Once a successful attestation arrives,
the buffer is cleared, but if a failed attestation arrives and access to



the trusted partition is revoked, any information in the write buffer
at that time will be discarded. In a similar manner, Algorithm 7
describes the semantics of the read operation. Reads occur as nor-
mal unless an attestation has not been received within time ∆t. If
this occurs, then further read requests will be prevented until a new
successful attestation has been received.

To prevent replay, the host must first explicitly notify Kells that
the attestation process is beginning in order to receive a nonce,
which is used to attest to the freshness of the resulting runtime at-
testation (i.e., as a MAC tied to the received message).

4.3 Remote Administration
An additional program running on the host (and measured by

the Kells device) allows for the device to remotely update its list
of measured hosts. This program starts an SSL session between
the running host and a remote server in order to receive new policy
information, such as updated measurements and potential host re-
vocations. The content is encrypted by the device’s public key, the
keypair of which is generated when the device is initialized by the
administrator, and signed by the remote server’s private key.

Recent solutions have shown that in addition to securing the
transport, the integrity state of the remote server delivering the con-
tent can be attested [19]. It is thus possible for the device to request
the attestation proof from the remote administrator prior to apply-
ing the received policy updates.

In order for the device to receive these updates, the device ex-
poses a special administrative partition if an update is available,
signaled to do so by the attestation daemon. The user can then
move the downloaded update file into the partition, and the device
will read and parse the file, appending or replacing records within
the policy store as appropriate. Such operations include the addi-
tion of new hosts or revocation of existing ones, and updates of
metadata such as measurement lists that have changed on account
of host upgrades. This partition contains only one other file: the au-
dit failure log is encrypted with the remote server’s public key and
signed by the device, and the user can then use the updater program
to send this file to the remote server. The server processes these re-
sults, which can be used to determine whether deployed hosts have
been compromised.

5. REASONING ABOUT ATTESTATIONS
We now prove that the Kells design achieves its goal of protect-

ing data from untrusted hosts. This is done using the logic of secure
systems (LS2) as described by Datta et al. in [6]. Using LS

2, we
describe two properties, (SEC) and (INT), and prove that they are
maintained by Kells. These two properties assert that the confi-
dentiality and integrity of data on the Kells device are protected in
the face of an untrusted host. To prove that Kells enforces the two
properties, we first encode the Kells read and write operations from
section 4.2 into the special programming language used by LS

2.
These encodings are then mapped into LS

2 and shown to maintain
both properties. Both properties are stated informally as follows.

1. (SEC) Any read request completed by Kells was made while
the host was in a known good state. This means that an at-
testation was received within a time window of ∆t from the
request or after the request without a host reboot.

2. (INT) Any write request completed by Kells was made while
the host was in a known good state with the same respect to
∆t as read.

5.1 Logic of Secure Systems

The logic of secure systems (LS2) provides a means for rea-
soning about the security properties of programs. This reasoning
allows the current state of a system to be used to assert properties
regarding how it got to that state. In the original work, this was
used to show that given an integrity measurement from a remote
host, the history of programs loaded and executed can be verified.
In the case of Kells, we use such a measurement to make assertions
about the reads and writes between the host system and Kells stor-
age device, namely, that (SEC) and (INT) hold for all reads and
writes. LS

2 consists of two parts: a programming language used
to model real systems, and the logic used to prove properties about
the behavior of programs written in the language. This section be-
gins with a description of the language used by LS

2, followed by
a description of the logic and proof system.

LS
2 uses a simple programming language, hereafter referred to

as “the language,” to encode real programs. Any property provable
using LS

2 holds for all execution traces of all programs written in
the language. Our aim is to encode Kells operation in the language
and formally state and prove its security properties using LS

2. The
main limitation of the language (and what makes it feasible to use
for the verification of security properties) is the lack of support for
control logic such as if-then-else statements and loops. Expressions
in the language resolve to one of a number of data types including
numbers, variables, and cryptographic keys and signatures. For
Kells operation, we use numeric values as timestamps (t) and data
(n), and pairs of these to represent data structures for attestations
and block requests. The expressions used for encoding values in
Kells is shown in Table 1.

The language encapsulates operations into actions, single in-
structions for modeling system-call level behavior. Program traces
are sequences of actions. There are actions for communication be-
tween threads using both shared memory and message passing. In
the case of shared memory, read l and write l, e signify the
reading and writing of an expression e to a memory location l. As
Kells adds security checks into these two operations, we introduce
language extensions sread req, att and swrite req, att, which
are covered in the following section. Finally, the actions send req

and receive are used to model communication with the host (H)
by the Kells device (D).

Moving from the language to the logic proper, LS2 uses a set
of logical predicates as a basis for reasoning about programs in
the language. There are two kinds of predicates in LS

2, action
predicates and general predicates. Action predicates are true if the
specified action is found in a program trace. Furthermore, they
may be defined at a specific time in a program’s execution, e.g.
Send(D, req) @ t holds if the thread D send the results of the re-
quest req to the host at time t. See the predicates in Table 1. Gen-
eral predicates are defined for different system states either at an
instant of time or over a period. One example of such a predicate
is GoodState(H, (t, treq, (l, n)), (tatt, sig)), which we defined to
show that the host system is in a good state with respect to a partic-
ular block request. The exact definition of GoodState is given in
the following section.

5.2 Verification of Kells Security Properties
We verify that Kells operations maintain the (SEC) and (INT) prop-

erties in several steps. First, we rewrite the algorithms described in
section 4.2 using the above described language. This includes a
description about assumptions concerning the characteristics of the
underlying hardware and an extension of the language to support
the write queueing mechanism, along with the operational seman-
tics of these expressions as shown in Figure 8. We then formally



Table 1: The subset of LS2 and extensions used to evaluate the Kells security properties.

Expressions
Expression Use in Validation
att = (tatt, sig) An attestation consisting of wall clock arrival time tatt, and a signature, sig.
req = (t, treq, (l, n)) A block request consisting of a stored program counter t, a wall clock time treq, a disk location l and a value n.

Language Features (∗ indicates an extension)
Feature Use in Validation
send req Send the result of request req from Kells to the host.
receive Receive a value from the host.
proj1 e Project the first expression in the pair resulting from e. proj2 e projects the second expression.
∗enqueue req Enqueue the request req in the Kells request queue.
∗peek Peek at the item at the head of the Kells device’s write request queue. If the queue is empty, halt the current thread

immediately.
∗dequeue Dequeue a block request from the Kells request buffer.
∗sread req, att Perform a secure (attested) read.
∗swrite req, att Perform a secure (attested) write.

Predicates (∗ indicates an extension)
Predicate Use in Validation
Send(D, req) @ t The Kells disk controller (D) sent the result of request req to the host at time t.
Recv(D, req) @ t The Kells disk controller (D) received the request req from the host at time t.
Reset(H) @ t Some thread on the host machine (H) restarted the system at time t.
∗Peek(D) @ t The Kells disk controller (D) peeked at the tail of the request queue at time t.
∗SRead(req, att) sread was executed in the program trace.
∗SWrite(req, att) swrite was executed in the program trace.
∗Fresh(t, treq, tatt) The attestation received at time tatt was received recently enough to be considered fresh w.r.t. a request that

arrived at treq.
∗GoodState(H, req, att) The host (H) attested a good state w.r.t. the request req. Meaning that the host was in a good state when the

request was received.

Configuration (∗ indicates an extension)
Configuration Use in Validation
σ The store map of [location �→ expression]. This is used in the semantics of read and write as well as the

write request queue.
∗(h, t) The Kells requests queue, implemented as a pair of pointers to the memory store σ.
∗ρ The program counter. This counter is initialized to t0 at reboot time and increments once for each executed action

in the trace.

(enqueue) ρ, (h, t),σ[t �→ _], [x:= enqueue e;P ]I −→ ρ+ 1, (h, t+ 1),σ[t �→ (e, ρ)], [P (0/x)]I

(dequeue) ρ, (h, t),σ[h �→ e], [x:= dequeue;P ]I −→ ρ+ 1, (h+ 1, t),σ[h �→ e], [P (0/x)]I

(peek) ρ, (h, t),σ[t �→ e], [x:= peek;P ]I −→ ρ+ 1, (h, t),σ, [P (e/x)]I

(sread) ρ,σ[l �→ e], [x:= sread (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1,σ[l �→ e], [P (e/x)]I

if GoodState(H, (t, treq, (l, n)), (tatt, sig))

(swrite) ρ,σ[l �→ _], [x:= swrite (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1,σ[l �→ e], [P (0/x)]I

if GoodState(H, (t, treq, (l, n)), (tatt, sig))

(sreadD) ρ,σ[l �→ e], [x:= sread (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1,σ[l �→ e], [P (0/x)]I
otherwise

(swriteD) ρ,σ[l �→ _], [x:= swrite (t, treq, (l, n)), (tatt, sig)]I −→ ρ+ 1,σ[l �→ _], [P (0/x)]I
otherwise

Figure 8: The operational semantics of the language extensions used to encode Kells operations. The program counter ρ applies to all actions
in the language.

state the two properties and show that they hold for the encoded
versions of Kells operations.

5.2.1 Encoding Kells Operation
The encoding of the read operation is shown in Figure 9 and the

write operation in Figure 10. The primary challenge in encoding
Kells operations using the language was the lack of support for
conditional statements and loops. Note that their addition would
also require an extension of the logic to handle these structures. To

alleviate the need for loops, we assume that the Kells device has a
hardware timer that can repeatedly call the program that performs
commits from the write request queue (KCommit in Figure 10).

We extend the language with three instructions for working with
the Kells write request queue: enqueue, dequeue and peek.
The first two operations are straightforward and are assumed to be
synchronized with any other executing threads. The peek opera-
tion prevents a dequeued request from being lost by KCommit if a



KRead: 1. att = read D.RAM.att-loc
2. (t, req) = receive
3. n’ = sread req,att
4. send n’

Figure 9: The encoding of the Kells read operation.

KWrite: 1. (t, req-pair) = receive
2. enqueue (t, req-pair)

KCommit: 1. att = read D.RAM.att-loc
2. (t, req) = peek
3. swrite req,att
4. dequeue

Figure 10: The encoding of the Kells write operation.

fresh attestation has not arrived after the request has been dequeued.
If the queue is empty, peek halts the current thread.

To capture Kells mediation, we add the checks for attestation
freshness and verification into the semantics of the read and write
actions by introducing the sread and swrite actions. The se-
mantics of these two actions are shown in Figure 8. Both of these
operations take a block I/O request and an attestation as arguments.
A block request (t, treq, (l, n)) from the host consists of the pro-
gram counter at arrival time t, an absolute arrival time treq and a
sector offset and data pair.

The encoded version of the Kells read program (KRead) is shown
in Figure 9. We assume the existence of a running thread that is re-
sponsible for requesting new attestations from the host at a rate of
∆t and placing the most recent attestation at D.RAM.att-loc.
Lines 1. and 2. receive the attestation and request from the host
respectively. Line 3. invokes the secure read operation which runs
to completion returning either the desired disk blocks (sread) or an
error (sreadD). Line 4. sends the resulting value to the host.

The encoded version of the Kells write program (KWrite) is
shown in Figure 10. KWrite simply receives the request from the
host in line 1. and places it in the request queue at line 2. t contains
the value of ρ at the time the request was received. The majority
of the write operation is encoded in KCommit, which retrieves an
enqueued request, arrival time and the most recent attestation, and
performs an swrite. Recall that KCommit runs once in a thread
invoked by a timer since a timed loop is not possible in LS

2.

5.2.2 Proof of Security Properties
The (SEC) and (INT) properties may be stated formally as shown

in Figures 11 and 12. Both properties ultimately make an assertion
about the state of a host at the time it is performing I/O using the
Kells device. GoodState, defined in Figure 13, requires that an at-
testation (1) is fresh with respect to a given block I/O request and
(2) represents a trusted state of the host system. In the following
two definitions, ∆t represents the length of time during which an
attestation is considered fresh past its reception. Thus, GoodState
can be seen as verifying the state of the host w.r.t. a given I/O
request, independent of the state at any previous requests.

We use the predicate Fresh(t, treq, tatt) to state that an attesta-
tion is fresh w.r.t. a given request. The attestation is received at
wall clock time tatt and the request at time treq. Attestations are
received at the tth clock tick, as obtained using the program counter
ρ. As described above, Kells will check if a previous attestation is
still within the freshness parameter ∆t before stalling the read or
queueing the write. This is the first case in the definition of Fresh
in Figure 14. If a request is stalled, the next attestation received is
verified before satisfying the request. In this case, a Reset must not

(SEC) � ∀ (treq, (l, n)), (tatt, sig), t s.t.

(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)

∧ e = SRead(D, (t, treq, (l, n)), (tatt, sig))

⊃ GoodState (H, (t, treq, (l, n)), (tatt, sig))

Figure 11: Definition of Kells secrecy property.

(INT) � ∀ (t, treq, (l, n)), (tatt, sig) s.t.

(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)

∧ SWrite(D, (t, treq, (l, n)), (tatt, sig))

⊃ GoodState (H, (t, treq, (l, n)), (tatt, sig))

Figure 12: Definition of Kells integrity property.

occur between the receipt of the request and the check of the next
attestation.
Theorem 1. KRead maintains the (SEC) security property.
Proof.
Assume that the following holds for an arbitrary program trace.

∃ (treq, (l, n)), (tatt, sig), t, e s.t.
(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)

∧ e = SRead((t, treq, (l, n)), (tatt, sig))

We know that t is the value of ρ at the time the request was received
because we assumed Recv occurred in the trace at time t. By def-
inition of SRead, we have Fresh(t, treq, tatt), Verify((tatt, sig),
AIK(H)), and Match(v, criteria) all hold. Thus, GoodState
holds, and (SEC) is provable using LS

2 with extensions. Because
KRead is implemented in the language with extensions, (SEC) holds
over KRead by the soundness property of LS2.

Theorem 2. KCommit maintains the (INT) security property.
Proof.
Assume that the following holds for an arbitrary program trace.

∃ (t, treq, (l, n)), (tatt, sig) s.t
(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)

∧ SWrite((t, treq, (l, n)), (tatt, sig))

We know that t is the value of ρ at the time the request was received,
by (enqueue). By definition of SWrite, we have that Fresh(t, treq, tatt),
Verify((tatt, sig), AIK(H)), and Match(v, criteria) all hold. Thus,
GoodState, holds, giving that (INT) is provable using LS

2 with
extensions. Because KCommit is implemented in the language
with extensions, (INT) holds over KCommit by the soundness
property of LS2.

6. EVALUATION
We performed a series of experiments aimed at characterizing

the performance of Kells in realistic environments. All experiments
were performed on a Dell Latitude E6400 laptop running Ubuntu
8.04 with the Linux 2.6.28.15 kernel. The laptop TPM performs
a single quote in 880 msec. The Kells device was implemented
using a DevKit 8000 development board that is largely a clone of
the popular BeagleBoard.4 The board contains a Texas Instruments

4Due to extreme supply shortages, we were unable to procure a
BeagleBoard or our preferred platform, a small form-factor Gum-



Read Write
Configuration (∆t) Run Throughput Run Throughput

(secs) (MB/sec) Overhead (secs) (MB/sec) Overhead
No verification 36.1376 14.196 N/A 35.4375 5.6437 N/A

1 second verification 36.5768 14.025 1.22% 36.4218 5.4912 2.78%
2 second verification 36.6149 14.011 1.32% 35.9895 5.5572 1.56%
5 second verification 36.3143 14.127 0.49% 35.7969 5.5871 1.01%

10 second verification 36.2113 14.167 0.20% 35.7353 5.5967 0.84%

Table 2: Kells performance characteristics – average throughput over bulk read and write operations

GoodState(H, (t, treq, (l, n)), (tatt, sig)) =

Fresh(t, treq, tatt)

∧ v = Verify((tatt, sig), AIK(H))

∧ Match(v, criteria)

Figure 13: Definition of Goodstate property.

Fresh (t, treq, tatt) =

(tatt < treq ∧ treq − tatt < ∆t)

∨ (treq < tatt ∧ ¬Reset(H) on [t, ρ])

Figure 14: Definition of Fresh property.

OMAP3530 processor, which contains a 600 MHz ARM Cortex-
A8 core, along with 128 MB of RAM and 128 MB of NAND flash
memory. An SD card interface provides storage and, most impor-
tantly for us, the board supports a USB 2.0 On-the-Go interface
attached to a controller allowing device-mode operation. The de-
vice runs an embedded Linux Angstrom distribution with a modi-
fied 2.6.28 kernel. Note that an optimized board could be capable
of receiving its power from the bus alone. The TI OMAP-3 pro-
cessor’s maximum power draw is approximately 750 mW, while a
USB 2.0 interface is capable of supplying up to 500 mA at 5 V, or
2.5 W. The recently introduced USB 3.0 protocol will be even more
capable, as it is able to supply up to 900 mA of current at 5 V.

Depicted in Table 2, our first set of experiments sought to deter-
mine the overhead of read operations. Each test read a single 517
MB file, the size of a large video, from the Kells device. We varied
the security parameter ∆t (the periodicity of the host integrity re-
validation) over subsequent experiments, and created a baseline by
performing the read test with a unmodified DevKit 8000 USB de-
vice and Linux kernel. All statistics are calculated from an average
of 5 runs of each test.

As illustrated in the table, the read operation performance is
largely unaffected by the validation process. This is because the
host preemptively creates validation quotes and delivers them to
the device at or about the time a new one is needed (just prior to a
previous attestation becoming stale). Thus, the validation process
is mostly hidden by normal read operations. Performance, how-
ever, does degrade slightly as the validation process occurs more
frequently. At about the smallest security parameter supportable
by the TPM hardware (∆t = 1 second), throughput is reduced by
only 1.2%, and as little as 0.2% at 10 seconds. This overhead is
due largely to overheads associated with receiving and validating
the integrity proofs (which can be as large as 100KB).

Also depicted in Table 2, the second set of tests sought to charac-
terize write operations. We performed the same tests as in the read
experiments, with the exception that we wrote a 200MB file. Write
operations are substantially slower on flash devices because of the
underlying memory materials and structure. Here again, the write
operations were largely unaffected by the presence of host valida-

stix Overo device. Future work will consider how these devices
may change our performance characteristics.

tion, leading to a little less than 3% overhead at ∆t = 1 second

and just under 1% at 10 seconds.
Note that the throughputs observed in these experiments are sub-

stantially lower than USB 2.0 devices commonly provide. USB
2.0 advertises maximal throughput of 480Mbps, with recent flash
drives advertising as much as 30MB/sec. All tests are performed on
our proof of concept implementation on the experimental apparatus
described above, and are primarily meant to show that delays are
acceptable. Where needed, a production version of the device and
a further optimized driver may greatly reduce the observed over-
heads. Given the limited throughput reduction observed in the test
environment, we reasonably expect that the overheads would be
negligible in production systems.

7. RELATED WORK
The need to access storage from portable devices and the secu-

rity problems that consequently arise is a topic that has been well
noted. SoulPad [4] demonstrated that the increasing capacity of
portable storage devices allows them to carry full computing stacks
that required only a platform to execute on. DeviceSniffer [35]
further considered a portable USB device that allowed a kiosk to
boot, where the software on the drive provides a root of trust for
the system. As additional programs are loaded on the host, they
are dynamically verified by the device through comparison with an
on-board measurement list. This architecture did not make use of
trusted hardware and is thus susceptible to attacks at the BIOS and
hardware levels. The iTurtle [17] was a proposal to use a portable
device to attest the state of a system through a USB interface. The
proposal made the case that load-time attestations of the platform
was the best approach for verification. This work was exploratory
and postulated questions rather than providing concrete solutions.

Garriss et al. further explored these concepts to use a mobile
device to ensure the security of the underlying platform, using it
as a kiosk on which to run virtual machines [10] and providing a
framework for trusted boot. This work makes different assumptions
about how portable devices provide a computing environment; in
the proposed model, a mobile phone is used as authenticator, rely-
ing on a barcode attached to the platform transmitted wirelessly to
the device. Because the verifier is not a storage device, the virtual
machine to be run is encrypted in the cloud.

Others have considered trusted intermediaries that establish a
root of trust external to the system, starting with Honeywell’s Project
Guardian and the Scomp system, which provided a secure front-end
processor for Multics [8]. SIDEARM was a hardware processor
that ran on the LOCK kernel, establishing a separate security en-
forcement point from the rest of the system [31]. The first attempt
to directly interpose a security processor within a system was the
Security Pipeline Interface [12], while other initiatives such as the
Dyad processor [40] and the IBM 4758 coprocessor [7] provided
a secure boot. Secure boot was also considered by Arbaugh et al.,
whose AEGIS system allows for system startup in the face of in-
tegrity failure. Numerous proposals have considered how to attest



system state. SWATT [27] attests an embedded device by verifying
its memory through pseudorandom traversal and checksum com-
putation. This requiers verifier to fully know the memory contents.
Recent work has shown that SWATT may be susceptible to return-
oriented rootkits [5] but this work itself is subject to assumptions
about SWATT that may not be valid. Similarly, Pioneer [26] en-
ables software-based attestation through verifiable code execution
by a verification function, reliant on knowledge of the verified plat-
form’s exact hardware configuration. A study of Pioneer showed
that because it is based on noticing increases in computation time
in the event of code modification, a very long execution time is
required in order to find malicious computation as CPU speeds in-
crease [9]. Software genuinity [14] proposed relying on the self-
checksumming of code to determine whether it was running on a
physical platform or inside a simulator; however, Shankar et al.
showed problems with the approach [29].

Augmenting storage systems to provide security has been a topic
of sustained interest over the past decade. Initially, this involved
network-attached secure disks (NASD) [11], an infrastructure where
metadata servers issue capabilities to disks augmented with proces-
sors. These capabilities are the basis for access control, requiring
trust in servers external to the disk. Further research in this vein
included self-securing storage [34], which, along with the NASD
work, considered object-based storage rather than the block-based
approach that we use. Pennington et al. [21] considered the disk-
based intrusion detection, requiring semantically-aware disks [30]
for deployment at the disk level.

8. CONCLUSION
In this paper, we presented Kells, a portable storage device that

validates host integrity prior to allowing read or write access to its
contents. Access to trusted partitions is predicated on the host pro-
viding ongoing attestations as to its good integrity state. Our proto-
type demonstrates that overhead of operation is minimal, with a re-
duction in throughput of 1.2% for reads and 2.8% for writes given a
one-second periodic runtime attestation. Future work will include a
detailed treatment of how policy may be enforced in an automated
way between trusted and untrusted storage partitions, and further
interactions with the OS in order to support and preserve properties
such as data provenance and control of information flow.
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